
Chapter 14

Conversion Between Implicit and
Parametric Representations of
Algebraic Varieties

Xiao-Shan Gao

In this chapter, we review algorithms for conversion between implicit and paramet-
ric representations of algebraic varieties with emphasis on the implicitization of rational
parametric equations (abbr. RPEs). In the implicitization of RPEs, we will consider the
following problems. (1) To find a basis for the implicit prime ideal determined by a set of
RPEs. (2) To find a canonical representation for the image of a set of RPEs. (3) To decide
whether the parameters of a set of RPEs are independent, and if not, to re-parameterize the
RPEs so that the new RPEs have independent parameters. (4) To compute the inversion
maps of a set of RPEs, and as a consequence, to decide whether a set of RPEs is proper. If
the RPEs are not proper, find a proper re-parameterization for the given RPEs. (5) To de-
cide whether a set of RPEs is normal. If it is not normal, find a normal re-parameterization
of the given RPEs. In the parameterization of implicitly given varieties, we will discuss
how to construct a hyperfurface that is biratinally to a given general variety and to find a
set of RPEs of a plane curve if it is possible. We also propose several open problems for
future research.

14.1 Introduction

There are two forms to represent algebraic curves or surfaces: the implicit form and the
parametric form. For example, the unit circle can be given by an implicit algebraic equation:

x2 + y2 − 1 = 0,

or by a set of rational parametric equations (RPEs):

(1.1) x =
t2 − 1
t2 + 1

, y =
2t

t2 + 1
.
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Generally, a set of RPEs is as follows:

(1.2) x1 =
P1(t1, . . . , tm)
Q1(t1, . . . , tm)

, . . . , xn =
Pn(t1, . . . , tm)
Qn(t1, . . . , tm)

where t1, . . . , tm are indeterminates and P1, . . . , Pn, Q1, . . . , Qn (Qi 6= 0) are polynomials
in Q[t1, . . . , tm]. We assume that not all Pi and Qi are constants and gcd(Pi, Qi) = 1. The
maximum of the degrees of Pi and Qj is called the degree of (1.2).

It is well known that a set of RPEs can always be converted into a set of implicit equa-
tions. This conversion procedure is called implicitization. On the other hand, the inverse
procedure, algorithms for parameterization of implicitly given algebraic varieties are much
more difficult and are still not completely solved. Both implicitization and parameterization
are classic topics in algebraic geometry. It has connections with the theory of resolvents, the
theory of quantifier elimination, Lüroth’s theorem, the computation of the genus, resolution
of singularities, etc.

The recent extensive study of this problem is due to the fact that implicitization of
RPEs is often used in solid modeling. It is recognized that both implicit and parametric
representations for rational curves and surfaces have their advantages in solid modeling:
The parametric form is best suited for generating points along a curve, whereas the implicit
representation is most convenient for determining whether a given point lies on a specific
curve. This motivates the search for a means of converting from one representation to the
other.

Sederberg and Arnon are the first to discuss the implicitization problem using various
resultant theories (Sederberg 1984) and (Arnon and Sederberg 1984). Methods of im-
plicitization for polynomial parametric equations are presented in Buchberger (1987) and
Shannon and Sweedler (1988) by using the Gröbner basis method. A method to find the im-
plicit approximation of parametric equations of curves and surfaces is presented in Chuang
and Hoffmann (1989). Implicitization problems for rational parametric surfaces are care-
fully studied in Hoffmann (1990), Chionh (1990) Kalkbrener (1990a), Manocha and Canny
(1990). Methods of implicitization for general RPEs are presented in Ollivier (1989, 1990d),
Kalkbrener (1990b); Gao and Chou (1991a, 1992a), Wang (1995b).

Most of the above work is to find the implicit ideal (see Section 14.3) of the RPEs, which
is the most important but not all the tasks in the implicitization. A method for computing
the image of RPEs is given in Wu (1989) and Li (1989). In Gao and Chou (1991a, 1992a),
algorithms are presented to find a canonical representation for the image of a set of RPEs.
Wang (1995b) gives another algorithm for image computation. In Gao and Chou (1991a,
1992a), the following problems are discussed. (1) To decide whether the parameters of a
set of RPEs are independent, and if not, to re-parameterize the RPEs so that the new
parametric equations have independent parameters. (2) To compute the inversion maps of
a set of RPEs, and as a consequence, to decide whether the RPEs are proper. If the RPEs
are not proper, find a proper re-parameterization. (3) To decide whether a set of RPEs is
normal. If it is not normal, find a normal re-parameterization.

Finding parametric representation for implicitly given algebraic varieties is much more
difficult than implicitization. Only a special class of algebraic varieties has parametric
representations. Except the case of algebraic curves and surfaces, there is still no general
methods for deciding whether a given algebraic variety has a parametric representation or
not.

