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In the past 20 years highly successful methods for geometry theorem proving
and discovering have been developed. This chapter gives a brief account of these
successful methods. We will use elementary and understandable examples to show
the essence of the techniques, letting the reader consult the related references for
more detailed issues underlying these techniques.

1. A history review of automated reasoning in geometry

Generally, there are two approaches to proving geometry theorems using computers:
the artificial intelligence (AI) approach and the algebraic computation approach.
The earliest work in geometry theorem proving by computer programs was done by
Gelernter and his collaborators [Gelernter 1959]. It was based on the human sim-
ulation approach and has been considered a landmark in the AI area for its time.
Wos and his collaborators used their powerful general-purpose resolution theorem
prover to experiment with proving theorems in Tarski’s axioms for elementary ge-
ometry [McCharen, Overbeek and Wos 1976]. In spite of the success and significant
improvements [Gilmore 1970, Nevins 1976, Coelho and Perceira 1986, Koedinger
and Anderson 1990, Quaife 1989, Balbiani and del Cerro 1995] with these methods,
the results did not lead to the development of a powerful geometry theorem prover.

In the area of algebraic computation approach, the earliest work dates back to
Hilbert. In his classic book [Hilbert 1971], Hilbert outlined a decision method for
a class of constructive geometry statements in affine geometry. As Tarski pointed
out, Hilbert’s result “is closely connected with the decision method for elementary
geometry, but has a rather restricted character”.

In 1951, Tarski published a decision method for the theory of real closed fields,
thus giving a decision method for what he called elementary geometry [Tarski 1951].
In spite of subsequent improvements by Seidenberg [Seidenberg 1954] and others,
for years variations of Tarski’s method remained impractical for proving non-trivial
theorems in geometry. In 1974, Collins made an important, contribution along the
Tarski line [Collins 1975]. His cylindrical algebraic decomposition (CAD) algorithm
is currently the best general algorithm of Tarski type. This method was implemented
by Arnon, and several difficult algebra-geometry related problems were solved by
Arnon’s program [Arnon and Mignotte 1988, Arnon 1988]. Another major practical
improvement of Collins’ method has been made in [Collins and Hong 1991].

Practically, Davis appears to be the first to explore the algebraic approach to
proving geometry theorems using the computer [Davis and Cerutti 1969]. His ap-
proach for the computer proof of Pappus’ theorem is essentially the one described
by Hilbert, but he did not provide a unifying mechanical way to do it.

A breakthrough in automated geometry theorem proving (AGTP) is made by Wu.
Restricting himself to a class of geometry statements of equality type, Wu introduced
a method in 1977 which can be used to prove quite difficult geometry theorems
efficiently [Wu 1978]. Wu’s work became known outside China mainly through the
papers [Wu 1984¢, Chou 1984], and the fact that over 130 theorems were proved by
the method in [Chou 1984] was quite encouraging. Ko and Hussain [Ko and Hussain
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1985], Wang and Hu [Wang and Hu 1987, Wang and Gao 1987], Gao [Gao 1990],
Kapur and Wan [Kapur and Wan 1990] also succeeded in implementing theorem
provers based on various modified version of Wu’s method. Later it was clarified
[Wu 1984a] that the algebraic tools needed in Wu’s approach can be developed from
Ritt’s work in [Ritt 1950]. The algebraic aspect of this approach is now known as
the Wu-Ritt’s characteristic set (CS) method. It is now the case that hundreds of
theorems in Euclidean and non-Euclidean geometries can be proved automatically
by computer programs with Wu’s method.

The success of Wu’s method has revived interest in proving geometry theo-
rems by computers. In particular, the application of the Grobner basis (GB)
method [Buchberger 1985] to the same class of geometry theorems that Wu'’s
method addresses has been investigated. In 1985-1986, three groups ([Chou and
Schelter 1986, Kapur 1986, Kutzler and Stifter 1986]) reported practical successes.
A recent tutorial on the Grobner basis method can be found in [Wang 1998b].
Other successful elimination methods for automated geometry theorem proving
(AGTP) include the resultant approach [Yang, Zhang and Hou 1992], the gcd com-
putation approach [Kalkbrener 1995], the numerical example checking approach
[Hong 1986, Zhang, Yang and Deng 1990, Wang 1988], the Brauer-Seidenberg-Wang
approach [Wang 1995b] and the Dixon resultant approach [Kapur 1997].

Here we would like to remind the reader that Wu’s method and the GB method
can only deal with theorems involving equalities, but not inequalities. Theoretically,
Collins’ method can prove (or disprove) any elementary sentences in the Tarski
geometry. Many researchers focused on developing more efficient algorithms for
special classes of problems involving inequalities. Wu proposed a method to find the
maximal or minimal values for a polynomial (pol) function under certain conditions
using the CS method and the Lagrangian multiplier method [Wu 1992a]. The work
in [McPhee, Chou and Gao 1994] is based on a combination of Wu’s method and
the CAD method. The work in [Dolzmann, Sturm and Weispfenning 1996] is based
on quantifier elimination methods for equations with low degrees. Recently, Yang et
al proposed the complete discriminant theory which is quite efficient in finding real
roots classifications for univariate pol equations [Yang, Zhang and Hou 1996]. Yang
also developed an inequality prover which has been used to prove more than one
thousand interesting geometric inequalities including many new ones [Yang 1998].

At the same time, automated derivation of geometric locus equations and other
geometric formulas was investigated [Wu 19864, Wang and Gao 1987, Chou 1987,
Chou and Gao 1990a, Wang 1991, Wang 1995¢]. About 120 problems in geometry
were solved in [Chou and Gao 1989]. Dixon resultant computation is used to de-
rive geometric formulas in [Kapur, Saxena and Yang 1994]. Formula derivation is
actually to find the manifold solutions of equation systems.

The above work is concerned with elementary geometries in Wu’s sense, i.e.,
geometries in which no differentiation is involved. The CS method is also applica-
ble to differential pols [Ritt 1938]. In [Wu 1979], Wu extended the CS method to
prove theorems in differential geometry. Extensive computer experiments with this
method for the theory of space curves were done in [Wu 1987¢, Chou and Gao 1991].
The results are encouraging, and nearly one hundred non-trivial theorems in space
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curve theory have been proved [Chou and Gao 1991]. In [Li 1995b], Wu’s method
was used to prove theorems of space surfaces. In [Ferro and Gallo 1990, Ferro
and Gallo 1994], new methods for proving theorems in differential geometry based
on the computation of the dimensions of zero sets were proposed. In [Wang 19950],
Brauer-Seidenberg’s elimination theory is modified to prove theorems in space curve
theory [Wang 1995b]. In [Li and Cheng 1998], a method based on vector calcula-
tion for AGTP in differential geometry is proposed, which is capable of producing
proofs like those in the textbooks. There have also been several successful appli-
cations of the CS method to mechanics [Wu 1987b, Chou and Gao 19935, Chou
and Gao 1993¢]; notably, automated proofs of Newton’s laws from Kepler’s laws
were given. Computer experiments in automated formula derivation in differential
geometry and mechanics were also discussed in these pieces of work.

All the above methods have the same character that they first transform geo-
metric properties into equations in coordinates of the related points and then deal
with these equations. The search for a vector based method for AGTP began in the
mid-eighties, because it is believed that such a method would produce more elegant
proofs. In the early-nineties, several successful vector approaches were proposed:
the area method [Chou, Gao and Zhang 1993a], the vector method for constructive
statements [Chou, Gao and Zhang 1993b], the Groébner basis method [Stifter 1993],
the bracket algebra method [Richter-Gebert 1995] and the Clifford algebra method
[Li and Cheng 1996, Fevre and Wang 1997, Wang 1998a]. Experiments show that
proofs produced by these methods are generally short than those given by the coor-
dinate methods. Of these methods, the area method uses pure geometric invariants,
such as area, ratio of segments, Pythagorean difference, etc. The main advantage of
this method is that each step of the generated proof has clear geometric meanings.
The computer program based on the area method has produced proofs of more
than 500 geometry theorems, some of which are even shorter than those given by
geometry experts.

More recently, the AT approach has been revived to such an extent that it can
solve hundreds of difficult geometry problems and produce multiple and short-
est proofs for geometry theorems efficiently [Chou, Gao and Zhang 19964, Chou,
Gao and Zhang 1996¢]. The AI approach is also used for automated generation
of construction steps of geometric diagrams and successfully applied to many dif-
ficult geometric construction problems (e.g., the Appolonius Problem) [Gao and
Chou 19984].

Methods of automated reasoning in geometry have a wide range of applications,
including kinetic analysis of robotics [Wu 19895, Huang and Wu 1992, Kapur 1997,
Yang, Fu and Zheng 1997], linkage design [Gao, Zhu and Huang 1998a], computer
vision [Kapur and Mundy 1988, Gao and Cheng 1998, Wang 19984, Bondyfalat,
Mourrain and Papadopoulo 1999], intelligent CAD [Gao and Chou 19984, Gao and
Chou 1998%], intelligent CAI (computer aided instruction) [Gao, Zhu and Huang
1998b, Li and Zhang 1998], solid modeling [Wu 1993, Kapur 1997], etc. Several
pieces of software originaed from this field have been published [Gao, Zhang and
Chou 1998, Li and Zhang 1998, Richter-Gebert and Kortenkamp 1999].

Finally, we want to say that although we hope to cover all the work in the subject,
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some existing work might be missed. Also, the reader may consult previous surveys
on the similar subject [Wu 19925, Buchberger, Collins and Kutzler 1995, Wang
19965, Kapur 1997]. In particular, a report on AGTP provers can be found in
[Hong, Wang and Winkler 1995].

The rest of this review is divided into four sections. Section 2 is a review of the
algebraic approaches to AGTP. Section 3 is a review of coordinate free approaches
to AGTP. Section 4 is a review of AT approaches to AGTP. Section 5 is a summary
of this paper.

