Chapter 10

SEARCH METHODS REVISITED

Xiao-Shan Gao

In this chapter, we review the work of automated geometry theorem prov-
ing based on heuristic search methods and report some recent advances in this
direction, especially the geometry deductive database which shows surprising
power in terms of proving and discovering difficult geometry theorems. We also
discuss several key issues in developing an efficient geometry theorem prover
with heuristic search methods.

10.1 Introduction

There are mainly two approaches to automated geometry theorem proving
(abbr. AGTP): the synthetic approach based on search and heuristics initiated
by H. Gelernter (1963) in the late 1950s and the approach based on algebraic
computation initiated by A. Tarski (1951) in the late 1930s, reshaped and pop-
ularized in the 1980s by W. T. Wu (1978). Most of the recent work on AGTP
is inspired by Wu’s method and focuses on using algebraic methods. Gener-
ally speaking, the algebraic approaches are very powerful decision procedures.
Does this make the search methods obsolete? The answer is negative. Despite
its “weakness,” the methods based on search and heuristics are still worth im-
proving, because this may lead to techniques useful to automated reasoning in
the general case. Even for AGTP, improving the synthetic methods has many
positive aspects:

1. Proofs produced by synthetic methods are generally easier to understand
than proofs given by algebraic computations.

2. Using search methods, it is possible to generate multiple and shortest proofs
for a given geometry theorem.

3. Using predicates only (no algebraic computation) makes the reaching of
fixpoints (see Section 10.3.2) possible. As a result, new theorems may be
discovered.

4. Although algebraic methods can prove a much greater number of theorems,
there still exist theorems (Example 10.3) which can be solved by the syn-



thetic approaches elegantly but have not been solved with the algebraic
approaches, because to prove them we need excessively large computer
memory.

In this chapter, we will review some of the main work and techniques for
the synthetic approach of AGTP.

Using the search method to prove geometry theorems goes back to as early
as the late 50s in the work by Gelernter, Hanson and Loveland (1960), which
is considered as a classic work in the field of AI. While several basic concepts
of AGTP is introduced, the prover reported in this work seems unable to prove
a large number of moderately difficult theorems. It is noted by Feigenbaum
and Feldman (1963) that “The fascination with mechanical theorem proving
for most of the researchers working in this area lies less with the end (the
production of theorems, perhaps new and important) than with the means (a
thorough understanding of the organization of information processing activity
in mathematical discovery).” In our opinion, both the ends and the means are
important, and the less success of Gelernter’s work in proving difficult theorems
has its reasons. We will discuss some of the main involving issues in Section
10.5.

Gelernter’s work lead to many subsequent work on AGTP using similar
approaches (Evans 1968; Gilmore 1970; Anderson 1981; Coelho and Pereira
1986; Koedinger and Anderson 1990). Although many improvements are pre-
sented, all of the work is within the framework presented by Gelernter. Nevins’
theorem prover (1976) is a noticeable exception, in which a combination of for-
ward chaining (see next section for definition) and backward chaining is used
with the emphasis on the forward chaining. As a consequence of using forward
chaining, numerical diagrams are not used, because each derived fact in the
forward chaining is valid.

In (Chou, Gao and Zhang 1998), a prover is implemented based on the
theory of deductive database, which escapes Gelernter’s framework completely
and is the first synthetic prover capable of proving a large number of difficult
geometry theorems. This prover can be used to find the fizpoint for a geometric
configuration, i.e., the system can find all the properties of the configuration
that can be deduced using a fixed set of geometric rules.

In (Chou, Gao and Zhang 1994), the area method for automated gener-
ation of human-readable proofs of geometry theorems is introduced. The area
method is deterministic in that the method eliminates points in a rigid way. In
(Chou, Gao and Zhang 1996a and 1996b), a relaxed search strategy is used in
the area method to introduce some kind of non-determinism into the method.
Using a relaxed search strategy has two positive aspects. (1) It allows the pro-
gram to generate multiple and the shortest proofs for the same theorem. (2) The
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area method can be extended to non-constructive geometry statements. Most of
the previous work of AGTP generally produce one proof. In the case of the area
method, since the proofs generated are short and readable, generating multiple
and shortest proofs for geometry theorems is important for the application of
the method to geometry education.