In Abhyankar and Bajaj (1988), classic results for finding RPEs are improved to provide
an effective method of parameterization for plane curves. In Abhyankar and Bajaj (1989), a
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parameterization method for a special class of space curves has been provided. In Gao and
Chou (1991b), the theory of resolvent from Ritt (1954) has been used to give a parameteri-
zation algorithm for any algebraic curves. This algorithm, though complete, needs to solve
a system of algebraic equations which is a complicated task. Effective parameterization
methods for plane curves have been proposed in Sendra and Winkler (1991).

It is a well-known result in algebraic geometry that an irreducible variety is birational
to a hypersurface (Hartshorne 1977). Furthermore, a constructive proof of this result can
be given based on, e.g., the theory of resolvent (Ritt 1954; Gao and Chou 1991b). Previous
work on finding a plane curve birational to a space curve usually uses the technique of
taking a projection of the space curve into a randomly selected direction and verifying that
it is one-to-one (Abhyankar and Bajaj 1989; Garrity and Warren 1989; Kalkbrener 1990).
The resolvent method is similar to the projection method and deals with the general case
in a deterministic way.

By the results discussed in the preceding paragraph, we need only to find RPEs for
hypersurfaces. As we have mentioned, there are several methods for parameterization of
plane curves. Parameterization methods for surfaces were proposed by classical Italian
geometers (Castelnuvo 1894) and studied recently in Schicho (1995). Parameterization
methods for varieties with higher dimensions are still open (Eisenbud 1993).

Since an algebraic variety generally does not have parametric representations, an alter-
native way is to find an appropriate parametric representation for it at a local point using,
e.g., Puisuix expansion (Alonso et al 1992 and Li 1996).

This chapter is a summary of the results about implicitization of RPEs and parame-
terization of algebraic varieties with emphasis on the implicitization. Also, we will mainly
focus on the work done by Wu’s group at MMRC including (Wu 1989; Li 1989; Gao and
Chou 1991a, 1991b, 1992a, 1992b; Chou , Gao and Li 1994 and Wang 1995b). Other results
are mentioned mainly for comparison purposes.

14.2 The implicit ideal of a set of RPEs

The implicit ideal of (1.2) is defined as

ID(P, Q) = {P ∈ Q[x1, . . . , xn] | P (P1/Q1, . . . , Pn/Qn) ≡ 0}.

Zero(ID(P, Q)) is called the implicit variety of (1.2). It is clear that ID(P, Q) is a prime
ideal whose dimension equals the transcendental degree of Q(P1/Q1, . . . , Pn/Qn) over Q.

14.2.1 A method based on Gröbner basis computation

For a set of RPEs of the form (1.2), let

Fi = Qixi − Pi, Di = Qizi − 1, i = 1, . . . , n

where the zi are new variables. Let

PS(P, Q) = Ideal(F1, . . . , Fn, D1, . . . , Dn)

i.e., the ideal generated by Fi and Di in K[t, x, z].

Theorem 14.1 The implicit ideal of (1.2) is PS(P, Q) ∩K[x1, . . . , xn].
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For a proofs, see (Ollivier 1989; Kalkbrener 1990b; Gao and Chou 1992a). With the
help of the following Lemma and Theorem 14.1, we can compute a basis for the implicit
ideal of (1.2) using the Gröbner basis method.

Lemma 14.2 (Buchberger, 1985) Let GB be a Gröbner basis of an ideal D ⊂
K[x1, . . . , xn, y1, . . . , yk] in the pure lexicographic order x1 < . . . < xn < y1 < . . . < yk, then
GB ∩K[x1, . . . , xn] is a Gröbner basis of D ∩K[x1, . . . , xn].

Example 14.3 Consider the following RPEs:

(2.1) x =
u + v

u− v
, y =

2v2 + 2u2

(u− v)2
, z =

2v3 + 6u2v

(u− v)3
.

Let

PS = {(v − u)x + v + u, (v − u)2y − 2v2 − 2u2, (v − u)3z + 2v3 + 6u2v, (v − u)z1 − 1}

Note that we can omit (u − v)2z2 − 1 and (u − v)3z3 − 1 because of the appearance of
(v − u)z1 − 1. Under the pure lexicographical order x < y < z < u < v < z1, the Gröbner
basis of Ideal(PS) is

(2.2) {y − x2 − 1, z − x3 + 1, (x + 1)v + (−x + 1)u, 2uyz1 + x + 1, 2vz1 + x− 1}.

By Theorem 14.1 and Lemma 14.2, a basis of the implicit ideal of (2.1) is {y − x2 − 1, z −
x3 + 1}.

If m = 1, then the Di can be deleted from PS(P, Q), and Theorem 14.1 is still true.
This is because that gcd(Pi, Qi) = 1 implies resultant(Pi, Qi) = 1. Thus, we get the same
result as (Kalkbrener 1990a) for the implicitization of parametric equations of curves.

14.2.2 A method based on the characteristic set method

If it is difficult to compute the Gröbner basis in the above method, we may use a method
based on the Wu-Ritt’s characteristic set (abbr. CS) method to obtain a CS for the implicit
ideal. Using the same notations introduced above, let PS = {F1, . . . , Fn} and DS =
{Q1, . . . , Qn}. Since PS is of triangular form, we have

Zero(PS/DS) = Zero(PD(PS)/DS).

