
Spatial Geometric Constraint Solving Based on
k-connected Graph Decomposition ∗

Gui-Fang Zhang
School of Sciences

Beijing Forestry University
Beijing 100083, China

Xiao-Shan Gao
KLMM, Institute of Systems Science

Academia Sinica
Beijing 100080, China

ABSTRACT
We propose a geometric constraint solving method based
on connectivity analysis in graph theory, which can be used
to decompose a well-constrained problem into some smaller
ones if possible. We also show how to merge two rigid bod-
ies if they share two or three geometric primitives in a bi-
connected or tri-connected graph respectively. Based on this
analysis, problems similar to the “double banana problem”
could be easily detected.

Categories and Subject Descriptors
J.6 [COMPUTER-AIDED ENGINEERING]: CAD

Keywords
Geometric constraint solving, parametric CAD, k-connected
graph, separating k-tuple, decomposition

1. INTRODUCTION
Geometric constraint solving(GCS) is one of the key tech-

niques in parametric CAD, which allows the user to make
modifications to existing designs by changing parametric
values. There are four major approaches to geometric con-
straint solving: the numerical approach, the symbolic com-
putation approach, the rule-based approach, and the graph-
based approach. This paper will focus on using graph algo-
rithms to decompose a large constraint problem into smaller
ones.

In [11], Owen proposed a GCS method based on the tri-
connected decomposition of graphs. In [1], Hoffmann et al
proposed a method based on cluster formation to solve 2D
and 3D constraint problems. In [5], Joan-Arinyo et al pro-
posed an algorithm to decompose a 2D constraint problem
into an s-tree. This method is equivalent to Owen’s and
Hoffmann’s methods, but is conceptually simpler.

∗Partially supported by a 973 project of China

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

The above approaches use triangles as basic patterns to
solve geometric constraint problems. In [9], Latham and
Middleditch proposed an algorithm which could be used to
decompose a constraint problem into what we called general
construction sequence[2]. A similar method based on maxi-
mal matching of bipartite graphs was proposed in [8]. In [4],
Hoffmann et al gave an algorithm to find rigid bodies in a
constraint problem. From this, several general approaches to
GCS are proposed [4]. In [2], a c-tree decomposition method
is proposed to solve both 2D and 3D constraint problems.
The method proposed in [4] and the c-tree method [2] can be
used to find a decomposition with the smallest controlling
problem in certain sense. In [13], a method based on con-
nectivity analysis from graph theory is proposed for solving
2D geometric constraint problems. This method is a natural
generalization of the methods in [5, 11] which are based on
tri-connectivity analysis of the constrained graph, and can
solve problems that can be reduced to triangular form.

In this paper, we extend the results in [13] to 3D case.
The method works as follows, we first decompose a well-
constrained constraint graph into k-connected subgraphs for
the smallest possible k. If one of the subgraphs is also well-
constrained, then we can solve the original problem by first
solving the subgraphs and then merging these subgraphs.
The merging process is carefully analyzed. As a result, the
“double banana problem” could be easily detected in the
algorithm.

In Section 2, we introduce the concept of connected graph.
In Section 3, the method to split constraint graph is pro-
posed. In Section 4, an algorithm to generate the D-tree
is proposed. In Section 5, a method to merge bi-connected
and tri-connected constraint graphs is proposed.

2. PRELIMINARY RESULTS
The geometric primitives considered are points, lines and

planes in 3D. The geometric constraints considered include
distance constraints between point/point, point/line, point
/plane, line/line and the angular constraints between line/line,
line/plane, plane/plane in 3D.

We use a constraint graph to represent a constraint prob-
lem. The vertices of the graph represent the geometric prim-
itives and the edges represent the constraints. Let G =
(V, E, ω)(or G = (V (G), E(G), ω)) be a geometric constraint
graph. ∀v ∈ V , ω(v) is the weight of vertex v, i.e the num-
ber of independent parameters used to determine the ver-
tex, and ω(V) = Σv∈V ω(v). For instance, the weight of
every point or plane is 3 in 3D and the weight of a line in
3D is 4. ∀e ∈ E, ω(e) represents the weight of edge e, i.e

the number of scalar equations to represent the constraint,
and ω(E) = Σe∈Eω(e). For instance, the weight of the dis-
tance constraint between two points is 1 if the distance is
not zero, otherwise it is 3. Let G = (V, E, ω) be a geometric
constraint graph.