The rest of this chapter is organized as follows. Gelernter’s work is dis-
cussed in Section 10.2. The deductive database approach is discussed in Section
10.3. The method for generating multiple and shortest proofs is discussed in
Section 10.4. Various technical issues in synthetic methods are discussed Section
10.5.

10.2 Gelernter’s geometry theorem proving machine

Gelernter’s geometry theorem proving machine (Gelernter 1963) uses a
backward chaining search. Let Gg be the conclusion to be established by the
proof. It will be called the problem goal. If G; is a formal statement with the
property that G;_1 may be immediately inferred from G;, then G; is said to be
a subgoal of order i for the problem. The problem solving graph (Figure 1) has
as nodes the G;, with each G; joined to at least one GG;_1 by a direct link. The
problem is solved when any G; can be immediately inferred from the premises
of the problem and axioms. If, as is generally the case in geometry, a given
subgoal is a conjunction of statements, the graph splits at that point, and each
parallel subgoal must be separately established.

Without any improvements, this kind of brute force search has been shown
to be too much time-consuming for so simple a logic as propositional calculus
(Newell, Shaw and Simmon 1963). It is a fortiori out of the question for any of
the more interesting logics. A remaining alternative is to have the machine rely
upon heuristic methods.

G12

The main heuristic used
by Gelernter is to use numerical diagrams as semantic models. There are two
benefits the prover derives from a numerical diagram. (1) The diagram is used
as a filter to reject goals not consistent with its numerical representation as early
as possible. This will reduce the search space drastically, because without this
heuristic, most of the deduction paths generated will end up as false results.



(2) The diagram is used to determine order relations among points, or points
and lines. These relations are necessary for the prover to find a proof. The
first benefit is very important to the backward search and is not useful in the
forward chaining (see Section 10.3). The second benefit is related to the problem
of producing diagram independent proofs, a discussion of which can be found
in Section 10.5.2.

With the backward chaining search and the main heuristic determined,
now the search for a proof actually becomes the search for a valid subgoal in
the problem solving tree. There are two methods of doing this search: the
breadth-first search and the depth-first search.

e In the breadth-first search, we will search the subgoals in order 1,2,...
respectively. In Figure 1, the search order is: G, G11,G12,Go1, .. ..

e In the depth-first search, we search the left-most branch of the problem-
solving tree until we cannot go further. If the last subgoal is not established
to be valid, we delete this subgoal and go back to its parent sub-goal. Now
the search continues with this subgoal as the staring point and with the
same style. The step of returning to the parent of a sub-goal is called
backtracking. In Figure 1, the search order is: Go, G11,Go1,G31,G3o, . . ..

The breadth-first search is complete in the sense that if a valid subgoal does
exist in the tree then it will be found by the breadth-first search. On the other
hand, if the search tree is infinite then the depth-first search may end up in an
infinite branch without a valid subgoal and thus cannot find the valid subgoal in
other branches. In Gelernter’s proving machine, a breadth-first search is used.

In his proving machine, Gelernter used geometric axioms about congruent
triangles as the basic geometric rules. This might be one of the reasons that
his proving machine fails to prove many difficult geometry theorems. Without
adding techniques about auxiliary points, the rules about triangle congruence
can be used to prove a very limited number of high school level theorems in-
volving straight lines only. Most of the basic results in geometry such as the
centroid theorem, the orthocenter theorem, and Simson’s theorem are beyond
the scope of these rules. In Section 10.5, we will discuss the concerns about
selecting a set of “good” geometric rules.

Gelernter’s proving machine has been used to prove more than fifty theo-
rems from the high school textbooks. These theorems are quite simple compared
with the theorems proved by the current theorem provers based algebraic meth-
ods (Chap. 5) or the deductive database method (Section 10.3). The following
theorem is one of the most difficult ones proved by the proving machine.
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Example 10.1:

ABCD is a trapezoid such that AB || CD. M and N are the midpoints of
AC and BD. Let E be the intersection of MN and BC. Show that E is the
midpoint of BC. (Figure 2(a))

The proving machine is unable to find a proof for the theorem at the
present form. Then a new point K = CN N AB is added by the user. Now, the
proving machine is able to find a proof based on the key fact that ANBK is
congruent to ANDC. Also, many facts, such as /ABD = /CDB , are derived
from the numerical diagram without a vigorous proof.