For the definition of PD(PS), please see Chap 1of this book. By the CS method, we can
find an irreducible ascending chain ASC under a new variable order x1 < . . . < xn < t1 <
. . . < tm such that

Zero(PS/DS) = Zero(PD(ASC)/DS).

ASC has the same dimension m as PS. Hence ASC contains n polynomials. By changing
the order of the variables properly, we can assume ASC to be

(2.3)
A1(x1, . . . , xd+1), . . . , An−d(x1, . . . , xn),
B1(x1, . . . , xn, t1, . . . , ts+1), . . . , Bm−s(x1, . . . , xn, t1, . . . , tm)

where d + s = m. The parameter set of ASC is {x1, . . . , xd, t1, . . . , ts}.
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Theorem 14.4 (Gao and Chou 1991a) The implicit ideal of (1.2) is PD(A1, . . . , An−d).

An algorithm to compute a basis of PD(A1, . . . , An−d) can be found in Chou (1988), Gao
and Chou (1993) and Wang (1992).

Example 14.5 For the RPEs (2.1), let

PS = {(v − u)x + v + u, (v − u)2y − 2v2 − 2u2, (v − u)3z + 2v3 + 6u2v}
DS = {u− v}.

Using the CS method under the pure lexicographical order x < y < z < u < v < z1, we have
Zero(PS/DS) = Zero(PD(ASC)) where

ASC = {y − x2 − 1, z − x3 + 1, (x + 1)v + (−x + 1)u}.

By Theorem 14.4, the implicit ideal of (2.1) is PD(y−x2−1, z−x3 +1), which is the ideal
generated by y − x2 − 1 and z − x3 + 1.

14.2.3 Techniques of computation

Both Theorem 14.1 and Theorem 14.4 provide complete methods for finding a basis for the
implicit prime ideal of a set of RPEs. But to compute the CS or the Gröbner basis is of
very high complexity. For some parametric equations, we may use their special property to
develop efficient algorithms. In what follows, we consider such a partial algorithm.

Consider a set of parametric equations for a space surface

(2.4) x =
P1(t, s)
Q1(t, s)

y =
P2(t, s)
Q2(t, s)

z =
P3(t, s)
Q3(t, s)

where Pi and Qi are polynomials in K[t, s]. Let

F1 = Q1x− P1, F2 = Q2y − P2, F3 = Q3z − P3

The essential step in the implicitization is the triangulation of F1, F2, and F3 by pseudo
remainder sequences. We may use two tricks. First, we can use Collins’ method or a similar
result in the multi-polynomial case (Li 1987) to remove extraneous factors produced in the
computation. Second, we may choose a “good” way to do pseudo divisions. The purpose
is to keep the degrees of the polynomials occurring in the computation as low as possible.
We shall explain this in the examples given below.

Theorem 14.6 Suppose we obtain the following triangular from F1, F2 and F3 under the
variable order x < y < z < s < t

g1(x, y, z), g2 = I2(x, y, z)s− U2(x, y, z), g3 = I3(x, y, z)t− U3(x, y, z).

If I2(η)I3(η) 6≡ 0 for η = ( P1
Q1

, P2
Q2

, P3
Q3

), then we have
(1) One irreducible factor of g1, say f1 satisfying f1( P1

Q1
, P2

Q2
, P3

Q3
) ≡ 0), is the implicit

equation of (2.4).
(2) Parametric equations (2.4) are proper and a set of inversion map is t = U2

I2
, s = U3

I3
.
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Consider the following examples from (Hoffmann 1990).

Example 14.7 Find the implicit ideal of the following RPEs.

(quadratic)
f1 = z + (−9s + 15)t− 12s− 34
f2 = y + (s− 8)t− 6s2 − 7
f3 = x− 3t2 + (−s + 5)t− 4s2 + 2s− 4,

(cubic)
f1 = z − 2t3 + (5s− 1)t + s3

f2 = y + (−s2 + 3)t− 1
f3 = x + t3 − 3st− s3 − s,

(bi-cubic)

f1 = z + (3s3 − 15s2 + 15s)t3 + (3s3 + 18s2 − 27s + 3)t2

+(−6s3 − 9s2 + 18s− 3)t + 3s2 − 3s
f2 = y − t3 − 3t− 3s3 + 6s2 − 3s
f3 = x− 3t3 + 6t2 − 3t− s3 + 3s2 − 6s + 1.