1. G is structurally over-constrained if there is an induced
subgraph H = (VH , EH) satisfying ω(EH) > ω(VH)−
6, where |VH | > 2.

2. G is structurally under-constrained if it is not struc-
turally over-constrained and 0 < ω(E) < ω(V)− 6.

3. G is structurally well-constrained if it is neither struc-
turally under-constrained nor over-constrained.

Let G = (V, E, ω) be a geometric constraint graph in 3D.
We define the deficit function associated with G as

deficit(G) = (ω(V)− 6)− ω(E).

If G is a structurally well-constrained problem, deficit(G) =
0. If G is not structurally over-constrained, deficit(G) ≥ 0.

An undirected graph G = (V, E) is called connected if for
every two nodes x, y ∈ V there exists a path of edges from
E joining x and y. A graph is called disconnected if it is not
connected. A graph is called k-connected (k ≥ 1) if there
does not exit a set of k− 1 or fewer nodes V ′ ⊆ V such that
the removal of all nodes of V ′ and their incident edges from
G results in a disconnected graph.

Two vertices x and y of graph G are said to be k-connected
if k is the largest integer such that there exist k vertex-
disjoint paths from x to y in G. The connectivity of x and
y is denoted by κ(x, y), which is the maximal number of
vertex disjoint paths from x to y in G.

Theorem 2.1 ([6]). (Theorem of Whitney) A graph
G is k-connected if and only if κ(x, y) ≥ k for any two ver-
tices x and y of G, that is, κ(G) = min{κ(x, y) : x, y ∈ V }.

The complexity of the algorithm to calculate the connec-

tivity of a connected graph G = (V, E) is O(|V | 12 |E|2) [6].

Theorem 2.2. Let G be a well-constrained graph. We
have

κ(G) ≤
�

5 in 3D for points and planes
7 in 3D for points, planes and lines.

Proof. For a graph G = (V, E), from [10] it is known that

κ(G) ≤ 2|E|
|V | . Then for a structurally well-constrained con-

straint graph G = (V, E), we can obtain the bound of κ(G)
explicitly as follows.

1. If the primitives are points and planes, then |E| ≤
3|V | − 6 and 2|E|

|V | ≤ 2(3|V |−6)
|V | < 6. Thus κ(G) ≤ 5.

2. If the geometric primitives are points, lines and planes,
then let V3 be the set of all vertices of weight three,
|E| ≤ 3|V3|+ 4(|V | − |V3|)− 6 = 4|V | − |V3| − 6. Thus
2|E|
|V | ≤ 2(4|V |−|V3|−6)

|V | < 8 and κ(G) ≤ 7.

Let G = (V, E, ω) be a connected undirected graph. A
vertex v ∈ V is a separating vertex for G if the induced
subgraph by V − {v} is not connected. G is bi-connected if
it contains no separating vertex.

A pair of vertices v1, v2 ∈ V is a separating pair for G if the
induced subgraph on V −{v1, v2} is not connected. G is tri-
connected if it contains no separating pairs and vertices[3].

A triplet {v1, v2, v3} of distinct vertices in V is a separating
triplet of a tri-connected graph if the subgraph induced by
V − {v1, v2, v3} is not connected. G is 4-connected if it
contains no separating triplets, pairs and vertices [7].

A tuple {v1, v2, · · · , vk} of distinct vertices in V is a sep-
arating k-tuple of a k-connected graph if the subgraph in-
duced by V −{v1, v2, · · · , vk} is not connected. G is (k+1)-
connected if it contains no separating n-tuple {v1, v2, · · · , vn}
(n = 1, · · · , k).

3. SPLIT AND CUT GRAPHS
In this section, let G = (V, E, ω) be a structurally well-

constrained geometric constraint graph. A subgraph Gs in
G is called a cut graph of G if G is not connected after
deleting Gs and the edges adjacent to vertices in Gs. The
ways to find cut graphs of G are as follows.

1. Assuming that G is k-connected and {v1, v2, · · · , vk}
is a separating k-tuple, where vi ∈ V (i = 1, · · · , k).
The subgraph of G induced by {v1, v2, · · · , vk} is a cut
graph.

2. Assuming that H is a structurally well-constrained
subgraph in G, i.e. deficit(H) = 0, let

Vc = {v|(v, v1) ∈ E(G), v ∈ V (H), v1 ∈ (V (G)−V (H))},
if |V (H)| > |Vc|, the subgraph of G induced by Vc is a
cut graph associated with H.