10.3 A deductive database approach

Most of the subsequent work of AGTP based on heuristics uses a similar
approach with that of Gelernter’s: they use a backward chaining search and
axioms about congruent triangles. Nevins’ theorem prover (1976) uses a com-
bination of forward chaining and backward chaining. He also uses rules about
congruent triangles. In (Chou et al 1998), a geometry theorem prover based on
the theory of deductive database is implemented which uses forward chaining
to achieve fixpoints and a set of geometric rules about full-angles.

10.3.1 The geometric rules

Although not specified explicitly, Gelernter used a special kind of deduc-
tion rules in his proving machine: Horn clauses. A rule is called a definite Horn
clause if it has the following form:

Q@):— Pi(2),--,P(x) meaning V[(Pi(z) A+ A Py()) = Q)]
where the z are points occurring in the predicates P, -+, P, and Q. Also
(Pi(x) A--- A Pg(x)) and Q(z) are called the body and head of the rule respec-
tively.

In (Chou et al 1998), the following predicates: points, coll (collinear), para
(parallel), perp (perpendicular), midp (midpoint), cyclic, circle, eqangle, cong
(congruent of segment), eqratio, simtri (similar triangle), and contri (congruent
triangle) are used. The rules are highly complicated from the viewpoint of a
deductive database (Bancilhon and Ramakrishnan 1986): all the predicates are
mutually recursive and most of them are not linear. The central concept is

C

/XA



eqangle. Here the angle is not the ordinary angle but the full-angle. Intuitively,
a full-angle /[u,v] is the angle from line u to line v. Two full-angles /[l,m] and
/[u,v] are equal if there exists a rotation K such that K (1) || v and K(m) || v.
If A,B and C,D are distinct points on | and m respectively, then /[l,m] is
denoted by Z[AB,CD].

The introduction of full-angles simplifies the predicate of the angle con-
gruence. For instance, we have the following rule about parallel lines.
R1. AB || CD if and only if /[AB, PQ] = /[CD, PQ)] (Figure 3).

Using ordinary angles, we need to specify the relations among eight angles
and we need to use order relations (inequalities) to distinguish the cases. For
instance, we have: “if points B, D are on the same side of line P and
point P, C are on the different sides of line AB (the order relations), then
AB || CD < /PEB = /PFD.” This rule is very difficult to use and may
lead to branchings during the deduction. The following two rules also show why
full-angle is crucial to this approach.

R2. /[PA,PB] = /[QA,QB] :- cyclic(A, B, P, Q).

R3. cyclic(4, B, P,Q) - /[PA,PB] = /[QA,QB], - coll(P,Q, A, B).

In rule R2, using the ordinary angle, we need two conditions (Figure 4):
/APB = /AQB or /APB+ /AQ1B = 180° and to distinguish these two cases,
we need to know “points P and Q are on the same or different sides of line AB.”
Using full-angles, the two cases can be treated uniformly. For the treatment of
the negation in rule R3, please see (Chou et al 1998).

10.3.2 Forward chaining and fixpoints

Let Dy be the hypotheses of a geometry statement and R the geometric
rule (or axiom) set. Basically speaking, the forward chaining search works as
follows:

g g g (Fixpoint).

For each rule r in R, we apply it to Dy to obtain new facts. Let D; be the union
of Dy and the set of new facts obtained in this way. Repeat the above process
for Dy to obtain Do, etc. If at certain step Dy = Dgi1, then we say that a
fixpoint for Dg and R is reached, i.e., Dy is a fixpoint of reasoning rules R:

R(Dy) = Dy,
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In the case of datalog (Gallaire 1984) (i.e., when we assume that the rules are
Horn clauses without function symbols) the fixpoint can always be reached if
the rule set R (i.e., the intensional database) and the initial fact set Dy (i.e.,
the extensional database) are finite.

Since D; contains Dy as a subset, the derivation of Dy from D clearly
repeats all the previous deductions used to derive Dy from Dg. The semi-naive
evaluation is proposed to solve this problem (Bancilhon and Ramakrishnan,
1986). Note that in the forward chaining searches, the main loop of process
is to search the rule set R. We call such search strategies rule-based search
strategies. In (Chou et al 1998), a data-based search strategy is presented, in
which a new-fact-list is kept and for each fact d in the list we find and apply all
the rules whose bodies contain the predicate of d.