2. Algebraic approaches to automated reasoning in geometry
2.1. Proving theorems in elementary geometries

This is the most developed and successful area using the characteristic set (CS),
the Grobner basis (GB), and other elimination methods. Roughly speaking, the
methods can address those geometry statements of equality type, for which, in their
algebraic form, the hypotheses can be expressed by a set (conjunction) of equations

Pi(yr, -+, ym) =0
ha(yr, -+, ym) =0
(2.1) e
hr(yh T 7ym) =0,
and the conclusion is also a pol equation c(y1,---,¥m) = 0, where the h’s and ¢
are pols with coefficients in a base field K. Usually, we assume, K = Q, the field of
rational numbers. Thus the algebraic form of the geometry statement would be

Vy[(hi =0A---Ah, =0) = c=0].

However, such formulas are usually not valid because most geometry statements are
only valid under some non-degenerate (ndg) conditions. Let us look at two concrete
examples to see the real situations.

2.1.1. Two examples and the simple version of Wu’s method
2.1. ExaMPLE. Let ABCD be a parallelogram, and E the intersection of the two
diagonals AC' and BD. Show that AE = CE (Fig. 1).
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Fig. 1 Fig. 2

The first step is to assign coordinates to the points, and then translate the hy-
potheses and conclusion of the statement into pol equations.

We can choose point A as the origin, and line AB as the z—axis of the coordinate
system: A = (0,0), B = (u1,0). We can assign the coordinates to point C' = (us, uz).
Since points A, B, and C' can be arbitrarily chosen, their non-zero coordinates are
independent variables or parameters, denoted by u’s. Once these three points are
fixed, the other points D and E are determined; their coordinates are dependent
variables, denoted by z’s. Let E = (z2, 1), D = (x4, %3).

Once we have the coordinate, the conversion of the hypotheses and conclusion
to their algebraic forms is straightforward. Thus we have the following equations
corresponding to the hypotheses:

h1 =U1T1 —ULU2 = 0 DC || AB
hQ = ULy — (U,3 — ul)wl =0 DA || BC
(22) h3 = U2T4 — U3T3 = 0 E is on AC
hy = x124 — (X2 —up)x3 —uszy =0 E ison BD.

The conclusion AE = C'E can be expressed by ¢ = 2% + x3 — [(z4 — u3)? + (23 —
us)?] = 2uzwy + 2uzwy —ul —ud = 0.
Thus the tentative algebraic form of the parallelogram theorem would be

Vuw[(hl:0/\h2:0/\h3:0/\h4:0):>c:0].

The above formula is “almost” correct except for a ndg condition: it is not valid
when A, B, and C are collinear.

A nice feature of Wu’s method is that ndg conditions sufficient for a geometry
statement to be valid can be generated automatically during the proof process. The
basic operation of the method is pseudo division.

Pseudo Division. Let

g=any" + - +ary +ao (an #0)
f:bkyk+---+b1y+b0 (bk#O/\k?>0)

be two pols in the variable y, where the coeflicients a;, b; are in Qvy,---,v4],
y ¢ {vi,---,vq}. Here a,, (or b;) and n (or k) are called the leading coefficient and
leading degree of g (or f) in the variable y and denoted by le¢(g,y) and ld(g,y) (or
le(f,y) and ld(f,y)), respectively. We want to divide g by f in the variable y. If by,
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is 1, then we use long division from high schools; otherwise we use pseudo division.
For our purpose, all we really care about is the pseudo remainder r, denoted by
r = prem(g, f,y), which verifies the following remainder formula:

(2.3) bi-g=q-f+r, ld(r,y) <k,

where s (< n — k + 1) is a non-negative integer.

The first step is to transform the set of hypotheses into a triangular set, where
each equation introduces only one new dependent variable. Let us look at (2.2);
hy introduces x; and hy introduces xs; so far so good. But hg introduces two new
dependent variables z3 and x4 at the same time; thus (2.2) is not in triangular
form. However, it is easy to transform it into a triangular set by letting f; = hq,
fo = ha, f3 = prem(hq, hs,x4), fs = ha. Then fi,---, f4 is a triangular set or an
ascending chain ASC:!

f1 =U1Tr1 — ULU2 = 0
fo=usxy — (uz —uy)r; =0

(24) f3 = (—UQZ’Q + uzxr; + U1U2)£L’3 — U1U2T1 = 0
fi=x124 — (X2 —uy)x3 —usz; =0.

Now we can perform the key step of the method: the successive (pseudo) division
of ¢, the conclusion pol, with respect to that triangular set, i.e.,

Ry = prem(c, f1,24) = (2uzxa + 2uazy — 2ugus)ws — (ul — 2ujug + ui)z;

R3 = prem(Ry, f3,73) = (ugul + ud)z120 — (Ui — 2uqud + vdus — 2ugud)z? —
(urugu3 + uyud)z;

Ry = prem(R3, fa, x2) = (urtuau + uiu3)a? — (urudul + uiul)r

Ry = prem(Ra, f1,21) = 0.

The last remainder Ry is denoted by prem(c; f1,- -, fa) or prem(c; ASC). In this
particular case it turns out to be zero by computation. That means we have proved
the theorem. To see this, first we always have the following remainder formula
when doing a pseudo successive division of any pol g with respect to a triangular
set ASC = fi,--, fp,

(2.5) I Lrg=Qi1fi+- -+ Qpfy + Ri.

Here the Ij, are leading coefficients of the f; and s, > 0 (k = 1,---,p); Ry =
prem(c; ASC) is the final remainder. In this case, p = 4 and the I}, are

[1 = U1
[2 = U3
I3 = —usxs + uswy + urus
I4 = 2.
Since Ry =0 and fi, =0 (k =1,---,4) by the hypotheses, the right side of (2.5)
is zero. Thus the conclusion pol must be zero if we assume all I, #0 (k =1,---,4).

I, # 0 are usually connected with non-degeneracy. Thus the last step is the
analysis of subsidiary conditions I}, # 0. For example, I; # 0 and I # 0 mean that

IStrictly speaking, there are other restrictions for a triangular set to be an ascending chain
[Wu 1984a).
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points A, B, and C are not collinear; I3 # 0 means that AC and BD have a normal
intersection; I; # 0 means that D is not on line AB.

Before going to the next example, let us summarize this simple version of Wu’s
method [Wu 1978]:

Step 1. Assign coordinates to the points involved, then translate the geomet-
ric hypotheses to a set (conjunction) of pol equations hy = 0,---, h, = 0; also
the conclusion is a pol equation ¢ = 0.

Step 2. Transform the set of hypothesis pols into a triangular set ASC =
fi, -+, fp- Generally, we have a complete triangular algorithm presented and
referred to as Ritt’s principle by Wu [Wu 1984a].

Step 3. Divide the conclusion pol ¢ successively with respect to the triangular
set ASC = fi,.., fp to obtain the final remainder R; = prem(c; ASC). If
Ry = 0, then the statement is confirmed under subsidiary conditions Ij, # 0,
where the Ij, are the leading coefficients of the fj.

Step 4. Analyze the subsidiary conditions I # 0 which are usually connected
with non-degeneracy.

For this simple example, we don not have to use this general schema. We can solve
the dependent variables x1, - - -, x4 successively in terms of the u’s, then substitute
the solutions into the conclusion pol ¢ to see whether it is identical to zero. This
is exactly what Hilbert’s mechanical proof method for constructive affine geometry
statements does. However, Hilbert’s original method does not provide ndg condi-
tions which are important for a geometry statement to be valid. In the general case,
we cannot solve dependent variables explicitly and have to use the above general
schema. The following problem is such an example.

2.2. EXAMPLE (Simson’s Theorem). D is a point on the circumscribed circle of
triangle ABC. From D, perpendiculars are drawn to three sides BC, C A and AB.
Let E, F and G be the three feet. Show that E, F' and G are collinear (Fig. 2).

Step 1. Let A = (0,0), B = (u1,0), C = (uz,u2), O = (z1,22), D = (x3,u4),
E = (xz5,24), F = (w7,26), and G = (w9, xs). We then have a set of hypothesis
equations H:

h1:2U1$1—U%:0 OA:OB
ha = 2usws + 2uzz; —ul —u3 =0 0OA =0C
hs = 22 — 2z123 + u3 — 279u4 = 0 DO =0A
h4 = ULy — (U,3 — U1)$4 —UilUuy = 0 F is on BC
(26) hs = (U,3 — ’U,1).T5 + U2xq — (U3 — U1)£E3 — usuy =0 ED 1 BC
he = usx7 — usxg =0 Fison AC
h7 = usx7 + usxg — U3T3z — Uty = 0 FD 1L AC
hg =uizg =0 G ison AB
hg :U1$9—U11’3:0 GD 1 AB.

The conclusion that E, F', and G are collinear can be expressed by the equation
¢ = (rg — wa)w9 — (w7 — w5)w8 + Tax7 — T5T6 = 0.
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Step 2. Let fy = prem(hs, ha,xs5), fo = prem(hr, hg,x7), fi = h; for i # 4,6. We
thus have a triangular set ASC = fi,---, fo:

f1=2ux — u%
2

fo = 2usxo + 2uzz; — u% — uj

f3 =23 — 2m23 + ul — 23004

f1 = (U2 —2ujuz +ud+u?)ry — (ususz —uiuz) T3 —udug +uiusuz —uiuy
(27) f5 = UTs — (U,3 — U1)$4 — Ur1U2

fo = (U3 + u3)we — usuzrs — uduy

fr = uaw7 — uzwe

fs = uirg

fo =u1mg —uy 3.
Step 3. Now use successive pseudo division to compute the final remainder Ry =
prem(c; ASC) = 0.
Since the final remainder R; is 0, by the remainder formula (2.5), ¢ = 0 follows from
h; = 0 and subsidiary conditions I; # 0, where the I; are the leading coefficients of
the fz

Step 4. Analysis of subsidiary conditions I, # 0. Here the non-zeroness of I, I, Ig,
and Iy mean that A, B, and C are not collinear. I7 # 0 and I5 # 0 are not necessary
by a more careful analysis (Section 2.1.4). The role of the conditions I, # 0 and
Is # 0 is very subtle, and they are necessary when using Wu’s method or the GB
method. See Example 2.3 below.