The computation of the quadratic form is easy. To compute the cubic form, we first
form the pseudo remainders f4 = prem(f1, f2), f5 = prem(f1, f3), f6 = prem(f2, f3). Then
f6 and f4 are polynomials in x, y, z, s such that degs(f6) = 5 and degs(f4) = 9. We compute
sub-resultant remainder sequence of f4 and f6 to obtain a triangular form. For bi-cubic, we
first form the pseudo remainders f4 = prem(f1, f2), f5 = prem(f3, f2), f6 = prem(f4, f5),
f7 = prem(f2, f5), f8 = prem(f6, f7), f9 = prem(f5, f7). Then f8 and f9 are polynomials
in x, y, z, s such that degs(f8) = 9 and degs(f9) = 9. We compute sub-resultant remainder
sequence of f4 and f6 to obtain the triangular form. We can check that all the three examples
satisfy the conditions in Theorem 14.6. Therefore, it is easy to obtain the implicit equation
and the inversion maps for them.

14.3 The images of a set of RPEs

Let E be an extension field Q. The image of RPEs (1.2) in En is defined as

IM(P, Q) = {(x1, . . . , xn) | ∃t ∈ Em(xi = Pi(t)/Qi(t))}.

We might naturally guess that Zero(ID(P, Q)) = IM(P, Q). But this is not true. For
instance, (1, 0) is a point on the unit circle, but it is not in the image of (1.1). To compute
the image of the RPEs, we need first to introduce the concept of projections.

Let PS and DS be polynomial sets in Q[x1, . . . , xn, y1, . . . , ym]. The projection of Z =
Zero(PS/DS) with y1, . . . , ym, Projy1,...,ym

Z is defined as

{(a1, . . . , an) ∈ En | ∃(b1, . . . , bm) ∈ Em, (a1, . . . , an, b1, . . . , bm) ∈ Z}.

If E is algebraic closed, Tarski’s method (1951) for the real field can be used to compute
the projection. In Heintz (1983) and Seidenberg (1956), direct methods for algebraic closed
fields are presented. In Wu (1989), a method based on the CS method is proposed. It
is a known result in logic that if an existential quantifier can be eliminated then there is
a quantifier elimination theory for the theory of algebraic closed field (p. 83 (Shoenfield
1967)). Since the projection algorithm actually gives a method of eliminating existential
quantifiers, it provides a complete method of quantifier elimination over the field of complex
numbers. For details, see (Chou, Gao and Li 1994).
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Theorem 14.8 (Wu 1984a) Using the notations defined above, we can find polynomial sets
PSi and polynomials Gi, i = 1, . . . , k such that

Proj Zero(PS/DS) = ∪k
i=1Zero(PSi/{Gi})

For RPEs (1.2), we have

(3.1) IM(P, Q) = Projt1,...,tmZero(PS/QS)

where PS = {xiQi − Pi(t), i = 1, . . . , n}, and QS = {Qi(t)), i = 1, . . . , n}. As a direct
consequence of (3.1) and Theorem 14.8, we have

Lemma 14.9 There is an algorithm to find polynomial sets PS1, . . . , PSt and polynomials
D1, . . . , Dt such that

IM(P, Q) = ∪t
i=1Zero(PSi/Di).

The following result describes the relation between the image and the implicit variety
of a set of RPEs and a canonical representation for the image (Chou, Gao and Li 1994).

Theorem 14.10 Let V be the implicit variety of (1.2) and d the dimension of V . Then
(1) IM(P, Q) ⊂ V ; and
(2) V − IM(P, Q) is a quasi variety with dimension less than d.
(3) We can find irreducible asc chains ASC, ASCi such that

IM(P, Q) = Zero(PD(ASC))− ∪k
i=1Zero(ASCi/JiDi),

where Ji are the initial-products of ASCi and Di are polynomials. We also have: (a)
PD(ASC) is the implicit ideal of (1.2); (b) Zero(ASCi/JiDi) ⊂ Zero(PD(ASC)).

Example 14.11 Compute the image of (2.1), let PS = {(u2 +v2−1)x−u2 +v2−1, (u2 +
v2−1)y−2uv, (u2 +v2−1)z−2u}, DS = {u2 +v2−1}. Using a program based on Lemma
14.9, we have

Proj Zero(PS/DS) =
Zero(z2 − y2 − x2 + 1/z(x + 1)(y2 + x2 − 1)) ∪ Zero(z, y, x + 1).

We can find the following canonical form for the image.

Zero(z2 − y2 − x2 + 1)− (Zero(z, y2 + x2 − 1/x + 1) ∪ Zero(x + 1, z2 − y2/y)).

14.4 Independent parameters

The parameters t1, . . . , tm of RPEs (1.2) are called independent if the implicit ideal of (1.2)
is of dimension m, or equivalently the transcendental degree of the field Q(P1/Q1, . . . ,
Pn/Qn) over Q is m.

Lemma 14.12 Suppose that we have constructed (2.3). Then the transcendental degree
of K ′ = K(P1/Q1, . . . , Pn/Qn) over K is d = m − s > 0. Therefore, the parameters are
independent iff s = 0.
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Theorem 14.13 (Gao and Chou 1991a) If the parameters of (1.2) are not independent
then one can find a set of new RPEs

(4.1) x1 = P ′
1/Q′

1, . . . , xn = P ′
n/Q′

n

which has the same implicit variety as (1.2) but with independent parameters.