A k-connected graph can be split into split components by
splitting it at the separating k-tuple, i.e. deleting the sepa-
rating k-tuple and edges adjacent to the k-tuple.

Let Vs = {v1, v2, · · · , vk} be the separating k-tuple in the
graph G that induces the split components C1, C2, · · · , Cn.

If there exists a split component Cj(0 ≤ j ≤ n) satisfying
deficit(Cj) = 0 and we can find a cut graph Gs associated
with Cj . Let G1 = Cj and G2 the subgraph of G induced by
(V (G)−V (Cj))

S
Vs. G1 and G2 are called the split graphs

of G.
For each Ci(i = 1, · · · , n), if we duplicate Vs to each Ci,

the subgraph of G induced by Vs

S
V (Ci) is called split com-

ponent and denoted by Ci.
If there exists a split component Ck(0 ≤ k ≤ n) satisfies

deficit(Ck) = 0, we can find a cut graph Gs associated with
Ck. Let G1 = Ck and G2 =

Sn
i=1,i6=k Ci. G1 and G2 are

called the split graphs of G.
For each Ci(i = 1, · · · , n), if we can not find a cut graph

associated with Ci, select an m such that 1 ≤ m ≤ n and
let

G1 =

m[
i=1

Ci; G2 =

n[
i=m+1

Ci. (1)

The graph G1 and G2 are called the split graphs of G.
The relation of split graphs and the cut graph is shown in

Fig.1.

Theorem 3.1. Let G be a k-connected structurally well-
constrained graph, Gs = (V (Gs), E(Gs), ω) the cut graph,
G1 = (V (G1), E(G1), ω) and G2 = (V (G2), E(G2), ω) the
split graphs. We have

deficit(G1) + deficit(G2) = deficit(Gs). (2)

Figure 1: Relation between split graphs and cut
graph

Proof: Since G is structurally well-constrained, deficit(Gs) ≥
0, deficit(G1) ≥ 0 and deficit(G2) ≥ 0. If deficit(Gs) > 0,
deficit(G1) > 0 and deficit(G2) > 0, then ω(Vs)−Es−D > 0,
ω(V (G1))−ω(E(G1))−D > 0 and ω(V (G2))−ω(E(G2))−
D > 0.
Because

ω(E(G1)) + ω(E(G2))− ω(Es) = ω(V)−D,
we have ω(E(G1)) + ω(E(G2))− ω(Es)

= ω(V (G1)) + ω(V (G2))− ω(Vs)−D.
Then (ω(V (G1))− ω(E(G1))−D) + (ω(V (G2))
− ω(E(G2))−D) = ω(Vs)− ω(Es)−D.

Thus deficit(G1) + deficit(G2) = deficit(Gs).

Corollary 3.2. Let G = (V, E, ω) be a structurally well-
constrained k-connected graph, Gs = (Vs, Es, ω) the sub-
graph of G induced by a separating k-tuple Vs = {v1, v2, · · · ,
vk}, G1 and G2 the split graphs of graph G. G1 and G2 are
structurally well-constrained if and only if Gs is structurally
well-constrained.

Corollary 3.3. Let Gs be the graph induced by a sepa-
rating k-tuple of a k-connected structurally well-constrained
graph G, G1 and G2 the split graphs. If Gs is not structurally
well-constrained and G1 is structurally well-constrained, then
deficit(G2) = deficit(Gs).

In general, a structurally well-constrained graph can be
decomposed by the following ways based on connectivity
analysis.

1. deficit(Gs) = 0. Now the split graphs G1 and G2 are
structurally well-constrained by Corollary 3.2. We can
solve them separately, then merge them to obtain the
solutions to the initial problem. Fig. 2 is an example of
this case. The graph in 3D is split into two structurally
well-constrained graphs.

P1

P2P3

P5

P4

P1

P2P3

P4

P2P3

P5

P4

Figure 2: Separating triplet is P2, P3, P4 and
deficit(Gs) = 0

2. deficit(Gs) > 0. According to theorem 3.1, deficit(Gs) =
deficit(G1) + deficit(G2) and deficit(G1) can be 0, 1,
· · · , deficit(Gs). If either G1 or G2 is structurally well-
constrained, then let G1 be the well-constrained split

graph. We solve G1 first, then add deficit(Gs) aux-
iliary constraints to Gs so that Gs becomes a struc-
turally well-constrained problem G′s. Now, G2 also
becomes a well-constrained problem G′2, and can be
solved separately. After getting the solution of G1 and
G′2, we can merge them to obtain a solution to the ini-
tial problem. G′2 is called the modified split graph of G
with G1.