2.1.2. Geometry statements of constructive type

This simple use of Wu’s method is powerful enough to prove hundreds of nontrivial
geometry statements. But its application is restrictive. First, the ndg conditions
I; # 0 depend on the choices of the coordinates and this may cause problems. For
instance, we may “prove” the 83 configuration problem using this method, which
is actually invalid [Chou, Gao and Mcphee 1989]. Secondly, I; # 0 are in algebraic
form and there is no general method to transform these conditions into geometric
form.

The great success of Wu’s method is closely connected to some special ge-
ometry statements: the class of constructive statements [Wu 19844, Wang and
Hu 1987, Chou and Gao 1992]. Actually, the statements considered by Hilbert
are constructive ones, but it has a rather restricted character: they are about those
configurations formed by straight lines in a constructive way. Hilbert’s method was
clarified and revitalized by Wu [Wu 1982b], and extended later by Wang and Hu
[Wang and Hu 1987] for a wider domain of application. In [Chou 1984, Chou and
Gao 1992], a class of constructive geometry statements (henceforth referred to as
Class C) is considered. Class C is actually the statements about the configurations
which can be drawn by rulers and compasses. For instance, Examples 2.1 and 2.2
are in this class. About 85 percent of the 512 theorems in [Chou 1988] belong to
this class.

The basic method introduced in Section 2.1.2 can be developed into a complete
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method for constructive statements. For a constructive statement, point coordi-
nates can be chosen automatically and coordinate-independent ndg conditions in
geometric form can be generated. Furthermore, these ndg conditions are sufficient,
i.e., a geometry statement is true in a complex geometry iff it is true under these
ndg conditions [Chou and Gao 1992]. For geometry statements of constructive type,
since new points are introduced one by one, the new dependent variables are intro-
duced at most two by two. Therefore their corresponding algebraic problems are
easier to solve than the algebraic problems corresponding to the general geometry
problems.

More properties of constructive statements can be found in [Chou and Gao 1992].
In [Chou and Gao 1993e¢], most of the results about constructive statements have
been extended to solid and Riemannian geometries.

2.1.3. Formulation problem

The above way of proving theorems is not the one adopted by most provers based on
the logic approach. We start with a set of hypotheses which do not necessarily imply
the conclusion and end up with the confirmation of the conclusion by adding some
subsidiary conditions. Would it be possible that the original geometry statement is
substantially weakened or changed? To answer this question we need to address the
formulation problem — in what sense do we prove geometry theorems? Generally,
for a geometry statement, the equality part of the hypotheses (i.e., H = {hy =
0,---,h,. = 0}) is easy to identify. However, the inequation part of the hypotheses,
which is usually connected with non-degeneracy, is not so simple to identify. For a
given geometry statement, a ndg condition that is obvious to one person might not
be obvious to a second, and a third person might refuse to accept the condition as
relevant or appropriate. The key issue here is how to understand and handle these
ndg conditions.

Generally, for a geometric configuration defined by a set of equations

H= {hl(ylv"'vym) :07"'>h7“(y17"'7ym) :0}7

we want to decide whether an assertion ¢(y1, -, ym) = 0 on this configuration is
valid. We define the notation

Zero(hla"'vhr) :{(yh:ym) S |hz(y17)ym) =0fori = ].,"',T},

where E is an extension of the base field Q; usually, E = C (the field of complex
numbers; later we will discuss the case when E = R, the field of really numbers).
As we know the formula Yy € E[H = ¢ = 0], or equivalently

Zero(H) C Zero(c)

is usually not valid because of missing ndg conditions.

It is now accepted by most researchers that there are two different but related
formulations for dealing with ndg conditions [Chou and Yang 1989, Kapur 1997].
Formulation F1. Identify some variables among yi,- -+, y,, as parameters, then
decide whether the conclusion ¢ = 0 follows from the hypothesis H generically with
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respect to those parameters. The zeros of the hypothesis pols can be decomposed
into irreducible components as follows:

Zero(H) = Vi U---VyuViee y ..y ydeee,

where Vi*,---, V[ are all those components on which the selected parameters are
exactly those algebraically independent variables, corresponding to ndg cases; the
others correspond to degenerate cases. If the conclusion is valid in all ndg cases,
then we say the statement is generically true. If it is valid on none of the ndg cases,
then it is generically false.

The concept of generically true was proposed by Wu [Wu 1984a]. The above de-
scription was given in [Chou 1988].

Formulation F2. Explicitly specify the ndg condition D = {d; #0,---,d, # 0}
as a part of the hypotheses. Then the aim is to decide whether the statement

(2.8) Yy[(HAD) = c=0]

is valid without adding any additional conditions.

Formulation F2 was proposed by Kapur using GB approach [Kapur 1988] and was
adopted in [Chou and Gao 1990, Kapur and Wan 1990, Ko 1988, Wang 1996aq]
using the CS approach.

In [Wang 1995¢, Winkler 1990, Winkler 1992], other formulations are proposed.
F1 can help to find the missing ndg conditions. Furthermore, it addresses the nature
of the statement: if a statement is proved to be generically false, it cannot be a theo-
rem no matter how many reasonable additional ndg conditions are added. However,
ndg conditions are usually in algebraic form and the currently used methods based
on F1 usually generate ndg conditions more than needed. On the other hand, F2 is
easier to understand. The geometry statement is exactly specified, and the user can
select ndg conditions he/she thinks suitable. However, if the statement is proved
to be false, we don’t know the nature of the statement: whether it is generically
false or the proof failed due to missing ndg conditions. The ndg conditions are often
implicit in a statement in geometry textbooks and identifying them is sometimes
very hard and subtle, even in Euclidean geometry.

Now we come to the question why E was chosen to be C, the field of complex
numbers, instead of R, the field of real numbers. First, we emphasize that if the CS
or GB method confirms a geometry statement according to either F1 or F2, then
it is valid in all fields, including R. However, if the statement is disproved by one
of the two methods, then it is not valid in C, but may be valid in R. In axiomatic
geometry, there are several systems of axioms. There is a system of axioms for
unordered metric geometry which involves the relations incidence, perpendicularity,
segment congruence, and angle congruence; C* (or R?) is a model for the theory
of this metric geometry [Wu 1984b]. If we want to decide whether a geometry
statement (with universal quantifiers outside) is a logical consequence of the theory
of metric geometry, then the CS and GB methods are complete, i.e., they are a
decision procedure for such a theory.
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2.3. EXAMPLE (Simson’s theorem continued). Suppose that the only ndg condition
is “A, B, and C are not collinear”, i.e., d; = ujus # 0 for Simson’s theorem. Then
we ask (according to F2) whether the statement is a logical consequence of the
theory of metric geometry, or equivalently, in its algebraic form, whether

Yux € C[(H ANdy #0) = ¢ = 0]

is valid. Then the CS or GB method proves it is not the case. That means the
statement, as it is, is not a theorem (logical consequence) in the theory of metric
geometry. Or putting it another way, the statement cannot be proved without using
azioms of order. However, if we add another ndg condition that “the three sides of
the triangle are non-isotropic (with non-zero the length)”, the statement is true as
verified by both methods. In Euclidean geometry, isotropic lines do not exist, thus
Simson’s theorem is proved by the CS or GB method under the sole ndg condition
that A, B and C are not collinear.

2.1.4. The CS and GB methods

From the above discussion, we have four approaches: CS(F1), CS(F2), GB(F1),
and GB(F2). According to Kapur, one can use direct or refutational approaches
[Kapur 1997]. Thus altogether there are possibly 4 x 2 = 8 approaches. Here we cite
the presentations for those approaches: for CS(F1), see [Wu 19844, Chou 1988]; for
CS(F2), see [Ko 1988, Chou and Gao 1990b, Kapur and Wan 1990, Wang 1995¢];
for GB(F1), see [Chou and Schelter 1986, Kutzler and Stifter 1986, Chou 1988,
Wang 1998b]; for GB(F2), see [Chou and Schelter 1986, Kapur 1988, Chou 1988,
Kapur 1986, Wang 19985]. We now briefly present a representative of each of the
four approaches.

CS(F1). The method we just used for the two examples in Section 2.1.2 is actually
based on Formulation F1. In both examples, the triangular sets ASC' are irreducible
and represent the only ndg component, V;*, and prem(c; ASC) = 0 means that ¢ =0
is valid on V¥, i.e., the statements are generically true.