Proof. Since (2.3) is irreducible, we may assume that the initials Ii of Bi in (2.3) and
the initials Jj of Aj in (2.3) are polynomials in x1, . . . , xd, t1, . . . , ts. Since Qi is not in
PD(F1, . . . , Fn) = PD(ASC), we can find a nonzero polynomial qi in the parameters of
ASC, i.e., x1, . . . , xd and t1, . . . , ts, such that

qi ∈ Ideal(A1, . . . , An−d, B1, . . . , Bm−s, Qi).

Let M =
∏m−s

i=1 Ii ·
∏n

j=1 qj . Then M is a polynomial of x1, . . . , xd, t1, . . . , ts. Let h1, . . . , hs

be integers such that when replacing ti by hi, i = 1, . . . , s, M becomes a nonzero polynomial
of x1, . . . , xd. Let P ′

i and Q′
i be the polynomials obtained from Pi and Qi by replacing ti

by hi, i = 1, . . . , s. Now we have obtained (4.1).

The computation in the above theorem can be done with the Gröbner basis method
(Gao and Chou 1992a).

Example 14.14 For Example 14.3, we have d = 1, s = 1; hence the parameters u and v
are not independent. To re-parameterize (2.1), by Theorem 14.13, we have to compute M .
Since prem(u − v, ASC) = 2u M = 2(x + 1)u, selecting a value of u, say 1, we get a new
parametric equation

x =
v + 1
1− v

, y =
2v2 + 2
(1− v)2

, z =
2v3 + 6v

(1− v)3

which has the same implicit ideal as (2.1) and has an independent parameter v.

14.5 Inversion maps and proper parametric equations

The inversion problem is that given a point (a1, . . . , an) on the image of (1.2), find a set of
values (τ1, . . . , τm) for the t such that

ai = Pi(τ1, . . . , τm)/Qi(τ1, . . . , τm), i = 1, . . . , n.

This problem can be reduced to an equation solving problem (Buchberger 1987). In the
following, we show that in certain cases, we can find a closed form solution to the inversion
problem.

Inversion maps for (1.2) are functions

t1 = f1(x1, . . . , xn), . . . , tm = fm(x1, . . . , xn)

such that xi ≡ Pi(f1, . . . , fm)/Qi(f1, . . . , fm) are true on the implicit variety V of (1.2)
except for a subset of V which has a lower dimension than that of V .

The inversion problem is closely related to whether a set of parametric equations is
proper. RPEs (1.2) are called proper if for each (a1, . . . , an) ∈ IM(P, Q) there exists only
one (τ1, . . . , τm) ∈ Em such that ai = Pi(τ1, . . . , τm)/Qi(τ1, . . . , τm), i = 1, . . . , n. Let us
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assume that the parameters t1, . . . , tm of (1.2) are independent, i.e., s = 0. Then (2.3)
becomes

(5.1)

A1(x1, . . . , xm+1)
. . .
An−m(x1, . . . , xn)
B1(x1, . . . , xn, t1)
. . .
Bm(x1, . . . , xn, t1, . . . , tm)

Theorem 14.15 Using the above notations, we have
(a) Bi(x, t1, . . . , ti) = 0 determine ti (i = 1, . . . , m) as functions of x1, . . . , xn which are

a set of inversion maps for (1.2).
(b) (1.2) is proper if and only if Bi = Iiti − Ui are linear in ti for i = 1, . . . , m, and if

this is case, the inversion maps are

t1 = U1/I1, . . . , tm = Um/Im

where the Ii and Ui are polynomials in Q[X].

Theorem 14.16 (Gao and Chou 1991a) If m = 1 and RPEs (1.2) are not proper, we
can find a new parameter s = f(t1)/g(t1) where f and g are in Q[t1] such that the re-
parameterization of (1.2) in terms of s,

(5.2) x1 =
F1(s)
G1(s)

, . . . , xn =
Fn(s)
Gn(s)

are proper.

Proof. Let K ′ = K(P1/Q1, . . . , Pn/Qn). Since P1(t1)−Q1(t1)l = 0 where l = P1(t1)/Q1(t1) ∈
K ′, t1 is algebraic over K ′. Let f(y) = ary

r + . . .+a0 be an irreducible polynomial in K ′[y]
for which f(t1) = 0. Then at least one of ai/ar, say η = as/ar, is not in K. By a
proof of Lüroth’s theorem (p149, (Walker, 1950)), we have K ′ = K(η). This means that
xi = Pi/Qi can be expressed as rational functions of η and η also can be expressed as
a rational function of xi = Pi/Qi, i.e., there is a one-to-one correspondence between the
values of the xi = Pi/Qi and η. Therefore η is the new parameter we seek. To compute η,
by Theorem 14.15, we can find an inversion map B1(x1, . . . , xn, t1) = 0 of the curve. Then
B′

1(y) = B1(P1/Q1, . . . , Pn/Qn, y) = 0 is a polynomial in K ′[y] with lowest degree in y such
that B′

1(t1) = 0, i.e., B′
1(y) can be taken as f(y). So s can be obtained as follows. If B1 is

linear in t1, nothing needs to be done. Otherwise let

B1 = brt
r
1 + . . . + b0

where the bi are in Q[x]. By (1.2), bi can also be expressed as rational functions ai(t1),
i = 1, . . . , r. At least one of ai/ar, say a0/ar, is not an element in Q. Let s = a0/ar.
Eliminating t1 from (1.2) and ars − a0, we can get (5.2). Note that ai comes from bi by
substituting xj by Pj/Qj , j = 1, . . . , n, then s = b0/br is an inversion map of (5.2).