The Data-Based Search Algorithm.

Step 1 Set the hypotheses of the statement to be the initial new-fact-list and
the initial database. While the new-fact-list is not empty do Step 2.

Step 2. Let d be the first new fact in the list. Delete it from the list, add it to
the database, and do Step 3.

Step 3. Let r be a rule whose body contains a predicate Py of the fact d.
To apply the rule r, we need to instantiate other predicates in r. Since
predicate Py will be instantiated as the new fact d, other predicates in
r need to be instantiated for all the facts in the database. For all the
predicate forms of fact d (notice that a fact could have many predicate
forms) and for all the facts of the other predicates in r, do Step 4.

Step 4. Apply rule r to obtain a fact d’. If d’ is in the database, do nothing.
Otherwise, add it to the end of the new-fact-list.

Since the hypothesis set of a geometry statement is finite and we use a finite
rule set without function symbols, a fixpoint will always be reached.

10.3.3 Structured database

In the traditional way of representing a relational database, each n-ary
predicate is associated with an n-dimensional array. Since most geometric pred-
icates satisfy some special properties, building database according to this way
will lead to very large databases. In (Chou et al 1998), the concept of structured
database is introduced to reduce the size of the database. The following are
three such principles:

(1) Use canonical form for predicates. One geometric property can be
represented as many predicate forms. For instance, the predicate coll satisfies
the following rules:



coll(A, B,C) :- coll(A,C, B), coll(A, B,C) :- coll(B, A, C).
Thus from coll(A, B, C'), we can obtain five “new” facts: coll(4, C, B),
coll(B, A, C), coll(B,C, A), coll(C, A, B), coll(C, B, A). We represent predicates
as canonical forms by assigning an order to the points in the geometry statement.
With such an order, predicates can be represented uniquely. Using canonical
forms, the above rules are not needed explicitly in the deduction steps. This
will reduce the number of rules used in the deduction process.
(2) Use equivalent classes to represent predicates. For instance, the
fact that points Ay, As,---, A, are on the same line can be represented by a
sequence of points. In predicate form, we need n(n — 1)(n — 2) different forms
like coll(A;, A;, Ay) to represent this fact.
(3) Use representative elements for equivalent classes. For instance, the
fact that the line containing points Aq, ..., A, is parallel to the line containing
points By, ..., By can be represented by [y || l2 if using [; and ls to represent the
two lines. If using predicates para(A;, Aj, By, B;) to represent this fact, we need
2n(n — 1)k(k — 1) predicates.

For the 160 geometry theorems solved by the prover, the average size of
the databases is 221 if the above structure is used. Using the predicate form,
the average size would be 242,117; i.e. one thousand times larger. For many
configurations such as Example 10.4, the fixpoint cannot be reached within
reasonable time if the above structure is not used.

10.3.4 Experimental results and examples

The following table contains the timing and database size statistics for
the 160 geometric theorems solved by the program. The timing is collected on
a Sparc-20 workstation.

Time (seconds) Structured DB Relational DB
Time | Theorems Size Theorems Size Theorems
<0.1 30% <50 16% < 10,000 11%

<1 69% < 100 42% < 50,000 43%
<10 94% < 200 66% < 100,000 59%
<60 98% <500 91% < 1,000,000 95%
< 650 100% <4021 100% < 5,041,102 100%

8.37 (average) 221 (average) 242,117 (average)

The 160 geometry theorems solved by the prover are mainly chosen from
about 600 theorems in (Chou 1988) and (Chou et al 1994). We can find fixpoints
for each of the 600 theorems, but only about 160 of them can be proved in this
way. Some well-known theorems such as Pappus’ theorem and Pascal’s theorem
are beyond the scope of the program, although the fixpoints can be reached for
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both of them.

u \F

Example 10.2: The Orthocenter Theorem

Show that the three altitudes of a triangle are concurrent (Figure 5).

The hypotheses (extensional database) are: points(A4, B, C), coll(E, A, C),
perp(B, E, A,C), coll(F, B,C), perp(A, F, B,C), coll(H, A, F'), coll(H, B, E),
coll(G, A, B), coll(G,C, H).