CS(F2). Let S and G be two pol sets. Denote Zero(S/G) the set difference
Zero(S) — Uyeq Zero(d). Thus according to F2, the goal is to prove (2.8), i.e.,
to prove

Zero(H/D) C Zero(c),

where H = {hy = 0,---,h, =0} and D = {dy # 0,---,d; # 0} are the equality
part and the inequation part of the hypotheses, respectively.
Using Wu-Ritt’s decomposition algorithm [Wu 19844,

Zero(H/D) = | J Zero(PD(ASC;)/D)

1<i<k
where the ASC; are irreducible ascending chains;

PD(ASC) ={g | prem(g, ASC) = 0}.
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To decide whether the statement is true or not (in C), we only need to verify
whether prem(c; ASC;) = 0 for all i. If we chose D = {ujus # 0} for the paral-
lelogram example and D to be the same as in Example 2.3 for Simson’s theorem,
then £ = 1, and ASC} are just the triangular sets ASC in (2.4) and (2.7). Since
prem(c; ASCy) = 0 in both examples (Step 3: successive division), they have been
confirmed under the specified ndg conditions without adding any other conditions.
GB(F1). The conclusion ¢ = 0 follows from the hypotheses hy = 0,---,h, = 0
generically iff there is a non—zero pol U containing only the parameters such that
U - ¢ € Radical(hy,---,h,). This is in turn equivalent to ¢ being in the radical
generated by hq,---, h, in the ring Q(u)[z], where the u are parameters, and the x
are the dependent variables. This is equivalent to a Grébner basis of hy, - - -, by, cz—1
in Q(u)[z] containing 1, where z is a new variable. This is the case for Simson’s
theorem as confirmed by a computer program based on this approach, and the pol
U was also found during computing the GB. Thus under U # 0, (H = ¢ = 0).
It is generically hard to interpret the geometric meaning of U # 0 automatically.
However, for a constructive statement, if (H = ¢ = 0) is confirmed to be generically
true, then (H = ¢ = 0) is valid under the geometric ndg conditions generated by
the algorithm in [Chou and Gao 1992]. Based on this theorem, Simson’s theorem
has been proved by GB(F1) under the ndg conditions that the three vertices are
not, collinear and the three sides are non-isotropic.

GB(F2). First we observe that in any field, d # 0 iff 32(2d — 1 = 0). Thus (2.8) is
equivalent to

Vy[3zy - zg(H ANdyzy —1=0A---ANdyzy — 1 =0) = ¢ =0],
which is in turn equivalent (because c is free of z;) to
Vyzy - zg[(HANdizg —1=0A---Adgzg —1=0) = c=0].

In algebraically closed fields, the above formula is equivalent to whether H' =
{h1,--+ hp,dyz1 —1,---,dgzy — 1, zc — 1} generates the unit ideal, where the z are
new variables. Thus the method is to compute a Grobner basis of H' to see whether
it contains 1. It is the case as confirmed by computers for the two examples. The
use of new variables z; and z was first introduced by Rabinowitsch in connection
with a proof of Hilbert’s Nullstellensatz. It has been used extensively in computer
algebra, e.g., in [Gianni, Trager and Zacharias 1988]. In geometry theorem proving,
it was first used in [Chou and Schelter 1986, Kapur 1986].

A large number of geometric problems are solved by programs based on these
methods [Chou 1988, Wang and Gao 1987, Kutzler and Stifter 1986, Kapur 1986].
In [Chou 1988], extensive experiments were carried out for methods CS(F1), CS(F2)
and GB(F1) using 512 geometric problems. It is the case that most of the theorems
can be proved within seconds, and for most of the theorems ndg conditions in
geometric form could be generated.

A typical example is Morley’s trisector theorem [Wu 1984a, Chou 1988, Wang
1998b, Wang and Zhi 1998]: “The points of intersection of the adjacent trisectors
of the angles of any triangle are the vertices of an equilateral triangle (Fig. 3).”
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CS(F1) and GB(F1) confirmed it to be generically true, but with ndg conditions
in algebraic form. This theorem has been proved under the ndg conditions that the
three vertices are not collinear and the three sides are non-isotropic using CS(F2).

Fig. 3

The key factor to speed up the proving process is to have efficient implementations
for the CS and GB methods. Many modifications of the original CS and GB methods
are proposed for this purpose [Chou and Gao 19905, Kapur and Wan 1990, Wang
19954]. In particular, factorization of pols is proved to be quite important to enhance
the speed for both CS [Chou and Gao 19905] and GB methods [Wang 1998b]. For the
CS method, factorization over extended field is a necessity. In [Wang 19964, Wang
and Zhi 1998], a new method of pol factorization is proposed and used to AGTP.
The CS and GB methods are also used to solve the reducibility problems [Wu 1986,
to prove theorems in finite geometries [Lin and Liu 1992], to give transformation
theorems of Cayley-Klein geometries [Chou and Ko 1986, Gao and Wang 1995], to
prove theorems with complex numbers [Stokes 1990], to analysis robotics [Huang
and Wu 1992, Wu 19895, Kapur 1997, Yang et al. 1997], to design linkages [Wu
19894, Gao, Zhu and Huang 1998a], to solve problems from computer vision [Kapur
and Mundy 1988, Gao and Cheng 1998, Wang 19984, Bondyfalat et al. 1999], to
design intelligent CAD systems [Gao and Chou 1998a, Gao and Chou 19985], to
design intelligent CAI (computer aided instruction) systems [Gao, Zhu and Huang
1998b, Li and Zhang 1998], to solve problems from solid modeling [Wu 1993, Kapur
1997], etc. For details, please consult these references.

2.1.5. Other elimination methods and AGTP

Theoretically, any elimination method could be used to prove geometry theorems
according to the two approaches. We singled out the CS and GB methods in the
preceding section because they are the most extensively studied ones. In this section,
we will give a brief introduction to other methods.

Wu’s complete method needs pol factorization over algebraic extension fields which
is a costly operation. In [Zhang et al. 1990], a complete method without using
pol factorization was proposed. The method works as follows. Let g be a pol and
fi,---, fr be a triangular set of pols. We define the resultant of g wrt fi, -, f-
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inductively as

TeSl(g; fl; T fr) = TeSl(TeSUltant(g; fr: lv(fr))a fl: ) frfl)

where [v(f,) is the leading variable of f,. It is known that if prem(g, f1,---, f-) =0
then g = 0 follows from f; =0,---, f, = 0 generically and if resl(g, f1,---, fr) 0
then g = 0 cannot be deduced from f1, - - -, f,.. Otherwise, we have prem(g, f1,- -, fr)
# 0 and resl(g, fi, -, fr) = 0. In this case fi,---, f. must be reducible and
the factors can be found in the computation procedure of the resultant. Re-
peating the above procedure, finally fi,---, f. can be factorized into ascending
chains ASC},---, ASC; such that for each ASC;, either prem(g, ASC;) = 0 or
resl(g, ASC;) # 0, i.e., g = 0 is either generically true or generically false. Similar
algorithms based on ged computation were given in [Kalkbrener 1995].

The elimination in the CS method is bottom-up, i.e., eliminating the variables
in an increasing order. A top-down elimination method was developed by Brauer
in algebraic case [Brauer 1948] and extended to differential case by Seidenberg
[Seidenberg 1955]. Recently, Wang showed that this technique can be used to give
a zero decomposition of Wu-Ritt type and the efficiency of the method is quite
good [Wang 1995b]. He also used this method to prove theorems in elementary and
differential geometries. We now introduce the key idea of this elimination method.
Let

(2.9) P=0,-,P,=0,D#0

be a pol equation system in variables x1, - - -, x,. Suppose that all of them involves
z, and P; has the lowest degree in z,,. Let P, = I a:;il + U where U is of lower degree
than d in z,. Then (2.9) is equivalent to

I=0,U=0,P,=0,--,P, =0,D#0

and

Pi=0,Ry=0---,R,=0,ID#0

where R; = prem/(P;, Py). Continue the above process, we can eliminate all variables
and obtain a series of triangular sets. Both the direct approach and the refutational
approach can be used to prove theorems with this method.

Both the CS and the GB methods eliminate variables one by one. In [Kapur et al.
1994], the concept of the Dixon resultant was extended to give an efficient method
to eliminate multiple variables simultaneously. The Dixon resultant was used to
prove geometry theorems using both direct and refutational approaches according
to two formulations [Kapur and Saxena 1995, Kapur 1997]. We now give a brief
introduction to the Dixon resultant method. Let Py, - - -, P41 be pols in n variables
1, -+, T, with coefficients as pols in parameters uy, - - -, ur. Let Z, - - -, T, be n new
variables. The Cancellation matriz of P; is defined to be the following matrix:
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Pl(ml,"‘,mn) Pn+1(551,"‘,55n)

Pl(i.la"'amn) P Pn—l—l(il:"':mn)
Cp =

Pl(jl’...,jn) Pn+1(j1’...’jn)

Since for all 1 < i < n, z; — Z; is a zero of Cp, [[\, (z; — Z;) divides |C}|. The
Dizon pol of P; is defined as

|Cp]|
H?:1(mi - Z;)

The main property of the Dixon resultant is that p = 0 is a necessary condition
for P, = 0,-++, P41 = 0 to have zeros. It often happens that |Cp| = 0 and we
cannot get any information. In [Kapur et al. 1994], a method of rank submatrix
construction is proposed to solve this problem. The details of the method and its
application to AGTP can be found in [Kapur et al. 1994, Kapur 1997].

op =

2.1.6. Proving geometry theorems by numerical computation

Based on the CS method, Hong showed that to prove a geometry statement, only
a single numerical example is needed to check [Hong 1986]. To understand the
method, let us mention the simple fact: a pol p(z1) € Q[z1] is identically zero
if p(xo) = 0 for a sufficiently large rational number zy. Hong’s work is actually
a generalization of the above result. Hong’s work is generalized and used to test
whether an algebraic variety is included in another variety in [Wang 1988].

In [Zhang et al. 1990], a method of proving geometry theorems by checking several
numerical examples instead of one is presented. This method is similar to Hong’s
method and is based on a generalization of the following fact: a pol p(x;) of degree
d is identically zero if it has more than d distinct roots.

In both of the above methods, approximate calculations are needed and at last we
need to check whether an approximate number is small enough to be zero which
is a difficult problem. However, in the case of linear geometry statements, the ap-
proximation problem can be avoided by using rational number calculation which is
widely available in the symbolic computer software. A prover for linear statements
has been developed and has been used to prove many nontrivial examples [Yang
et al. 1992].

In [Ferro, Gallo and Gennaro 1998, Rege 1995], probabilistic methods for AGTP
were studied.