Theorem 14.16 provides a new constructive proof for Lüroth’s Theorem, i.e., we have

Proposition 14.17 Let g1(t), . . . , gr(t) be elements of Q(t). Then we can find a g(t) ∈
Q(t) such that Q(g1, . . . , gr) = Q(g).
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Example 14.18 Consider the parametric equations for a Bézier curve (Sederberg, 1986):

(5.3)
x = 8s6−12s5+32s3+24s2+12s

s6−3s5+3s4+3s2+3s+1

y = 24s5+54s4−54s3−54s2+30s
s6−3s5+3s4+3s2+3s+1

.

Let HS = {(s6 − 3s5 + 3s4 + 3s2 + 3s + 1)x− (8s6 − 12s5 + 32s3 + 24s2 + 12s), (s6 − 3s5 +
3s4 +3s2 +3s+1)y− (24s5 +54s4−54s3−54s2 +30s), (s6−3s5 +3s4 +3s2 +3s+1)z−1}.
Under the variable order y < s < z, the Gröbner basis of Ideal(HS) in K(x)(s, y, z) is

g1 = 224y3 +(−2268x+7632)y2 +(−54x2− 1512x− 480384)y +34263x3− 424224x2 +
1200960x,

g2 = (15273x2 +1098792x−9767808)s2 +(7280y2 +(−27006x−125592)y−174069x2 +
598788x− 9767808)s− 7280y2 + (27006x + 125592)y + 189342x2 + 500004x,

q3 = (488736x+39071232)z+(33488y2+(−95718x+1701432)y−712134x2+9970488x−
34187328)s + 27888y2 + (−81210x + 1297128)y − 584109x2 + 8885196x− 39071232.

To find a set of proper parametric equations for g1 = 0, by Theorem 14.16, we select a
new parameter

t1 =
(7280y2 + (−27006x− 125592)y − 174069x2 + 598788x− 9767808)

(15273x2 + 1098792x− 9767808)

=
s2 + 1
1− s

.

Eliminating s from (5.3) and the above equation, we have

x =
8t31 + 12t21 − 36t1 + 16

t31 + 3t21 − 3t1
, y =

−24t21 + 78t1 − 54
t31 + 3t21 − 3t1

which is a a set of proper parametric equations of g1 = 0.

14.6 Normal RPEs

Generally speaking, the image of a set of RPEs is a quasi algebraic set. In this section, we
discuss when the image of a set of parametric equations is an algebraic set.

RPEs (1.2) are called a set of normal parametric equations if IM(P, Q) is the implicit
variety of (1.2). As a consequence of Theorem 14.10, we have:

Theorem 14.19 We can decide in a finite number of steps whether RPEs (1.2) are normal
parametric equations.

The method in Theorem 14.19, though complete, usually needs tedious computation. In
what follows, we give some simple criteria for normal parameterization which can be used
without any computational costs.

Theorem 14.20 (Gao and Chou 1991b) Let

y1 = u1(t)/v1(t), . . . , yn = un(t)/vn(t)

be parametric equations of an algebraic curve. If degree(ui) > degree(vi) for some i,
they are normal parametric equations. As a consequence, a set of polynomial parametric
equations of a curve is normal.
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If a set of parametric equations (1.2) is not normal, then naturally we will ask whether
we can find a set of normal parametric equations which has the same implicit variety as
(1.2). This problem is unsolved in general. But if the implicit variety of the parametric
equation is a conic, then we have a solution to the above problem (Gao and Chou 1991b).
As an example, we have

Example 14.21 The image of the following parametric equations

x =
t4 − 4t2 + 1

t4 + 1
, y =

2
√

2(−t3 + t)
t4 + 1

.

is Zero(x2 + y2− 1), i.e., (7.5.1) is a set of normal parametric equations for the unit circle.
It is proved in Gao and Chou (1991b) that there exist no real coefficients normal quadratic
parametric equations for the unit circle.

14.7 Parameterization of algebraic varieties

Finding RPEs for algebraic varieties usually involves two steps:

1. To construct a hypersurface which is birational to the given irreducible variety and
birational transformations between the hypersurface and the variety.

2. To find RPEs for the hypersurface obtained in the first step. A set of RPEs for
the algebraic variety can be obtained from the RPEs of the hypersurface and the
birational transformations.

