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Abstract

We show that the length of an arbitrary ascending chain has geometric meaning
and hence describes certain natural properties for the ascending chain. The results
proved in this paper can be used to enhance the efficiency of the Ritt-Wu’s decom-
position algorithm and to obtain an unmixed decomposition for an algebraic variety
more easily.
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We know that the dimension for an irreducible ascending chain ASC is a crucial con-
cept in Ritt-Wu’s constructive theory of algebraic geometry [WU1]. We can also define
the dimension for an arbitrary ascending chain similarly. But one may say that this
definition has no geometric meaning. In this paper, we will show that the dimension
of an arbitrary ascending chain does have geometric meaning and hence describes cer-
tain natural properties for the ascending chain. The results proved in this paper can be
used to enhance the efficiency of the Ritt-Wu’s decomposition algorithm and to obtain
an unmixed decomposition for an algebraic variety more easily.

1. The Dimension of an Arbitrary Ascending Chain

Let K be a field of characteristic zero and K[y1, ..., yn] or K[y] be the ring of polynomials
for the variables y1, ..., yn. All polynomials in this paper are in K[y] unless explicitly
mentioned otherwise. Let P be a polynomial. The class of P , denoted by class(P ), is
the largest p such that some yp actually occurs in P . If P ∈ K, class(P ) = 0. Let
a polynomial P be of class p > 0. The coefficient of the highest power of xp in P
considered as a polynomial of xp is called the initial of P . For polynomials P and G with
class(P ) > 0, let prem(G; P ) be the pseudo remainder of G wrpt (ab. with respect to)
P [WU1].
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A sequence of polynomials ASC = A1, ..., Ap is said to be a quasi ascending chain,
if either r = 1 and A1 6= 0 or 0 < class(Ai) < class(Aj) for 1 ≤ i < j. ASC is
called nontrivial if class(A1) > 0. A quasi ascending chain ASC = A1, ..., Ap is called an
ascending chain if either ASC is trivial or Aj is of higher degree than Ai (i = j + 1, ..., p)
in ynj

where nj = class(Aj).

For a non-trivial quasi ascending chain ASC = A1, ..., Ap and a polynomial G, we
define the pseudo remainder of G wrpt ASC inductively as

prem(G; ASC) = prem(prem(G; Ap); A1, ..., Ap−1).

Let R = prem(G; ASC), then we have the following important remainder formula [WU1]:

JG−R ∈ Ideal(A1, ..., Ap) (1.1)

where J is a product of the initials of the polynomials in ASC and Ideal(A1, ..., Ap) is
the ideal generated by A1, ..., Ap.

Definition 1.1. The dimension of a quasi ascending chain ASC = A1, ..., Ap is defined
to be DIM(ASC) = n− p.

For a quasi ascending chain ASC = A1, ..., Ap, let Ai be of class mi, then we call
{y1, ..., yn} − {ym1 , ..., ymp} the parameter set of ASC. Thus DIM(ASC) is equal to the
number of parameters of ASC.

Definition 1.2. For a quasi ascending chain ASC, we define

QD(ASC) = {g |∃J, Jg ∈ Ideal(ASC)}

where J is a product of powers of the initials of the polynomials in ASC.

It is obvious that QD(ASC) is an ideal. By (1.1), we have that if prem(P ; ASC) = 0
then P ∈ QD(ASC). Let PS and DS be polynomial sets. For an algebraic closed
extension field E of K, let

Zero(PS) = {x = (x1, ..., xn) ∈ En | ∀P ∈ PS, P (x) = 0}

and Zero(PS/DS) = Zero(PS)− ∪g∈DSZero(g).

Theorem 1.3. Let ASC = {A1, ..., Ar} be a non-trivial quasi ascending chain, J =
{I1, ..., Ir} where Ii are the initials of Ai. Then either Zero(ASC/J) is empty or

Zero(ASC/J) = ∪1≤i≤lZero(QD(ASCi)/J)

where each ASCi is irreducible and with the same parameter set as ASC. (For the concept
of irreducible ascending chain, see [WU1]).

Proof. It is a direct consequence of Theorem 4.4 in [CG1] and the affine dimension theorem
(p48, [HA1]).