If neither G1 nor G2 is structurally well-constrained,
we can make the following choices:

(a) Select another separating k-tuple and re-decompose
the constraint graph G; or

(b) Solve G with numerical computation.

In the cases deficit(Gs) > 0, we need to add auxiliary
edges to make the cut graph Gs well-constrained. This
a well-constrained completion problem. Latham et al pre-
sented a method to solve such a problem [9].

4. A DECOMPOSITION ALGORITHM
We will introduce a new decomposition tree, D-tree, which

can be used to simplify a structurally well-constrained con-
straint problem.

A D-tree for a structurally well-constrained graph G =
(V, E) is a binary tree.

1. The root of the tree is the graph G. Left child L and
right child R are defined as follows.

2. For each node N in the tree, its left child L is the split
graph of N which is either a triangle or a structurally
well-constrained subgraph of N , and the right child R
is the (modified) split graph of N with L which is either
a triangle or a structurally well-constrained graph.

3. All leaves are either a triangle or a structurally well-
constrained j-connected (3 ≤ j) constraint graph.

Algorithm 4.1. The input is a structurally well-constr-
ained graph G = (V (G), E(G), ω) in 3D. The output is a
D-tree for G. Let T=G as the initial value, and Sk = ∅ as
the initial value of set of separating k-tuples in V (T).

S1 If T is a triangle, the algorithm terminates; else goto
step S2.

S2 Calculate connectivity k of the connected graph T. If
|V (T)| − k < 2, the algorithm terminates; else let
Sk ← ∅ goto S3.

S3 1. If k = 2, find all the separating pairs with Hopcroft
and Tarjon’s method [3]. Then add these separat-
ing pairs to Sk, goto step S4.

2. If k = 3, find all the separating triplets with the
method in [7]. Then add these separating triplets
to Sk, goto step S4.

3. If k > 3, goto step S5.

S4 If Sk 6= ∅, taking a separating pair or triplet S ∈ Sk,
Sk ← Sk − {S}, generate the cut graph Gs induced by
S, goto S7. Otherwise, the algorithm terminates.

S5 Let H = T . For all k-tuple S = {v1, · · · , vk} in H,
do step S6. If we cannot find a separating t-tuple, the
algorithm terminates.

S6 Let U be the graph induced by H − S. If U is not con-
nected, S is a separating k-tuple. Generate the cut
graph Gs induced by S, goto S7. If U is connected,
goto step S5.

S7 Splitting T by the cut graph to generate the split graphs
G1 and G2. If the deficit function of the cut graph
induced by S is 0, goto S8; else goto S9.

S8 Let L = G1 and R = G2. Let T=L, repeat the algorithm
from S1 recursively. Let T=R, repeat the algorithm
from S1 recursively.

S9 If one of the split graph is structurally well-constrained,
let it be G1 and goto S10; else if neither G1 nor G2 is
structurally well-constrained, goto S11.

S10 Let L = T = G1 and operate the algorithm from S1
recursively for T . Add deficit(Gs) auxiliary constraints
to G2 to make the modified split graph Gm

2 structurally
well-constrained with the method proposed in [9]. Let
R be the modified split graph Gm

2 , and T = R. Repeat
the algorithm from S1 recursively.

S11 Check the separating component C1, C2, · · · , Cn. If we
can find a cut graph Gs associated with Cj(0 ≤ j ≤ n),
goto S12; else if k ≤ 3 goto S4; else if k > 3 goto S5
to repeat the process for another k-tuple.

S12 Generate the split graphs G1 and G2. If deficit(Gs) =
0, goto S8; else goto S10.

Let n = |V |. The complexity of step S2 is n
1
2 |E|2[6].

When k = 2, the complexity of S3 is O(n + |E|) [3]; when
k = 3, the complexity of S3 is O(n2) [7]. For Step S5, in

the worst case, we need to consider |n!
k!(n−k)!

k-tuples. From

Theorem 2.2, we know k ≤ 7. Then the complexity is O(n7)
at most to get all the separating k-tuples. So, the complex-
ity to find the first split is O(n7). We need to repeat the
algorithm for the two split graphs with v1 and v2 vertices
(v1+v2 = n). Then the split process for the two split graphs
are O(v7

1 +v7
2) ≤ O(n7). So the complexity of the algorithm

is at most O(n8), and is hence polynomial in n.