2.2. Proving theorems involving inequalities
The methods reviewed in Section 2.1 address geometry statements of equality type

and are complete only for geometry over complex numbers. If a geometry statement
is proved in complex geometry, it is also valid in Euclidean geometry. The converse
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is not true. An example which is valid in R, but not in C, the field of complex
numbers, is the 83 problem [Kutzler 1989, Chou et al. 1989, Conti and Traverso
1995, Wang 1995¢]. A simple algebraic example is Vuizi[u? + 23 = 0 = z; = 0].
Both the CS and GB methods can disprove this formula in C, but cannot confirm
it in R. However, such kinds of formulas rarely appear in Euclidean geometry. If
we change the above formula a “little” bit: Vuizi[u? + 23 — 1 =0 = x; = 0], then
for u; € (=1,1), x; always has solutions in R. Such kinds of formulas are called
R—generic. If an R—generic formula is not valid in C, it is also not valid in R. Most
geometry statements of equality type are R—generic, and for such statements the
CS and GB methods are complete for Euclidean geometry [Chou and Yang 1989].
This is the real reason that these methods, which are complete only for complex
geometry, can prove so many theorems in real geometry. But for theorems involving
inequalities, we still need to develop new methods.

2.2.1. Proving theorems by quantifier elimination

Theoretically, Collins’ method can prove (or disprove) any first order statements
in the Tarski geometry. In [Arnon 1988], the CAD method is used to geometry
theorems in an interactive way. Thanks to the generosity of Collins and Hong,
we have been able to experiment with proving geometry theorems using Hong’s
implementation of Collins’ CAD algorithm. The results were very encouraging. We
use the following example to give some idea about how far Collins’ method can
reach now.

Fig. 4

2.4. EXAMPLE. Let ABCD be a square. C'E is parallel to the BD such that BE =
BD. F is the intersection of BE and DC'. Show that DF = DE (Fig. 4).

Let A = (0,0), B = (u1,0), C = (u1,u1), D = (0,u1), E = (z1,22) and F =
(z3,u1). Then the hypotheses can be expressed by the following equations:
hy =23+ 23 —2uyz; —ul =0 BE = BD
ho = urxs +urz1 — QU% =0 CFE || BD
hs = Tox3 — 1z — urz; +ul =0 Fis on BE.
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The conclusion (DF = DE) can be expressed by ¢ = (x3 —0)2 + (u1 —u1)? — [(x1 —
0)2 + (z2 —u1)?] = 22 — 23 + 2urz2 — 2 —u? = 0.
Thus the algebraic form of the above statement is:

VU1$11'21’3[(h1 :0/\h2 :0/\h3 :0/\“1 750) :>CZO],

which was proved to be valid by Hong’s program in 16 seconds on a SPARC-20
Station. This theorem has been considered fairly difficult in high school geometry.
Also the previous implementation of Collins’ method (Arnon’s program) was unable
to prove this theorem within reasonable computer resources. Collins’ method was
also used to prove this theorem in [Wang 1991].

In the area of AGTP, Collins’ method requires further improvements in order to
prove a substantial number of non-trivial theorems in practice.

In [Dolzmann et al. 1996], a quantifier elimination algorithm for linear and quadratic
equations is presented. A generic quantifier elimination method is also proposed. In
this method, variables are divided into parameters and variables, and pure para-
metric expressions are assumed to be non-zero. These expressions are similar to
the ndg conditions in Wu’s method. The program based on this method has been
used to prove a large number of difficult geometry theorems. One reason behind the
success of this method is that algebraic equations for most geometry theorems only
involve quadratic equations. In [Weispfenning 1994], this method is used to solve
many computational geometry problems. In [Dolzmann 1998], quantifier elimina-
tion methods are used to solve the real implicitization of the Enneper surface.

2.2.2. Proving theorems by optimization

Based on his CS method, Wu proposed a method to solve the following problem
[Wu 19924].

Problem Ineq. Let R"(X) be the real Euclidean space of dimension n in the coor-
dinates X = (z1,...,2,) and D adomainin R". Let f,h; (i € I = {1,...,r},r <n)
and g be all real pols in R"[X] over the domain D. To determine for what real value
c we shall always have

f>cor f>cor f<cor f<c
under the conditions
HS =0, where HS ={h; | i € I} and g #0.

Wu proved the following finite kernel theorem. Let HS be an arbitrary pol-set and
f an arbitrary pol in R[X]. Then we can construct a finite set of real values K such
that the extremal values of f under the constraint HS = 0 is contained in K.

To solve this problem, Wu uses the Lagrangian pol with Lagrangian multipliers
AjsJ €M L=f+3% .y Ajhj. The Lagrangian pol-set is

0L
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dh;
:L‘ik

The Jacobianfor t = (i1, ...,0,) € T is the determinant J; = M =
i T,

The Jacobian pol-set is the pol-set
JS={Ji,hj|teT,jec M}

Then the points where extremal values are achieved are contained in the projection
of the zeros of the Lagrangian pol-set and the Jacobian pol-set. Based on this
observation, using the CS method, we can compute the finite kernel.

2.5. ExamMpPLE. [Wu 1995] Suppose that two cars of given form are moving respec-
tively along the X-axis and the Y-axis in positive directions with known velocities
v1 > 0 and v2 > 0. To decide whether the cars will collide or not, and to determine
in the colliding case the time and place of first collision.

Let us consider the case in which the two cars are both of elliptical form given by
(1 < 0,c0 <0) fi(z,y) = bi(x — c1)? + a?y? — alb?, fa(z,y) = b32? + dd(y —
¢2)? — a3b3. Then the collision problem is seen to be a Problem Ineq for which
D={t>0} CR¥t,z,y), f=t, g=1,h = fi(zx—uvit,y), hy = fo(z,y — vat).
In the case of having generic values for a;,b;,c; and v;, Wu’s method gives rise
to an irreducible pol equation of degree 8 in ¢ with 696 terms. Leaving aside some
uninteresting cases, the two cars will collide if and only if this equation has a positive
root. The time and place of first collision can be easily determined if numerical
values of a;, b;, c; and v; are substituted.

The method is used to prove geometry theorems involving inequalities [Wu 19924],
to prove trigonometric inequalities [Wang 1993], to solve non-linear programming
problems [Wu 1995], to solve optimization problems [Wu 1992a], etc.

2.2.3. AGTP by combining the CS method and the CAD method

A theorem involving inequalities generally also involves equalities. Since the CS and
GB methods work so well for equality problems, we might expect a combination
of the CS (or GB) method with Collins’ method could solve problems not in the
scope of the CS method, but which cannot be solved by Collins’ method alone
within the available time and space. The work in [Chou, Gao and Arnon 1992] is
in this direction, and a number of hard problems were solved with some human
interaction. Here we use the following simple example to illustrate the basic idea.

2.6. EXaMPLE. Let ABCD be a parallelogram. Show that points B and D are on
either side of diagonal AC.

This “trivial” fact is repeatedly used in traditional proofs of the parallelogram
theorem. However, it seems nontrivial to find a rigorous traditional proof of this
fact. (Try it!)

Let A = (0,0), B = (u1,0), C = (u2,u3), and D = (z2,21). Then we have two
equations for the hypotheses

hi =uix; —ujuz =0 AB is parallel to CD
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he = usxs — (u2 —ug)x; =0 AD is parallel to BC.
The conclusion that B and D are on either side of AC is g < 0, where g =
(usur — ug - 0)(uzwa — u2w1) = wruias — urusuzzr. We want to decide whether
the following statement is valid under certain ndg conditions: Yujususziz2[(h1 =
0A hy =0) = g <0]. Here uy, us,us are selected to be parameters, and z; and x5
are selected to be dependent variables. Reducing ¢ to canonical form modulo the
ideal (in Q(u)[z]) generated by h; and hs, we obtain g = —u2uZ. This canonical
form of g modulo the ideal is only valid under the conditions u; # 0 and us # 0;
in other words, u; and uz occur in the denominators of the elements ¢; and ¢z of
Q(u)[z] such that g = ¢1hy + ca2he. Thus we have g < 0, under the condition that
uyug # 0. Note that u;ug # 0 is indeed connected with non-degeneracy, i.e. to
insure that points A, B and C' are not collinear.
A more general scheme has been proposed, and it has been used to solve the 83
problem automatically [McPhee et al. 1994]. Recently, N. McPhee gives an auto-
matic solution to the Steiner-Lehmus theorem and the Pompieu’s theorem based on
a combination of the CS method and Collins’ CAD method [McPhee et al. 1994].

2.2.4. Complete discriminant systems and AGTP

In [Yang, Hou and Zeng 1996] a powerful tool, called the complete discrimination
system (CDS) was introduced, which can be considered as an extension of the Sturm
theorem. For a univariate pol equation P(z) = 0 of degree n, the CDS can be used
to give the conditions that P(z) = 0 has p and ¢ distinct real and complex solutions
respectively and the multiplicities for these solutions are rq,---,7, and ¢1,---,¢p
such that 327, r +327_, ¢j = n.

By means of CDS, together with Wu’s method and a partial CAD algorithm, a
generic program called “EXPLORER” was implemented in Maple that is able to
discover and prove new inequalities [Yang, Hou and Xia 1998]. Using this program,
Yang et al have re-discovered 37 inequalities in the first chapter of the monograph
on geometric inequalities [Mitrinovic, Pecaric and Volenec 1989]. One of the in-
equalities “discovered” in this way is about the “basic inequality of triangles.” For
a triangle, from the basic inequalities about the three sides a +b < ¢, a + ¢ < b,and
b+ ¢ < a, the program can discover the basic inequality about the half perimeter
s, circumradius R, and inradius r of the triangle:

st 4+ 22> — 4R%s* — 20rRs® + 12r°R + 487 R? + r* + 64rR® < 0.

An interesting inequality about triangles is discovered in [Guergueb, Mainguené
and Roy 1998]. It would interest to know if this inequality can be discovered auto-
matically.