Reaching the fixpoint costs the program 0.75 second. The size of the
fixpoint is 146 if the structured database is used. In predicate form, the size
of the fixpoint would be 56,940. The fixpoint contains two of the most often
encountered properties of this configuration:
perp(C, G, A, B) (the conclusion) and /[GF,GC| = /[GC,GE]. Another amaz-
ing fact is that this simple configuration contains 105 nontrivial ratios!

The following is the proof for the fact perp(C, G, A, B), which is automat-
ically generated by the prover. In the proof (hyp) means that the corresponding
fact is from the hypotheses.

The Machine Proof

1. perp[CG, AB] :- (hyp)perp|BC, AF], (hyp)coll|GCH],
(2)/|BC,AF] = /[AB,CH].

2. /[BC, AF] = /[AB,CH] = (3)/[BC, AB] = /|AF,CH].

3. /[BC, AB] = L[AF,CH] - (4)/[BC, AB] = /[FE, AC],
(5)/[AF,CH| = /[FE, AC].

4. /[BC,AB]| = /[FE, AC] :- (hyp)coll[CBF], (hyp)coll[CEA],
(6)/[BF, BA] = /[EF, EA].

5. L[AF,CH| = /[FE, AC] :- (hyp)colllAHF|, (hyp)colll AEC],

(T)/[HF, HC] = /|EF, EC).

/|BF,BA| = /[EF,EA] - (8)cyclic|AFBE].

/[HF,HC] = /|EF,EC] - (9)cyclic|[CFEH].

cycliclAFBE] - (hyp)perp[F' B, FA], (hyp)perp|EB, EA].

cyclic[CFEH)] :- (hyp)perp|F'H, FC], (hyp)perp[EH, EC].

© %N

Example 10.3: The Five Circle Theorem
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PyPyPyP3Py is a pentagon. Q; = P,_1P;N P11 Piyo, M; = circle(Qi—1Pi—1P;)N
circle(QiP;Pi11) (the subscripts are understood to be mod 5). Show that points
My, My, My, M3, My are cyclic (Figure 6).

The fixpoint is reached in 3.89 seconds and contains 541 (220,680 in predicate
form) facts. Besides the fact that My, My, My, Ms, and My are cyclic, the
program finds the following new result: the ten groups of lines below

PaMig1,Qi-1Mi—1,QivoM;_o; P 1 M;_9, BM;1,Qi—1 M2 :1=0,...,4

are concurrent and the ten intersection points of them are on the circle deter-
mined by My, My, Mo, M3, and My, i.e., this circle contains 15 points. The
three dotted lines in Figure 7 represent one group of concurrent lines.

Example 10.4:

In the right triangle ABC, /A = 90°; AH 1 BC and H is on line BC; S is
the midpoint of AH; K and N are points on BC' and AC' such that KN || AB;
P and L are points on AB and BC' such that PL || AC; Q and M are points
on AB and AC' such that QM || BC. Show that the six points P,Q, K, L, M, N
are on the same circle (Figure 7).

It takes the program 461.06 seconds to reach the fixpoint which contains
1326 (5,041,102 in predicate form) facts. Without using the structured database,
the fixpoint is too big to be reached within reasonable time.

10.4 Multiple and shortest proof generation

Generating multiple proofs is an inherent property of search methods. But
the pre-condition is that the proving method itself should be very fast to generate
a large amount of proofs in a short period of time. Another pre-condition is that
the proofs generated should be readable, otherwise there is no reason to generate
multiple proofs. The area method (Chap. 7) and the deductive database method
are used to generate multiple proofs. In this section, we will introduce briefly
how to use the area method to generate multiple proofs.

10.4.1 Basic lemmas about signed areas and ratio of segments

The signed area Sy pc in Euclidean geometry is used as a basic (undefined)
geometric quantity described by the following properties.

L1 Sapc = Scap = Spca = —Spac = —ScBa = —SacB-

L2 Points A, B, and C are collinear iff S4pc = 0.



CHAPTER 10: SEARCH METHODS 11

L3 PQ || AB iff Spap = SgaB-
L4 For points A, B, C, and D, we have Sypc = Sagp + Sapc + Spsc.