If ASC is an irreducible ascending, then it is known that QD(ASC) is a prime ideal of
dimension DIM(ASC) [WU1]. A variety whose irredundant components have the same
dimension is called an unmixed or pure variety. Theorem 1.3 means that Zero(ASC/J)
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is contained in an unmixed variety of dimension DIM(ASC). Moreover, this unmixed
variety satisfies a property that all its components have the same parameter set. We call
such a variety a parameter unmixed variety.

2. An Unmixed Decomposition for QD(ASC)

For a polynomial set PS, let M(PS) be the multiplicative set generated by PS, i.e.
the products of the powers of finite polynomials in PS. For two polynomial sets PS and
DS, let

QD(PS : DS) = {g ∈ K[y] | ∃J ∈ M(DS), Jg ∈ Ideal(PS)}
then it is obvious that QD(ASC) = QD(ASC : J) where J is the initial set of ASC.

Theorem 2.1. For two polynomial sets PS = {f1, ..., fk} and DS = {d1, ..., ds} in K[y],
let PD = Ideal(PS, d1z1 − 1, · · · , dszs − 1) in K[y, z1, ..., zs] where zi are new variables.
Then QD(PS : DS) = PD ∩K[y].

Proof. For P ∈ QD(PS : DS), there is a J = dn1
1 · · · dns

s ∈ M(DS) such that JP ∈
Ideal(PS). Note that (zidi)

ni ≡ 1 mod PD, then we have zn1 · · · zns
s JP ≡ ∏s

i=1(zidi)
niP ≡

P ≡ 0 mod PD, i.e., P ∈ PD. We have proved QD(PS : DS) ⊂ PD ∩ K[y]. For the
other direction, let P ∈ PD∩K[y], then P =

∑
Bifi +

∑
Ci(zidi−1) for some polynomi-

als Bi and Ci in K[y, z]. Set zi = 1/di and clear the denominators. We have JP =
∑

B′
ifi

where J ∈ M(DS), i.e., P ∈ QD(PS : DS).

Theorem 2.1 together with the following result give a method to compute a basis for
QD(PD : DS).

Lemma 2.2. (Lemma 6.8 in [BU1]) For an ideal ID ⊂ K[x1, ..., xn, y1, ..., yk], if GB is a
Gröbner basis of ID under the pure lexicographic ordr x1 < ... < xn < y1 < ... < yk then
GB ∩K[x1, ..., xn] is a Gröbner basis of ID ∩K[x1, ..., xn].

Let G be a polynomial ideal and S be a multiplicative polynomial set, the fraction
of G by S is defined to be S−1G = S × G/ ∼ where ∼ satisfies that (s, a) ∼ (s′, a′) iff
sa′ = s′a. Certain elements of S−1G can be treated like polynomials. Here, we always
treat (s, sa) and a as the same element (for more details, see [AM1]).

Theorem 2.3. Let S = M(DS), then QD(PS : DS) = (S−1Ideal(PS)) ∩K[y].

Proof. Define a map φ : QD(PS : DS) → (S−1Ideal(PS)) ∩ K[y] by setting φ(P ) =
(J, JP ) where J ∈ S satisfies JP ∈ Ideal(PS). It is easy to see that φ is a well
defined injective map. By the explanation in the previous paragraph, an elements in
(S−1Ideal(PS)) ∩K[y] must have the form (J, JP ) where J ∈ S and JP ∈ Ideal(PS).
Thus P ∈ QD(PS : DS), and therefore φ is also surjective.

The following result permits us to obtain the irreducible components of QD(PS : DS)
from PS and DS directly using Ritt-Wu’s decomposition algorithm.

Theorem 2.4. For polynomial sets PS and DS in K[y],

Zero(PS/DS) = ∪m
i=1Zero(QD(ASCi)/DS)

is an irreducible irredundant decomposition for Zero(PS/DS) iff

Zero(QD(PS : DS)) = ∪m
i=1Zero(QD(ASCi))
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is an irreducible irredundant decomposition for Zero(QD(PS : DS)).

Proof. This theorem comes from the following lemma and Theorem 2.1 immediately.