In most of the geometric inequalities about triangles, there are radicals. A
dimension-decreasing algorithm introduced by Yang [Yang 1998] can treat these
kinds of inequalities efficiently. Based on this algorithm, a generic program called
BOTTEMA was implemented on a PC computer. More than 1000 algebraic and ge-
ometric inequalities including hundreds of open problems have been verified in this
way. The total CPU time spent for proving 120 basic inequalities from Bottema’s
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monograph, “Geometric Inequalities” on a Pentium/200, was 20-odd seconds only.

2.3. Proving theorems in differential geometry

An advantage of the CS method is that it can be extended to cover ordinary and
partial algebraic differential equations [Ritt 1950]. As a consequence, theorems from
differential geometry and mechanics can be proved automatically [Wu 19874].

2.3.1. Space curves and mechanics

Here we are dealing with differential pol rings over a differential field (usually it is
Q(t)) in which there is a third operation, “’”, compatible with the two operations
of a ring, “+” and “x”:

(a+b) =ad +V,(ab) =a'b+al'.

The pseudo division, triangular algorithm, and the variety decomposition algorithm
can be extended to the differential pol case with minor modifications [Ritt 1950,
Wu 19874, Chou and Gao 19934].

The geometry statements addressed are still of equality type. In the local theory of
space curves, one uses parametric representation of a curve: C' = (z(t), y(t), 2(t)).
The practical problems encountered in the curve theory and mechanics are of the
similar nature. Thus we use the following elegant example first worked by Wu
[Wu 19870] to illustrate the type of problems we address:

2.7. EXaMPLE (The Kepler—-Newton problem). Kepler’s first two laws are:

(K1) The planets move in elliptic orbits with the sun as a focus (Fig. 5).

(K2) The vector from the sun to the planet sweeps equal areas in equal times.
Newton’s law of gravitation (special form):

(N1) The acceleration of a planet is inversely proportional to the square of the
distance from the sun to the planet.

Now we want to prove that (K1) and (K2) imply (N1).

P

Fig. 5 Fig. 6
Choose the sun as the origin of the coordinate system, and let (z(t),y(t)) be the
position of the planet; (—c¢, 0) be the center of the ellipse; h be the area velocity of
the planet. Then the equation part of the hypotheses is:
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Ky : e 122 _1=0

K122 a2—(bz+c2):0

K : r'y—xy —h =0, with A’ =0.
1 7”2— $2+ 2 =0

f y

f2 . AQ _ (56”2 +y112) =0.

The conclusion Ny is:  [Ar?] = 0.
Then a tentative algebraic form for this problem would be:

V’U[(Kll ANKia AN Koy N f1 N fz) = Nl]

As usual, ' denotes the derivative of x with respect to t. Here, a, b, ¢, and h are
constants (independent of ¢). Again, the above formula is valid under some ndg
conditions. With the simple use of the CS method described in Section 2.1.2, Wu
proved a variation of the above specification [Wu 19875] under some ndg conditions.
As in elementary geometry, there are also two Formulations F1 and F2 for prov-
ing theorems in differential geometry. While these two formulations and the CS
methods for them are similar to the case of elementary geometry, Formulation F1
is much more complicated than a simple rewording [Chou and Gao 1993c|. Nearly
100 theorems in space curves and 10 statements in mechanics have been proved
[Chou and Gao 1991, Chou and Gao 1993d].

In [Ferro and Gallo 1990, Ferro and Gallo 1994], methods for proving theorems
in differential geometry based on the computation of the dimensions of zero sets
were proposed. It tries to find components with the highest dimension and prove
the conclusion on these components. One problem with this approach is that the
component with the highest dimension might not be the main component.
Another elimination method that works in differential case is the Brauer-Seidenberg
technique. Since this technique can be used to eliminate quantifiers, it actually
provides a decision method for differential closed field. Wang has modified this
method to give a zero decomposition theorem and used the it to prove theorems in
differential geometry [Wang 1995b).

2.3.2. Space surfaces

This involves partial differential pols (pdp). In this area, Wu has developed tools
[Wu 1979, Wu 19824, Wu 19874, Wu 1989¢] based on the work [Ritt 1950, Thomas
1954, Cartan 1946], where again the method is only for geometry statements of
equality type. This is similar to, but much more complicated than the ordinary
differential pol case. Some experiment results are given and a new result result is
discovered in [Li 1995b]. The method currently used is the simple one described in
Section 2.1.2, i.e., first triangularize a pdp set to obtain a pdp ascending chain ASC,
then do similar successive pseudo divisions of the conclusion pdp with respect to
that ASC to see whether the final remainder is zero. In elementary geometry such
simple use of the CS method often proves a geometry statement to be generically
true because most statements are of constructive types. However, in the pdp case,
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the situation is unclear. There is no work to formulate “generically true” precisely
as in Formulation F1 for elementary geometry. Formulation F2 is straight forward
and the CS method for F2 can presumably be given, though no experimental work
has been done yet.

2.3.3. Clifford algebra approach for AGTP

In differential geometry textbooks, vector algebra and Frenet moving frames are
used to solve problems in the local theory of space curves. Li and Cheng recognized
that Clifford algebra is more suitable for symbolic vector equations solving than vec-
tor algebra. Based on Wu’s method of characteristic sets, they proposed a method
that employs Clifford algebraic representation for geometric entities and constraints
[Li and Cheng 1998]. A prover based on this method is capable of producing proofs
much the same with those used in the textbooks.

The procedure of proving a theorem is composed of three stages: (a) find a reduction
set, (b) find a parametric reduction set, and (c¢) find a characteristic set. To compute
a reduction set, for scalar equations, Wu’s method is used; for vector equations, the
Clifford algebraic reduction method is used. For equations of differential forms,
these elimination techniques can be used to compute a triangular set and to prove
theorems about surfaces similar as in Section 2.1.1. This vector approach is not
a decision procedure. In the final stage, coordinates are needed in order to give a
complete method.

To overcome the difficulty of integrability pols in computing a characteristic set in
the local theory of space surfaces, Li also proposed a simple method [Li 1995a] to
integrate the calculus of differential forms with Wu’s method.

2.4. Mechanical geometric formula derivation

2.4.1. Elementary geometry

There are two kinds of problems in elementary geometry other than theorem prov-
ing. One is finding locus equations, the other is deriving geometry formulas. Auto-
matic derivation of geometry formulas were studied in [Wu 19864, Chou 1984, Wang
and Gao 1987, Chou 1987, Chou and Gao 1990a, Wang 1995¢, Kapur et al. 1994].
We use Heron’s Formula to illustrate this type of problems.

2.8. ExaAMPLE. Find the formula for the area of a triangle ABC in terms of its
three sides.

Let a,b, and ¢ be the three sides, B = (0,0), C' = (a,0), and A = (x1,22). Then
the geometry conditions can be expressed by the following set of pol equations:

hy = 23 + 22 — 2az; —b* +a®> =0 b=AC
hy =23+ 22— =0 c=AB
hy =axs —2k =0 k = the area of ABC.

The aim is to find a pol equation involving only a, b, ¢, and k which is a consequence
of the above equations and some ndg conditions.
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In general, for a geometric configuration given by a set of pol equations

ha(ur,---,ug, @1, -+, ©p) = 0, hp(ur,---,uq, 21, -+, xp) = 0 (possibly with a
set of inequations {D = dy (u,z) # 0,-+, ds(u,z) # 0}), we want to find a rela-
tion (formula) between arbitrarily chosen variables uy,---,u, (parameters) and a

dependent variable, say, z;. In [Chou and Gao 1990a], CS and GB methods are
used for formula derivation. In [Wang 1991], CS, GB and Wang’s methods are used
for formula derivation. In [Kapur et al. 1994], Dixon resultant is used for formula
derivation. Heron’s formula can be easily derived by any of the above methods:

16k 4 ¢* — (2b% + 2a%)c® + b* — 2a%b* + a* = 0.
Here is a more interesting example.

2.9. EXAMPLE (Peaucellier’s Linkage). Links AD, AB, DC and BC have equal
length, as do links FA and EC. We assume F'D = EF. The locations of joints E
and F' are fixed points on the plane, but the linkage is allowed to rotate about these
points. As it does, what is the locus of the joint B? (Fig. 6)

Let F = (0,0), E = (r,0), C = (z2,y2), D = (x1,y1), B = (x,y), n and m be
the lengths of the projections of CD and BC on BD and AC when E,D,B are
collinear. Then the geometry conditions can be expressed by the following set of
equations H

hi=y}+a}-r>=0 r=FD

ha = y3 — 2y1ys + 23 — 2m122 + 97 + 27 —n? —m? =0 CD =n?+m?

hs = y3 — 2yys + 23 — 2222 + 2% +y2 —n? —m? =0 CB =n?+m?

hy = y3 4+ 23 —2rzs —n® —4drn —m? —3r? =0 EC = (n+2r)>+m?

hs = (z —r)y1 —yz1 +ry =0 E is on DB,
together with the following set of pol inequations D:

dlzml—m;éO B#D

Selecting m, n, r, and y to be the parameters of the problem, we want to find the
relation among m, n, r, y and z. Using the CS method in [Chou and Gao 19904,
a relation x 4+ 2n + r = 0 is found, which tells us that the locus is a line parallel to
the y-axis.

New theorems discovered in this way may be found in [Gao and Wang 1995, Wang
1992, Wu 19864].

This problem can also be formulated as one of finding a quantifier free formula
f(u,z1) such that f(u,z1) <= Fza---zplhi(u, ) A A hp(u,z) Adi(u,z) #
OA---Ads(u,z) # 0] [Chou 1990, Wang 1991]. Formulated in this way, it is actually
to calculate the projection of an algebraic set in the affine space EYtP into the
subspace E¢TL. If E is algebraically closed, there are methods for computing such
projections. The method in [Wu 1990] works over the field of complex numbers. If
E is a real closed field, Collins’ method [Collins 1975] gives a solution to the above
problem; so it would also be interesting to examine the connection between the
real closed case and algebraically closed case. For example, we expect that Collins’
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method produces the following form for f(u,z;) for Peaucellier’s Linkage:
(x+2n+r=0)A(—d <y <d) A (other nondegenerate conditions)

where d is from the 4th (quadratic) equation of the above ASCY.