5. MERGE SPLIT GRAPHS
After a D-tree is obtained for a geometric constraint prob-

lem, we can solve the problem as follows: Do a left to right
depth first transversal of the D-tree and solve the constraint
problem represented by each node as follows.

1. If the current node N is a leaf in the tree then it is a
well-constrained problem that cannot be decomposed
further with the algorithm. Solve N with numerical
computation methods.

2. Let N be a node with left child L and right child R.
This can be done in three steps.

(a) Solve the left child L. L is a well-constrained
problem which can be solved recursively.

(b) Solve the right child R. The values for the pa-
rameters in the auxiliary constraints in the right
child R can be obtained from L. Now, R is a
well-constrained problem which can be solved re-
cursively.

(c) Merge L and R to obtain N .

In what below, we will give a detailed analysis of the merg-
ing process for bi-connected and tri-connected graphs. The
general case can be reduced to one of these cases. The rea-
son is that the relative position of two rigid bodies can be
fixed by merging them along a minimal rigid body shared
by them, and a minimal rigid body contains two or three
primitives [2].

5.1 Merge bi-connected constraint graphs
Let the separating pair be {a, b} in a bi-connected graph

G. The split subgraphs of G are two rigid bodies R1 and
R2. Now we show how to assemble R1 and R2.

The problem can be classified into the following six cases
according to the types of a and b.

1. The vertices a and b are two points. The relative posi-
tion of R1 and R2 can not be fixed because R1 may ro-
tate around the segment ab assuming that R2 is fixed.
Thus R1

S
R2 is not a rigid body anymore although

structurally well-constrained

2. The vertices a and b are two planes. There is at least
one translation degree of freedom between R1 and R2.
Thus R1

S
R2 is not a rigid body.

3. The vertices a and b are a point and a plane. The
relative position of R1 and R2 can not be fixed be-
cause there is a rotation degree of freedom left. Thus
R1

S
R2 is not a rigid body anymore.

4. The vertices a and b are two lines. If a and b are
parallel, the relative position of R1 and R2 can not be
fixed. If a and b are not parallel, the relative position
of R1 and R2 can be fixed.

5. The vertices a and b are a point and a line. If the
distance between a and b is zero, the relative position
of R1 and R2 can not be fixed. If the distance between
a and b is not zero, the relative position of R1 and R2

can be fixed.

6. The vertices a and b are a plane and a line. When
a and b are parallel, the relative position of R1 and
R2 can not be fixed. If a and b are perpendicular to
each other, the relative position of R1 and R2 can not
be fixed. Let the angle between a and b be ∠(a, b), if
0 < | cos(∠(a, b))| < 1, the relative position of R1 and
R2 can be fixed.

Theorem 5.1. Let {a, b} be the separating pair in a bi-
connected graph G in 3D, R1 and R2 the split subgraphs of
G which are two rigid bodies. Then R is a rigid body if and
only if {a, b} are of the following three cases: a point and a
line which are not incident; a plane and a line which are not
parallel, perpendicular or incident to each other; two lines
which are not parallel to each other.

The problem in Fig. 3(a) is the double banana problem,
where the weight of each vertex is 3 and the weight of each
edge is 1. {p1, p5} is a separating pair. G1 induced by
{p1, p2, p3, p4, p5} and G2 induced by {p1, p5, p6, p7, p8} are
structurally well-constrained. But the cut graph induced
by {p1, p5} is not structurally well-constrained. According
to Theorem 5.1, G is not a rigid body if G1 and G2 are
rigid bodies. For a recent work to characterize such ill-
conditioned problems, please consult [12].

P1

P2

P3

P4

P5

P6

P7

P8

P1

P2

P3

P4

P5

P1

P5

P6

P7

P8

(a) (b) (c)

Figure 3: Double banana problem

5.2 Merge tri-connected constraint graphs
Let Vs = {a, b, c} be the separating triplet of G = (V, E, ω),

Gs = (Vs, Es, ω) the subgraph induced by Vs, G1 and G2 the
split graphs which are rigid bodies. We will try to assemble
R1 and R2. The problem can be classified into the following
ten cases according to the types of a, b and c.