Lemma 2.5. For polynomial sets PS and DS = {d1, ..., ds} in K[y], let PD = Ideal(PS,
d1z1 − 1, ... ,dszs − 1) where zi are new variables. If

Zero(PS/DS) = ∪m
i=1Zero(QD(ASCi)/DS) (A.1)

is an irreducible irredundant decomposition for Zero(PS/DS), then we have an irredun-
dant decomposition for Zero(PD)

Zero(PD) = ∪m
i=1Zero(QD(ASC ′

i)) (A.2)

where ASC ′
i = ASCi, d1z1 − 1, · · · , dszs − 1, and vice versa.

Proof. Suppose we have (A.1). Note that the pseudo remainders of the generators of PD
w.r.p ASC ′

i are zero, then by (1.1) we have PD ⊂ QD(ASC ′
i), i = 1, ...m. One direction of

(A.2) is proved. For the other direction, let η = (x′, z′1, ..., z
′
s) be a zero of Zero(PD), then

di(x
′)z′i−1 = 0 which implies di(x

′) 6= 0, i = 1, ..., s. Thus x′ ∈ Zero(PS/DS), and hence
x′ ∈ Zero(QD(ASCi)/DS) for some i, say i = 1. We will prove η ∈ Zero(QD(ASC ′

1)).
Let h ∈ QD(ASC ′

1), then Jh = P +
∑

Ci(zidi − 1), where P ∈ QD(ASC1) and J is a
product of the the powers of some di. As the di(x

′) 6= 0, then η is a zero of h. Hence
(A.2) is true. It is similar to derive (A.1) from (A.2)

We now give some properties for QD(ASC). First, the algorithm to compute a finite
basis of the prime ideal QD(ASC) for an irreducible ascending chain ASC in p85 [CH1]
can be generalized to the following form.

Theorem 2.6. For a quasi ascending chain ASC in K[y], let ID = Ideal(ASC, I1z1 −
1, · · · , Ipzp − 1) in K[y, z], where Ii are the initials of the polynomials in ASC and zi are
new variables, then QD(ASC) = ID ∩K[y].

Proof. Since QD(ASC) = QD(ASC : J), this is a direct consequence of Theorem 2.1.

A finite basis of QD(ASC) can be found by Lemma 2.2.

Theorem 2.7. For a quasi ascending chain ASC in K[y], either Zero(QD(ASC)) is
empty, or we have

Zero(QD(ASC)) = ∪iZero(QD(ASCi))

where each ASCi is irreducible and has the same parameter set as ASC.

Proof. This is a consequence of Theorem 1.3 and Theorem 2.4.

Theorem 2.7 shows that Zero(QD(ASC)) is a parameter unmixed variety for an arbi-
trary ascending chain ASC.

3. Applications

Theorem 2.6 and Theorem 2.7 provide more information for Ritt-Wu’s decomposition
algorithm. For example, if we need an unmixed decomposition for a variety as in [CA1],
i.e., to decompose a variety into the union of some unmixed varieties, then we need only
to get a coarse decomposition using Ritt-Wu’s decomposition algorithm.
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Theorem 3.1. [WU2] (Ritt-Wu’s Zero Decomposition Algorithm: the Coarse Form)
For two finite sets of polynomials PS and DS, we can either detect the emptiness of
Zero(PS/DS) or furnish a decomposition of the following forms:

Zero(PS/DS) = ∪l
i=1Zero(ASCi/DS ∪ Ji)(3.1)

Zero(PS/DS) = ∪l
i=1Zero(QD(ASCi)/DS)(3.2)

where for each i ≤ l, ASCi is an ascending chain such that prem(G,ASCi) = 0 for
∀G ∈ PS, prem(P,ASCi) 6= 0 for P ∈ DS and Ji is the initial set of ASCi.

By the affine dimension theorem (p48 [HA1]) and Theorem 2.7, we have two conclu-
sions:

(1). Since each Zero(QD(ASCi)/DS) is either empty or an unmixed variety, (3.2)
actually provides an unmixed decomposition for Zero(PS/DS).