2.4.2. Differential geometry and mechanics

Formula derivation in differential geometry was initiated by Wu in connection with
finding possibly unknown properties on Bertrand curves [Wu 1987¢]. The approach
used by Wu was to look at the differential pols produced during generation of a CS.
This involves human assistance. A more automatic method has been proposed in
[Chou and Gao 1993¢, Chou and Gao 19904]. Using this method a complete list of
the properties of Bertrand curves in metric and affine geometries has been obtained
[Chou and Gao 1993¢].

3. Coordinate-free approaches to automated reasoning in geometry

Algebraic methods, though powerful, generally can only tell whether a statement
is true or not. If one wishes to look at the proofs, he/she will find tedious and
formidable computations of pols. After Wu’s method, several researchers tried to
develop AGTP methods based on vector calculation in the mid-80s in order to find
simpler proofs [Havel 1991, White and Mcmillan 1988]. It is well known that inci-
dence geometry relations can be represented by exterior products and measurement
geometric relations can be represented by inner products. Therefore, developing
vector approach of AGTP is to find algorithms of manipulating exterior and inner
products. In the mid-90s, several successful vector approaches were proposed. As
expected, these methods can produce shorter proofs than that of the coordinate
based methods. But, this advantage comes with a price: these methods are not
complete in complex or real geometries as the methods introduced in Section 2 are.

3.1. Area method

The area method was proposed in 1992 from a quite different point of view [Chou
et al. 19934, Chou, Gao and Zhang 1994, Zhang, Chou and Gao 1995]. Zhang found
many elegant ad hoc methods based on areas of triangles to solve geometric prob-
lems when he was a middle school teacher and trainer of the Chinese Mathematical
Olympian Team [Zhang 1982]. These ad hoc methods have been developed into a
complete method of AGTP, which are surprisingly powerful in that it has been used
to prove hundreds of geometry theorems of constructive type and the proofs are
generally short and elegant [Chou et al. 1994]. A computer program called Geom-
etry Ezpert based on this method has produced proofs of 500 nontrivial theorems
entirely automatically [Chou et al. 1994, Gao, Zhang and Chou 1998]. This method
seems to be the first to produce human-readable proofs for hard geometry theorems
efficiently.
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Instead of coordinates, three basic geometric quantities: the ratio of parallel line
segments, the signed area, and the Pythagorean difference are used. The basic
propositions, which formally describe the properties of these quantities, are the
deductive basis of the area method. The method involves the elimination of the
constructed points from the conclusion using these basic geometry propositions.
Two of the basic propositions are given below.

3.1. LEMMA (The Co-side Theorem). Let M be the intersection of two lines AB

and PQ and Q@ # M. Then g;% = ggﬁ, where Spap and Sgap are the signed

area of triangles PAB and QAB.

3.2. LEMMA. PQ || AB iff Spap = SoaB-

We use a simple example to illustrate how the method works. The following proof is
essentially the same as the one produced by the prover based on the area method.

Proof of Example 2.1. By the co-side theorem, g:g = 32‘,% Since AB || CD,
Sapp = Sapc by Lemma 3.2. Since AD || BC, Sppc = Sapc by Lemma 3.2.
Then we have o

AO _ SaBp _ Sasc

OC  Sppc  Sasc
The area method has been extended to prove theorems in solid geometry (the
volume method), Minkowskian geometry, Bolyai-Lobachevsky geometry, and Rie-
mannian geometry [Chou, Gao and Zhang 1995, Yang, Gao, Chou and Zhang 1998].
In [Chou, Gao and Zhang 19960], a new geometric quantity the full-angle is used to
prove geometry theorems. This method, though not as powerful as the area method,
can produce very elegant, proofs for some difficult geometry theorems for which the
area method fails to give short proofs. In [Chou et al. 1993b, Chou et al. 1994], vec-
tor and complex number approaches based on a similar idea is presented. The idea
developed in the area method has been used to find locus of robotics arms [Yang
et al. 1997] and to prove Newton’s basic proposition [Fleuriot and Paulson 1998].

=1

3.2. Bracket algebra methods

One of the earliest effort to develop coordinate free methods of geometric reasoning
is to use techniques from the bracket algebra such as Cayley factorization [White
and Mcmillan 1988]. The bracket algebra is a non-commutative algebra. There is
still no decision method similar to that of the Grobner basis. Therefore, bracket
algebra can only be used to do “computer-aided geometric reasoning” at that time
[(ed.) 1987].

In [Richter-Gebert 1995], an algorithm based on bracket algebra for proving projec-
tive geometry theorems was given. The basic idea is to represent geometric hypothe-
ses and conclusions as algebraic relations and use simple algebraic computation to
deduce the conclusion from the hypotheses. Many difficult theorems from projec-
tive geometry have been proved by the method. The proofs thus generated are very
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short. Based on this technique, a program called CINDERELLA has been devel-
oped [Richter-Gebert and Kortenkamp 1999]. In [Bondyfalat et al. 1999], similar
techniques are used to find unknown geometric properties raised from computer
vision.

3.3. Clifford algebra methods

Clifford Algebra is a generalization of the Grassmann algebra. In [Li and Cheng
1996], techniques of Clifford algebra are combined with Wu’s elimination method
to prove geometry theorems. Many theorems have been proved with this approach.
The key idea in [Li and Cheng 1996] is to use several rules of solving vector equa-
tions in vector level. But these rules alone are not complete. Complete methods
can be achieved by substituting the vector by their coordinates and using Wu’s
characteristic set method. This method has also been used to formula derivation.
A problem proposed by Erdos was partially solved [Li and Shi 1997].

In [Li 19985, Wang 19984], techniques of Clifford algebra are used to prove theorems
of constructive type. This approach has the same scope and style as the vector
version of the area method [Chou et al. 19935]. This method loses a key feature of the
area method: producing proofs with geometric meaning. On the other hand, it may
provide a uniform treatment for Euclidean and several non-Euclidean geometries.
In [Féevre and Wang 1997, Féevre and Wang 1998, Boy de la Tour, Févre and Wang
1998], rewrite rules and Clifford algebra are combined to prove theorems from both
plane and solid geometries. This may enlarge the scope of the method to cover non-
constructive statements and use many techniques from term re-writing to enhance
the efficiency. Other approaches based on Clifford algebraic method can be found
in [Yang, Zhang and Feng 1998, Fearnley-Sander 1998].

3.4. Grébner bases methods

We have mentioned that bracket algebra and Clifford algebra are non-commutative
algebras. For some non-commutative algebra, methods of generating Grébner bases
have been given In [Stifter 1993], Grobner bases of vector algebra involving exterior
products are used to prove geometry theorems. Theoretically, inner products can
also be introduced. This method is actually a combination of the vector approach
and coordinates approach, because it introduces many scalar variables to represent
geometric relations. In [Wang 1989], Grébner basis of Clifford algebra is used for
AGTP.

4. AI approaches to automated reasoning in geometry
Generally speaking, the algebraic approaches are decision procedures and are more

powerful. The AI approaches are not decision procedures and are less powerful.
Despite its “weakness”, it is still worth improving the AT approach because this
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may lead to techniques useful to automated reasoning in the general case. Even for
automated geometry reasoning alone, AT methods have the following advantages.
(1) Proofs produced by the AT method are generally easy to understand than proofs
based on algebraic computations. (2) Using predicates only (no algebraic computa-
tion) makes the reaching of fixpoint possible. (3) Although algebraic methods can
prove a much larger number of theorems, there still exist theorems (Example 4.2)
which can be solved by the AT approaches elegantly but can not be solved with the
algebraic approaches because to prove them excessively large computer memory is
needed.

4.1. Gelernter’s geometry machine

Geometry theorem proving on computers began in the 50s with the landmark work
of Gelernter et al [Gelernter 1959, Gelernter, Hanson and Loveland 1960]. Several
basic ideas of geometric reasoning such as using a numerical model, constructing
auxiliary points, and generating geometric lemmas were studied in this work. Most
of the other work on AI approach of geometric reasoning can be considered exten-
sions of this work.

Gelernter’s geometry machine uses a backward chaining approach: that is, it reasons
from the conclusion to the hypotheses. Let Hy,---, H, and G be the hypotheses
and conclusion of a geometry statement, i.e., we need to prove

V geometric elements[(H; A--- A H,) = G].

Then G is the goal of the proof procedure. To prove GG, we search the axiom or rule
set to find a rule of the following form

[(GLA--AG,) = G

Then for G to be valid, we need only to prove the subgoals G4, - --,G,. Now we may
repeat the above process for each of the subgoals until the subgoal is one of the
hypotheses. In this way, we generate an and-proof-tree — meaning that to prove
any goal in the tree, we need to prove all of its subgoals. On the other hand, there
might be more than one rules that will lead to a goal. In this case, we need only to
prove the subgoals generated from one of the rules. In other words, to prove a goal
in the tree, we need only prove one of the branches. Therefore, in the general case,
the proof process will generate an and-or-proof-tree.

Let us consider the following proof of Example 2.1.