1. The vertices a, b and c are three non-collinear points.
The relative position of R1 and R2 can be fixed and
R1

S
R2 is a rigid body.

2. a, b and c are three planes. If two of them are parallel,
the relative position of R1 and R2 can not be fixed. If
the three planes intersect with each other and the three
intersection lines are parallel, the relative position of
R1 and R2 can not be fixed. Otherwise the relative
position of R1 and R2 can be fixed.

3. The vertices a, b and c are three lines. If the three
lines are parallel to each other, the relative position of
R1 and R2 can not be fixed. Otherwise the relative
position of R1 and R2 can be fixed.

4. The vertices a and b are two points and c is a plane.
The relative position of R1 and R2 can be fixed.

5. The vertices a and b are two points and c is a line.
If both the two points are on the line, the relative
position of R1 and R2 can not be fixed. Otherwise the
relative position of R1 and R2 can be fixed.

6. The vertex a is a point, b and c are two planes. The
relative position of R1 and R2 can be fixed.

7. The vertex a is a point, b and c are two lines. The
relative position of R1 and R2 can be fixed.

8. a and b are two planes and c is a line. If a ‖ b and the
line is perpendicular to the planes, the relative position
of R1 and R2 can not be fixed. If the line is parallel
to the two planes, the relative position of R1 and R2

can not be fixed. Otherwise the relative position of R1

and R2 can be fixed.

9. The vertices a and b are two lines and c is a plane. If
the two lines are parallel and on the plane, the relative
position of R1 and R2 can not be fixed. Otherwise the
relative position of R1 and R2 can be fixed.

10. Vertex a is a point, b is a plane, and c is a line. If a is
on c and c is perpendicular to b, the relative position
of R1 and R2 can not be fixed. Otherwise, the relative
position of R1 and R2 can be fixed.

For k-connected graph (k > 3), we can always select three
geometric primitives in the separating k-tuple to merge the
two rigid bodies with the three primitives.

6. REFERENCES
[1] I. Fudos and C.M. Hoffmann, A Graph-constructive

Approach to Solving Systems of Geometric
Constraints, ACM Transactions on Graphics, 16(2),
179-216, 1997.

[2] X.S. Gao and G.F. Zhang, Geometric Constraint
Solving via C-tree Decomposition, Proc.ACM SM03,
45-55, ACM Press, New York, 2003.

[3] J.E. Hopcroft and R.E. Tarjan, Dividing a Graph into
Triconnected Components, SIAM J. Comput. 135-158,
1973.

[4] C.M. Hoffmann, A. Lomonosov and M. Sitharam,
Decomposition Plans for Geometric Constraint
Systems, II: New Algorithms, 31, 409-427, J. of
Symbolic Computation, 2001.

[5] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta and J.
Vilaplan-Pastó, Revisiting Decomposition Analysis of
Geometric Constraint Graphs, Proc. ACM SM02,
105-115, ACM Press, New York, 2002.

[6] D. Jungnickel, Graphs, Graphen, Netzwerke, und
Algorithmen, Springer, Berlin, 1999.

[7] A. Kanevsky and V. Ramachandran, Improved
Algorothms for Graph Four-connectivity, Proc. 28th
Ann. IEEE Symp. Foundations of Computer Science,
Los Angeles, 252-259, 1987.

[8] H. Lamure and D. Michelucci, Qualitative Study of
Geometric Constraints, in Geometric Constraint
Solving and Applications, 234-258, Springer, Berlin,
1998.

[9] R.S. Latham and A.E. Middleditch, Connectivity
Analysis: a Tool for Processing Geometric
Constraints, Computer-Aided Design, 28(11), 917-928,
1994.

[10] J. Van Leeuwen, Handbook of Theoretical Computer
Science(Volume A): Algorithms and Complexity,
Elsevier Science Publishers B.V. 1990.

[11] J. Owen, Algebraic Solution for Geometry from
Dimensional Constraints, in ACM Symp., Found of
Solid Modeling, ACM Press, New York, 397-407, 1991.

[12] M. Sitharam and Y. Zhou, A Tractable, Approximate
Characterization of Combinatorial Rigidity in 3D,
Automated Deduction in Geometry, ADG 2004,
September, 2004Florida University.

[13] G.F. Zhang and X.S. Gao, Geometric Constraint
Solving Based on Connectivity of Graph,
Computer-Aided Design and Applications, 1(1-4),
469-476.