(2). Let PS contain m polynomials then the components Zero(QD(ASCi)/DS) with
more then m polynomials in ASCi are redundant and can be deleted from (3.2).

As another application, we give a new proof for a nontrivial theorem in algebraic
geometry. An irreducible variety V over K may become reducible over an extension field
K∗ of K. Such a variety is called a relatively irreducible variety [HP1]. We have the
following refinement for a result about a relatively irreducible variety.

Theorem 3.2. If V is an irreducible variety of dimension d over the ground field K then
over any extension K∗ of K, V is an (parameter) unmixed variety of dimension d.

Proof. As V is irreducible, we have V = Zero(QD(ASC)) for an irreducible ascending
chain ASC in K[y] with DIM(ASC) = d [WU1]. Now the result comes from Theorem
2.7.
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Appendix. A Proof of the Dimension Theorem

Theorem (4.1). Let n be the number of polynomials in S, length(ASCi) be the
number of polynomials in ASCi. Those components Zero(PD(ASCi)/G) in (1.2) (or
Zero(QD(ASCi)/G) in (1.3)) for which length(ASCi) > n are redundant, thus can be
removed from (1.2) (or from (1.3)).

Proof of the Theorem (4.1). First we assume E is algebraically closed and G = {1}. If
Zero(S) is empty, then nothing is needed to prove. Assume Zero(S) is non-empty. Then
we can rearrange the order on the right side of (1.2) as follows:

Zero(S) =
⋃

1≤i≤l

Zero(ASCi/Ii) ∪
⋃

l<i≤k

Zero(ASCi/Ii)

=
⋃

1≤i≤l

Zero(PD(ASCi)) ∪
⋃

l<i≤k

Zero(ASCi/Ii)

where length(ASCi) ≤ n for i ≤ l and length(ASCi) > n for i > l. By the Affine Dimen-
sion Theorem (page 48 in ), the dimensions of all irredundant (irreducible) components
of Zero(S) are greater than or equal to m − n. (Remember that m is the number of
variables y1, ..., ym). By Lemma (2.2) below, Zero(ASCi/Ii) is contained in the union of
irreducible varieties of Zero(PD(ASCi)) with dimension ≤ m − length(ASCi). Thus, if
i > l, m− length(ASCi) < m−n and each such irreducible variety of Zero((PD(ASCi))
with dimension < m− n must be in one of the components of Zero(S). Therefore, l > 0
and each component of Zero(S) must be contained in some Zero(PD(ASCi)) for i ≤ l.
Hence,

(2.1) Zero(S) =
⋃

1≤i≤l

Zero(PD(ASCi)).

Since any extension E of K is contained in an algebraically closed extension of K, (2.1)
is valid for any extension E of K. Hence for any polynomial set G, Theorem (1.4) follows
from (2.1).

Lemma (2.2). Let ASC = f1, ..., fr be a non-trivial quasi ascending chain, Ii be
the initials of fi, and J = {I1, ..., Ir}. Then Zero(ASC/J) is contained in the union of
irreducible varieties ⊂ Zero(PD(ASC)) with dimensions ≤ m− r.

Proof. We use induction on m− r.

(1) Base case: m− r = 0. In that case, the parameter set of ASC is empty.

Case (1.1) ASC is not in weak sense, i.e., prem(Ij; f1, ..., fj−1) = 0 for some j > 1,
then Zero(ASC/J) is empty.

Case (1.2) ASC is irreducible. Then Zero(ASC/J) is contained in the (irreducible)
variety Zero(PD(ASC)), the dimension of which is m− r = 0. The theorem is true.