L5 If points A, B, C, and D are four collinear points such that A # B, and P

is any point not on line AB, then ig g}’j%.
Here we introduce another geometric quantlty , the ratio of two directed

segments on the same line, which satisfies L7 below
The signed area of a quadrilateral ABCD 1is defined to be Sagcp =
Sapc + Sacp. By lemmas L4 and L1, we have.

Q1 Sapcp = Sapc + Sacp = SaBp — Scsp,

Q2 Sacp = SBcpa = Scpas = Spapc = —Sapcs = —SpcBa = —ScBaD =
—SBADC-

L6 (The Co-side Theorem) Let M be the intersection of two lines AB and

PM __ Spap. PM __ Spap . QM SqgaB
PQ and Q # M. Then QM ~— Sqga’ PQ =~ Spag’ PQ ~ Spa@B’

L7 For four distinct collinear points P, QQ, A, and B, ﬁ s a real number which
P P PQ
satzsﬁes(])—— C’XB g:A: BA’()AB }ig_l (3) Q_ iff
P=Q; and (4) %+%:1'

For the relation of these lemmas to other axiom systems of geometries, please
refer to (Chou et al 1994).

In the prover, each geometry lemma is represented as a rule or a clause.
For instance, lemma L3 can be written as the following Prolog rule.

el_rule([area,P,A,B],[area,Q,A,B]) :- para(A,B,P,Q),P#Q,

where [area,P,A B] is Spap and the predicate para(A,B,P,Q) means that AB ||
P@. This lemma means that if AB || PQ, [area,P,A,B] will be replaced by
[area,Q,A,B].

10.4.2 The Prover

The prover is implemented in Prolog. The geometry lemmas can be put
as inference rules in Prolog, and the (backward) logic engine of Prolog is used
to do as much inference job as possible. At the highest level, the prover uses a
typical backward chaining search strategy.

Stepl The prover first transforms the conclusion predicate into an equation of
geometric quantities a = (.

Step2 The prover keeps replacing geometric quantities in « and [ with ex-
pressions in new geometric quantities by using the rules introduced in the
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preceding subsection until no new replacement can be made. After apply-
ing a rule to « or 3 to obtain o’ and (3, we remove the common factors of
o and (3.

Step3 Let the final equation be o/ = 3. If o is literally equal to 8" then the
theorem is true. Otherwise, we do not know whether the statement is true

or not.
Example 10.5: The ACentroid Theore:
The three medians a triangle meet in a
each median st by this point
As in Figure 8, we need to prove —2- % = 1. Non-degenera,
are that A, B, C. C _ B
The Machine Proof
GD
(-2) 55 )
GD _ PEDC ; ;
(@ = Spep because collinear(B,D,G), collinear(c,E,G). (L6))
_ 25EDpC
SECB

(Sepc = 25(SEca), because midpoint(p,c,4). (L5))

(Spcs = $(Scpa), because midpoint(E,B,4). (L5))
_ _25gcaA

(=1)-ScBa

(Spca = %Q(SCBA), because midpoint(&,B,4). (L5))
— ScBA =1

ScBA '

(Simplification: removing the factor: Scpa. )

By introducing an order among the points, the area and ratio can be
represented canonically. We can thus introduce an order or a rank among the
geometric quantities.

Control Strategy 1. A rule can be used only if it reduces an invariant to an
expression in invariants with lower ranks.

Control Strategy 1 has a two-fold purpose. First, it guarantees the termi-
nation. Second, it makes the production of short proofs possible. Without this
strategy, the prover may do endless searches before reaching the shortest proof.
This can be seen from Example 10.6.

10.4.3 Multiple proof generation

There are two ways to generate different proofs. First, for an algebraic

quantity
P -P---P,
o=

"~ Ry-Ry---Ry,
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we can use the rules to the polynomials P; and R; in different orders. Even
by simply changing the order of applying the same set of rules to the algebraic
quantities, essentially different proofs may be generated, because when a poly-
nomial, say P;, becomes ()1 and R; is unchanged, it might happen that )1 = R;
could be canceled. If we change Ry to S7 at the same time, the above reduction
will not happen. The second way of generating different proofs is more impor-
tant. For each geometric invariant, we may apply different rules to it to obtain
different results. The following strategies to control the order of elimination are
used.