There are complete results for the first step. The second step has been solved only for
algebraic curves and surfaces.

14.7.1 The theory of resolvents

We will introduce a constructive proof for the following theorem (Hartshorne 1977) with
the concept of resolvents (Ritt 1954).

Theorem 14.22 Any irreducible variety of dimension r is birational to a hypersurface in
Er+1.

A prime ideal distinct from (1) and (0) is called nontrivial. In what follows, we assume
that ID is a nontrivial prime ideal in K[x1, . . . , xn]. We can divide the x into two sets,
u1, . . . , uq and y1, . . . , yp, p + q = n, such that no nonzero polynomial of ID involves the
u alone, while, for each j = 1, . . . , p, there is a nonzero polynomial in ID involving yj and
the u alone. We call the u a parameter set of ID. A CS of ID, e.g., the minimal CS in Gao
(1989), under the variable order u1 < . . . < uq < y1 < . . . < yp is of the form

ASC = A1(u, y1), A2(u, y1, y2), . . . , Ap(u, y1, . . . , yp)

where Ai is a polynomial involving yi effectively and we also have ID = PD(ASC). It is
clear that the dimension of ID = PD(ASC) is equal to the number of parameters of ID.
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Lemma 14.23 Let the notations be the same as above. Then for a new variable w, there
exist polynomials M1, . . . , Mp, G of the u, such that

(1) two distinct zeros of ID with the u taking the same values for which G does not
vanish give different values for Q = M1y1 + . . . + Mpyp; and

(2) a CS of the prime ideal ID1 = Ideal(ID,w −Q) under the following variable order
u1 < . . . < uq < w < y1 < . . . < yp is of the form

A(u,w), A1(u,w, y1), . . . , Ap(u,w, yp)

where A is an irreducible polynomial in w and each Ai is linear in yi.

For a proof of this result, see p85, (Ritt, 1954) or (Gao, 1991b) for general ideals. According
to Ritt, we call the equation A = 0 a resolvent of ID.

Theorem 14.24 Let ID be a prime ideal in Q[u1, . . . , uq, y1, . . . , yp] where the u are the
parameters of ID, and let A(u,w) = 0 be a resolvent of ID. Then Zero(ID) is birational
to the hypersurface Zero(A).

Proof. Use the same notations as in Lemma 14.23. We define a morphism

MP1 : Zero(ID) → Zero(A)

by setting MP1(u1, . . . , uq, y1, . . . , yp) = (u1, . . . , uq,M1y1+. . .+Mpyp) where the Mi are the
same as in Lemma 14.23. By (2) of Lemma 14.23, we can assume Ai = Iiyi−Ui, i = 1, . . . , p
where Ii and Ui are polynomials in the u and w. We can further assume that Ii are free of
w. We define another morphism

MP2 : Zero(A) → Zero(ID)

by setting MP2(u1, . . . , uq, w) = (u1, . . . , uq, U1/I1, . . . , Up/Ip). Let I =
∏p

i=1 Ii. Then MP2

is well defined on D1 = Zero(A)−Zero(I). We can prove that MP1 and MP2 are birational
transformations between the variety and the hypersurface.

The following algorithm provides a constructive proof for Theorem 14.22.

Algorithm 14.25 Let PS = {f1, . . . , fs} be a polynomial set in K[x]. The algorithm
decides whether V = Zero(PS) is an irreducible variety, and if it is, finds an irreducible
polynomial H such that V is birational to the hypersurface Zero(H).

Step 1. By Wu-Ritt zero decomposition algorithm, we have an irredundant decomposition

V = Zero(PS) = ∪m
i=1Zero(ASCi/Ii).

V is an irreducible variety if there exists one component, say, Zero(ASC1/I1), such that
DIM(ASC1) > DIM(ASCi) and Zero(ASCi/Ii) ⊂ Zero(PD(ASC1)) for i > 1. We have
that V = Zero(PD(ASC1)).
Step 2. Let ASC1 = A1, . . . , Ap. We make a renaming of the variables. If Ai is of class mi,
we rename xmi as yi, the other variables are renamed as u1, . . . , uq, where q = n− p.
Step 3. Let λ1, . . . , λp, w be new indeterminates and let ID = Ideal(PD(ASC1), w − Q)
where Q = λ1y1 + . . . + λpyp. ID is a prime ideal in K(u, λ, w, y) with parameters u and
λ. Let

(7.1) R(u, λ, w), R1(u, λ, w, y1), . . . , Rp(u, λ, w, yp)
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be a CS of ID. As the λ are indeterminates, by (1) of Lemma 14.23, Ri are linear in yi.
Step 4. By Wu-Ritt zero decomposition algorithm, under the variable order u < λ < w <
y1 < . . . < yp we have

Zero(ASC1 ∪ {w −Q′}) = ∪t
i=1Zero(PD(ASC ′

i)).