Case (1.3) ASC is reducible. Suppose f1, .., fk−1 is irreducible, and f1, ..., fk is re-
ducible (1 ≤ k). For simplicity and without loss of generality, we can assume fk has
only two irreducible factors, i.e., there are two polynomials f ′k and f ′′k with the same
class as class(fk) such that f1, ..., f

′
k and f1, ..., f

′′
k are irreducible, f ′kf

′′
k ∈ Ideal(f1, ..fk),
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prem(fk; f1, ..., f
′
k) = 0 and prem(fk; f1, ..., f

′′
k ) = 0. Furthermore, we can chose f ′k and f ′′k

in such a way that the initials I ′k = lc(f ′k) and I ′′k = lc(f ′′k ) contain parameters only. Thus

Zero(ASC/J) = Zero(ASC ′/J ∪ {I ′k})
⋃

Zero(ASC ′′/J ∪ {I ′′k})⋃
Zero(ASC ∪ {I ′k}/J)

⋃
Zero(ASC ∪ {I ′′k}/J), (2.2.1)

where

ASC ′ = f1, ..., fk−1, f
′
k, fk+1, ..., fr,

ASC ′′ = f1, ..., fk−1, f
′′
k , fk+1, ..., fr.

In this base case, since parameter set is empty, I ′k and I ′′k are constants. Thus (2.2.1)
actually is

(2.2.2) Zero(ASC/J) = Zero(ASC ′/J ∪ {I ′k})
⋃

Zero(ASC ′′/J ∪ {I ′′k}).

For quasi ascending ASC ′ (or ASC ′′) we have three cases:

Case (1.3.1) ASC ′ is not in the weak sense, i.e., prem(Ij; ASC ′) = 0 for some j > k,
then Zero(ASC ′/J ∪ {I ′k}) is empty. We can delete it from the union (2.2.2).

Case (1.3.2) ASC ′ is irreducible. Then

(2.2.3) prem(fj; ASC ′) = 0 for all i = 1, ..., r.

Thus PD(ASC) ⊂ PD(ASC ′) by Lemma (2.3) below. Hence

Zero(ASC ′/J ∪ {I ′k}) ⊂ Zero(PD(ASC ′)) ⊂ Zero(PD(ASC)).

Zero(PD(ASC ′)) is a variety of dimension m− r.

Case (1.3.3) ASC ′ is reducible. We recursively repeat the same procedure of Zero(ASC/J)
as for Zero(ASC ′/J ′), until either case (1.3.1) or case (1.3.2) happen, here J ′ = {I1, ..., I

′
k, ..., Ir}.

When case (1.3.2) happens, (2.2.3) is still valid.

Thus we conclude that Zero(ASC/J) is contained in the union of those components
of the algebraic set Zero(PD(ASC)) whose dimension is m− r = 0.

(2) Induction case: suppose the theorem is true for quasi ascending chains g1, ..., gd with
m − d < m − r. We want to show it is also true for f1, ..., fr. We can use the same
argument as in the base case.

Case (2.1) ASC is not in weak sense, then Zero(ASC/J) is empty.

Case (2.2) ASC is irreducible. Then as before, the theorem is true.

Case (2.3) ASC is reducible. We can repeat the same argument as in case (1.3) and
also have 3 cases for each of ascending chains ASC ′ and ASC ′′. Here we emphasize
that I ′k and I ′′k contain only the parameters of ASC. Decomposition (2.2.1) is valid, but
(2.2.2) is no longer valid. Instead, we can decompose (Ritt–Wu’s Algorithm again), say,
Zero({I ′k}), into

Zero({I ′k}) =
⋃
i

Zero(ASC ′
i/I

′
k,i).
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Here for each i, I ′k,i is the initial set of the ascending chain ASC ′
i. Then

Zero(ASC ∪ {I ′k}/J) =
⋃
i

Zero(ASC ′
i ∪ ASC/I ′k,i ∪ J).

Note that ASC ′
i∪ASC forms another quasi ascending chain since ASC ′

i involves only the
parameters of ASC. For each Zero(ASC ′

i ∪ASC/I ′k,i ∪ J), we now can use the induction
hypothesis to conclude that it is contained in the union of varieties (with dimension
≤ m−r+1)⊂ Zero(PD(ASC ′

i∪ASC)) ⊂ Zero(PD(ASC)). Thus the proof is completed.

Lemma (2.3). Let ASC1 and ASC2 be two irreducible asc chains. PD(ASC1) ⊂
PD(ASC2) only if prem(p,ASC2) = 0 for all p ∈ ASC1. If this is the case and
prem(lc(p), ASC2) 6= 0 for all p ∈ ASC1, then PD(ASC1) ⊂ PD(ASC2).

Proof. t is trivial.
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