Control Strategy 2. To apply a set of rules to an algebraic expression

PP P,
a=——
Ry Ry R,,
means either to apply one rule to one of Py,---, Py, Ry, -+, Ry, or to apply one

rule to one of the polynomials in the numerator and to apply another rule to
one of the polynomials in the denominator.
Control Strategy 3. If two rules are used to eliminate the same point from
both the numerator and the denominator of an algebraic expression or used to
change the types of the geometric quantities, we will not use them separately
to the same algebraic expression, since the separate use of these rules will not
lead to canceling of geometric quantities.

Strategies 1,2, and 3 are quite effective to control the number and the
length of the proofs.

Example 10.6:

Continuing from Ezample 10.5. If all the three control strategies (1, 2, and 3)
are used, the prover gives 70 proofs with proof lengths ranging from 4 to 7. If we
relax the control by dropping control strategy 3, then the prover gives 212 proofs
with lengths ranging from 4 to 8. If we further relax the control by dropping
the control strategy 1, then the prover gives 24360 proofs before it exhausts the
memory of the computer. Much more proofs are expected, because in the 24360
proofs there are only two proofs with length less than or equal to 8.

10.4.4 Shortest proof generation

Using the breadth-first search, the first available proof is naturally a short-
est proof. Moreover, using the breadth-first search, for some difficult geometry
problems, the prover may exhaust the computer space before it obtains the first
(shortest) proof. This problem is solved by using the following technique: if
the shortest proof is needed, the prover will remember the length of a proof
when it is generated and prohibit any backtracking that can generate proofs
with lengths longer than or equal to the recorded length.
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Another approach is to use the depth-first iterative deepening search (Korf
1985) and (Stickel 1985). In this approach, we first try to find a proof with depth
1, then depth 2, and so on by repeated use of depth-first search. The experience
shows that both the above approaches to find shortest proofs are quite successful
(Chou et al 1996a, 1996b).

Example 10.7:

Continuing from Example 10.6. The following proof for the centroid theorem is
the shortest proof found by the prover. This proof cannot be generated by the
previous area method.

The Machine Proof
GD
(_2)'7ﬁ
(% = _SSE&%, because collinear(B,D,q), collinear(c,k,G). (L6))
_ 25gpC
SECB
(Sepc = %Q(SECA), because midpoint(D,c,4). (L5))
(SEcB = —SEca, because midpoint(5,B,4). (L5))
SECA
SECA
(Simplification: removing the factor: Spca. )

=1

10.5 Issues concerning search methods

Now it is time to discuss several key issues in developing an efficient
geometry theorem prover with the synthetic approaches.

10.5.1 Skolemization and adding of auxiliary points

Since most synthetic geometry reasoning systems use Horn clauses as
rules, the systems have no ability to generate auxiliary points. Thus it is im-
portant that we can prove at least a large portion of the geometry theorems
with the chosen geometric rules. The rules used by the deductive database ap-
proach are quite good in this aspect. Most of the 160 theorems proved by these
rules without adding auxiliary points cannot be proved with the rules about
congruent triangles if no auxiliary points are added. On the other hand, with
functions of adding auxiliary points the prover will clearly be able to prove more
theorems.

In the theory of logic, constructing new points corresponds to the Skolem-
ization of the existential quantifiers. To use this idea in AGTP is discussed in
(Robinson 1983 and Reiter 1976), but seems not implemented.
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In (Chou et al 1998), about forty rules are used to add auxiliary points.
Two strategies are proposed to control the adding of new points to achieve
effectiveness. The first strategy is to separate the process of adding new points
from the process of reaching the fixpoints. The program works as follows. For a
geometry theorem, we first find a fixpoint without adding auxiliary points. If the
conclusion is already in the database then the program terminates. Otherwise,
the program will try to construct an auxiliary point and find a new fixpoint.
The program will repeat the above process until either the conclusion is in the
new database or there exist no new auxiliary points.

The second strategy is to use two heuristics to control the constructing
of too many auxiliary points. (1) After an auxiliary point is added and a new
fixpoint is reached, we will check whether new properties about the original
diagram are found. If they are, we will keep this auxiliary point; otherwise, the
auxiliary point will be deleted. (2) No recursive auxiliary points are allowed; i.e.,
to construct an auxiliary point, we can only use points occurring in the original
statement. The second condition guarantees that the program will terminate.