There only exists one component in the above decomposition, say Zero(PD(ASC ′
1)), on

which the u and λ are algebraically independent and ASC ′
1 is a CS of ID. For convenience,

we assume that ASC ′
1 is (7.1).

Step 5. We can assume that for each 1 ≤ i ≤ p, the initial Ii of Ri involves u and λ alone.
Let D = I

∏p
i=1 Ii where I is the initial of R. Then D is a polynomial in u and λ.

Step 6. Let a1, . . . , ap be integers for which D becomes a nonzero polynomial in the u when
each λi is replaced by ai. Then for λi = ai, i = 1, . . . , p, (7.1) becomes

(7.2) R′, R′
1, . . . , R

′
p

where R and R′ have the same degree in w, and yi occurs in R′
i effectively.

Step 7. We can prove that R′ is an irreducible polynomial in w, and (7.2) is a CS of
ID′′ = Ideal(PD(ASC1), w − a1y1 − . . . − apyp). Hence R′ is a resolvent of PD(ASC1),
and Zero(R′) is birational to Zero(PS). The birational transformations can be obtained as
in Theorem 14.24.

In practice, we may use a probability approach by randomly selecting p integers a1, . . . , ap

in Step 5. The success probability of the selection of the integers is one.

14.7.2 Parameterization of algebraic curves

An irreducible algebraic curve C = Zero(PS) (where PS ⊂ K[X]) is called rational if it
has a set of RPEs. By the the resolvent theory, we need only to find a set of RPEs for
f(x, y) = 0. The following method for parameterization of f(x, y) = 0 is based on Theorem
14.26 and Lüroth’s theorem (Walker 1950).

Theorem 14.26 Let x = u(t)/w(t), y = v(t)/w(t) be a set of proper parametric equations
for a plane curve f(x, y) = 0. We assume gcd(u, v, w) = 1. Then the degree of f is equal
to the degree of the parametric equations.

Algorithm 14.27 Let f(x, y) be an irreducible polynomial. The algorithm decides whether
f(x, y) = 0 is a rational irreducible algebraic curve, and if it is, finds a set of RPEs for C.

Step 1. By Lüroth’s theorem, a rational curve always has a set of proper parametric
equations (Walker 1950). By Theorem 14.26, if f(x, y) = 0 is rational then it has a set of
parametric equations of degree d. Let

x = u(t)/w(t), y = v(t)/w(t)

where u(t) = udt
d + . . . + u0, v(t) = vdt

d + . . . + v0, and w(t) = wdt
d + . . . + w0 for

indeterminates ui, vi, and wi.
Step 2. Replacing x and y by u(t)/w(t) and v(t)/w(t) in f(x, y) = 0 respectively and
clearing denominators, we obtain a polynomial Q in t whose coefficients are polynomials in
ui, vi and wi. Let the set of coefficients of Q as a polynomial of t be HS = {P1, . . . , Ph}.
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Step 3. Curve f = 0 has a set of RPEs iff HS has a set of zeros such that when the
coefficients of u(t), v(t) and w(t) are replaced by the zeros, u/w and v/w are not constants
in K. By Step 4, we can decide whether there exist such zeros of HS.
Step 4. Let DS1 = {uiwj − ujwi | i, j = 0, . . . , d}, DS2 = {viwj − vjwi | i, j = 0, . . . , d}.
Then f = 0 is rational iff HD = Zero(HS) − (Zero(DS1) ∪ Zero(DS2)) is not empty, and
if it is not empty, each zero of HD provides a set of parametric equations for f = 0.

In Step 6, we need to solve a system of algebraic equations. There are many methods
for doing this. We can use, e.g., the method based on Wu-Ritt CS method (Wu 1987). For
the implementation of this algorithm, please refer Chap.24.

14.8 Conclusions

For a set of RPEs of the form (1.2), the following results are summarized.

1. We can find a basis for the implicit ideal of (1.2).

2. We can compute the image of (1.2) and represent the image as a canonical form.

3. We can decide whether the parameters t1, . . . , tm are independent, and if not, re-
parameterize (1.2) such that the parameters of the new parametric equations are
independent.

4. If the parameters of (1.2) are independent, we can construct equations

B1(x1, . . . , xn, t1) = 0, . . . , Bm(x1, . . . , xn, t1, . . . , tm) = 0

the solution of the ti in terms of the xi are the inversion maps of (1.2), and (1.2) is
proper iff the Bi are linear in ti, i = 1, . . . , m.

5. If m = 1 and (1.2) is not proper, we can re-parameterize (1.2) such that the new para-
metric equations are proper. In general, to find a set of proper re-parameterization
for (1.2) is still open.

6. We can decide whether a set of parametric equations is normal. We can also find a
normal re-parameterization for a set of non-normal parametric equations of conics.
The general case for this problem is still open.

7. We can construct a hypersurface which is birational to a given irreducible variety and
birational transformations between the hypersurface and the variety.

8. We can find a set of RPEs for a plane curve if it exists. The problem of finding a set
of RPEs for a hypersurfaces of dimension higher than two is still open.
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