For Example 10.1, the program in (Chou et al 1998) automatically adds
an auxiliary point: Ay which is the midpoint of AD. With this auxiliary point,
the proof of the conclusion seems easier:

The Machine Proof

midp[E, BC] :- (2)para[C D, EN], (hyp)midp[/NV, BD).
para|[C' D, EN] :- (3)colllEN M Ay], (4)para]C D, M Ag).
colllEN M Ay) :- (hyp)line[M N E], (5)line[M N Ay).
para[C'D, M Ag] :- (hyp)midp[M, AC], (hyp)midp[Ag, DA].
line[M N Ay| :- (6)para[AgM, AgN].

para[AgM, AgN] :- (7)paralAoM, AB], (8)para[AoN, AB].
para[AgM, AB] :- (4)para[C'D, M Ap|, (hyp)para[AB, CD].
para[AgN, AB] :- (hyp)midp[N, BD], (hyp)midp[Ay, DA].

PN

Example 10.8: The Butterfly Theorem

C, D, E, and F are on the same circle with center O. G is the intersection of
CF and DE. The line passing through G and perpendicular to OG meets CD
and EF in M and N respectively. Show that G is the midpoint of NM. (Figure

9)

The conclusion is not in the first fixpoint. The program automatically adds
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an auxiliary point Ag which is the intersection of the line passing through C
and parallel to M N and the circle O. With the point Ay, it takes the program
0.4 second to reach the fixpoint which contains the conclusion on a Sparc-20
workstation.

10.5.2 Producing diagram independent proofs

The validity of most elementary geometry theorems involving only equal-
ities is independent of the relative order positions of the points involved. Such
geometry theorems belong to the so-called unordered geometry. This idea orig-
inated from Wu’s algebraic method of automated reasoning (Wu 1984). In
unordered geometry, the proofs of these theorems can be very simple. However,
the ordinary proofs of these theorems involve the order relation; hence they
are not only complicated but also not strict. The method based on congruent
triangles is not for unordered geometry. In the work using this method, the
order relations needed are either derived from a numerical diagram or given in
the input. On the other hand, the rules used in the deductive database are for
unordered geometry.

For instance, Gelernter’s proof depends on the fact ZABD = /BDC
which is true in Figure 2(a). But in a different figure of the same theorem (Figure
2(b)), this fact is not valid anymore. Such facts are not isolated cases in AGTP.
On the contrary, they exist in almost all geometry theorems. Nevins (1975)
claimed that he has got rid of this drawback by adding the ordering relations to
the hypotheses of the statement. Nevins’ approach makes the situation much
clear, but still does not solve the problem completely. First, to prepare for the
order relation in the hypotheses, people still need to consult a diagram. Second,
for some geometry theorems it may happen that the order of points in different
diagrams of the same theorem may be different. For instance, there are at least
three diagrams with different order relations among points and lines for the
Butterfly theorem (Figure 9). Thus, a proof based on a fixed order relation
among points and lines is valid only for some special cases of the statement. On
the other hand, using a set of rules for unordered geometry, a uniform proof of
this theorem can be given which is valid for all figures.

10.5.3 Avoiding redundant deductions

A deduction is redundant if it generates a fact that is already in the
database. The redundant deduction is a major hurdle for speeding up the search
and eliminating redundancies is proposed as a basic research problem by L.
Wos (1988). It is proved that in general cases, the problem of eliminating all
redundancies is undecidable (Helm 1990). So the best we can do is to design
strategies to reduce the redundancies.
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There are three kinds of redundant deductions. First, repeated use of
the same rule to the same fact will generate the same result. This kind of
redundancies can be solved by the semi-naive search or the data-based search.

Second, some redundant deductions are logically guaranteed. For exam-
ple, if a rule 7 in a rule set R is a logical consequence of R — {r} then each
fact deduced using rule r will also be deduced by other rules in R. For a given
rule set, the problem of obtaining a minimal and logically equivalent rule set is
undecidable (Sagiv 1988). Many useful partial methods are given in (Buntine
1988; Helm 1990; and Sagiv 1988).

Third, two logically irrelevant deductions may give the same fact if the
input facts satisfy certain conditions. We call this kind of redundancies the
conditional redundancies. There seems no general method to control conditional
redundancies.

In (Chou et al 1998), many heuristics are used to control redundant de-
ductions.
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