The hypotheses are: AB || CD, AD || BC, coll(E,A,C) (points E,A,C are
collinear), and coll(E, B, D). The conclusion or goal is AE = EC. The proof
generated by the geometry machine is the same as the proof given at geometry
textbooks. To prove AE = EC, we need to show AECD = AEAB, which in turn
follows from three subgoals: AB = CD, ZAEB = ZCED, and ZECD = /EAB.
To prove AB = C'D, we need to prove AABC =2 AC DA which follows from three
subgoals: AC = CA, ZACD = /CAB, and LCAD = ZACB. ZACD = Z/CAB
follows from AB || CD; ZCAD = ZACB follows from AD || BC.
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Opposite to the backward chaining, forward chaining reasons from the hypotheses
to the conclusion. Most of the AI approaches to AGTP use backward chaining
[Gelernter 1959, Anderson 1981, Coelho and Perceira 1986]. In [Nevins 1976], Nevins
used a combination of forward chaining and backward chaining with emphasis on
the forward chaining. In doing so, Nevins made many improvements in building a
powerful geometry theorem prover. But still, most of the theorems proved by these
methods are relatively easy.

Wos and his collaborators used their powerful general-purpose resolution theorem
prover to experiment with proving theorems in Tarski’s axioms for elementary ge-
ometry [McCharen et al. 1976]. The work was continued in [Quaife 1989] using the
general purpose prover OTTER. Recently, extensive work were done in [Balbiani
and del Cerro 1995, Balbiani 1995] using logic deduction techniques such as term
rewriting to AGTP. In these work, some interesting but relatively easy theorems
were proved. In [Fevre 1998], the classical first-order logic and algebraic methods
are combined to develop a hybrid deduction system which is used to produce proofs
at different levels for better understanding.

4.2. A geometry deductive database

In [Chou et al. 1996¢], the technique of deductive database [Gallaire, Minker and
Nicola 1984] is used to geometric reasoning. The resulted program can be used to
find the fizpoint for a geometric configuration, i.e., the system can find all the prop-
erties of the configuration that can be deduced using a fixed set of geometric rules.
This program has been used to prove more than 150 difficult geometry theorems,
and most of these theorems are beyond the scope of the previous provers based on
AT approaches.

The idea of structured deductive database is presented to reduce the size of the
database. Experiments with 150 problems show that this technique could reduce
the size of the database by one thousand times.

C
H\F
A G B

Fig. 7

4.1. EXAMPLE (Orthocenter Theorem). Show that the three altitudes of a triangle
are concurrent (Fig. 7).

Asin Fig. 7, the hypotheses (extensional database) are: points(A, B, C), coll(E, A, C),
perp(B,E, A, C), coll(F, B, C), perp(A, F,B,C), coll(H, A, F),
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coll(H, B, E), coll(G, A, B), coll(G,C, H).

Reaching the fixpoint costs the program 0.75 second on a Sparc-20. The size of the
fixpoint is 151 if the structured database is used. In predicate form, the size of the
fixpoint would be 83,076. The fixpoint contains two of the most often encountered
properties of this configuration: perp(C, G, A, B) (the conclusion of the orthocenter
theorem) and Z[GF,GC] = Z[GC,GE]. For each fact in the database, the program
can give a synthetic proof. The following is the proof of the Orthocenter theorem
generated automatically by the program.

1. CG L AB, because AF 1 BC(hypothesis), (2)Z[AF, BC| = Z|[CH, AB].

2. Z[AF,BC| = ZL|CH, AB]J, because (3)£[AF,CH| = Z|BC, BA].

3. Z[AF,CH] = Z[BC, BA],

because (4)Z[AF,CH] = Z[FE,AC], (5)4[BC,BA] = Z[FE, AC].

4. Z[AF,CH] = L[FE, AC], because (6)cyclic:[C, F, E, H].

5. Z|BC, BA] = Z[FE, AC], because (7)cyclic:[A4, F, B, E|.

6. cyclic:[C, F, E, H], because FH 1 FC(hypothesis), EH L EC(hypothesis).

7. cyclic:[A, F, B, E], because F'B 1 F A(hypothesis), EB 1 EA(hypothesis).
4.2. EXAMPLE. As in Fig. 8, Py P, P, P3Py is a pentagon. Q; = P;_1 P; N Pi11 Piyo,

M; = circle(Q;—1 P;—1 P;) N circle(Q;PiP;11) (the subscripts are understood to be
mod 5). Show that points My, My, Mo, M3, M, are cyclic.

The fixpoint contains 541 (220,680 in predicate form) facts. Besides the fact that
My, My, Ms, M3, and M, are cyclic, the program finds the following new result:
the following ten groups of lines

{Piy1Mit1, Qi1 Mi—1, QiyoMi o}, {Pi-1 M9, PiMi1,Qi—1M;12},i=0,1,2,3,4

are concurrent and the ten intersection points of them are on the circle determined
by MoM;Ms,, i.e., this circle contains 15 points. The three dotted lines in Fig. 8
represent one group of concurrent lines.

4.3. Automated diagram generating

Most work on automated geometry reasoning focused on theorem proving and dis-
covering. In [Gao and Chou 19984], a global propagation method for automated
generation of construction steps of diagrams was presented. This method uses a
forward chaining to find the information needed in the construction and uses a
backward chaining to find the construction sequences. For a diagram described
declaratively with geometric constraints, the method may be used to find a se-
quence of constructing steps of drawing the diagram with ruler and compass.
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4.3. ExaMPLE. In a solid object, there is a hollow triangle tunnel. We want to put
a prism with a square cross section into the tunnel in a position as shown in Fig.
9a. We need only to consider the normal cross section. Then the problem is reduced
to a plane constraint problem: to put a square into a triangle ABC' (Fig. 9a).

: B b q C
Fig. 9a Fig. 9b

In [Gao and Chou 1998a], a solution is generated as follows (Fig. 9b): since
RQ/RS = 1,RQ L BC, and RS || BC, R is on a line BH, where H is the in-
tersection of the line passing through C' and parallel to AB and the line with
distance |BC| to line BC.

Methods of automated diagram generation have direct applications. They are the
central topic in much of the current work of developing intelligent CAD systems
[Briiderlin 1986, Gao and Chou 19984, Hoffmann 1995, Kramer 1992, Owen 1991].
The main advantage of intelligent CAD system is that the resulting systems accept
declarative descriptions of diagrams or mechanical designs, while for conventional
CAD systems the users need to specify how to draw the diagrams.

In [Wang 1996 ¢, Gao and Chou 19985], the CS method is used to generate geometric
diagrams automatically.

4.4. Issues in developing a prover based on Al approaches

In this section, we will discuss some of main issues in developing a powerful geometry
theorem prover with the AI approaches.

Numerical Model and Generating Diagram Independent Proofs. The
use of the numerical diagram as the semantic model has been the cornerstone
of most of the AI approaches [Gelernter 1959, Gilmore 1970, Koedinger and
Anderson 1990, Coelho and Perceira 1986]. There are two benefits the provers
derive from a numerical diagram. (1) The diagram is used as a filter to reject goals
not consistent with its numerical representation. (2) The numerical diagram is used
to determine order relations which are necessary for the prover to find a proof. In
the proof of Example 2.1 in Section 4.1, when deducing ZACB = ZADC from
AB || CD we implicitly assume that points B and D are on the opposite sides
of line AC'. In Gelernter’s geometry machine, this fact is deduced by checking the
numerical model, and a formal proof is not given.

While as a counterexample the diagram is used to control the search space success-
fully, the second benefit of determining order relation has some theoretical prob-
lems. Since only one or several numerical examples are checked, the provers have
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the risk of proving only some special cases of the theorem. Nevins [Nevins 1976]
claimed that he had got rid of this drawback by adding the ordering relations to
the hypotheses of the statement. This makes the situation much clear, but still does
not solve the problem. First, to prepare for the order relation, people still need to
consult a diagram. Second, for some geometry theorems it may happen that the
order of points in different diagrams of the same theorem may be different.

A key idea in AGTP is clarified by Wu in his algebraic method [Wu 19845]. Wu
observed that the validity of most geometry theorems involving equalities only is
independent of the relative order positions of the points involved. Such theorems
belong to unordered geometry. In unordered geometry, the proofs of these theorems
can be very simple. However, the ordinary proofs of these theorems involve the
order relation, hence are not only complicated, but also not strict.

The algebraic methods are for the unordered geometry and thus capable of produc-
ing diagram independent proofs. Among the AT approaches, the deductive database
approach seems to be the only one that can produce diagram independent proofs.
Adding Auxiliary Points. Constructing new points or lines is a basic method
of solving geometry problems. In logic, this corresponds to the Skolemization of
the existential quantifiers [Robinson 1954]. Based on similar ideas, Reiter presented
a deductive system that can generate new points [Reiter 1977]. But these ideas
are not implemented. The idea of adding auxiliary point has been experimented in
[Gelernter 1959, Coelho and Perceira 1986] but in a very limited sense. One of the
reasons that previous Al geometry provers did not prove many difficult theorems is:
without techniques of adding auxiliary points, the geometric axioms used by them
can not prove most of the geometry theorems at all.

Extensive experiments on constructing auxiliary points are done in [Chou et al.
1996 ¢]: more than thirty rules of adding auxiliary points are used. The experiments
show that generating new points by Skolemization arbitrarily may easily lead to
search space explosion. Strategies are used to achieve effectiveness [Chou et al.
1996¢]. About fourty theorems were proved by adding auxiliary points.

Multiple and Shortest Proof Generation. Since generating proofs for ge-
ometry theorems becomes very fast, we may combine search techniques and these
proving methods to generate multiple proofs and in particular the shortest proofs
for a geometry theorem. The experiments with the area method [Chou et al. 19964]
and the full-angle method [Chou et al. 1996b] show that by selecting control strate-
gies properly, this approach could be successful.

The basic idea is to use rules from the area method to build a rule-based reason-
ing system. In other words, we “relax” the deterministic style of the original area
method. Using a relaxed search strategy has two positive aspects. First, this allows
the program to generate multiple proofs for the same theorem. Second, this may
allow us to extend the area method to prove more theorems and to produce shorter
proofs.
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5. Final remarks
5.1. Purposes of studying geometric reasoning

Geometry has always been a model of precise reasoning. It is quite natural that it
is selected as one of the first mathematical branches to be experimented with when
the field of AT started in the fifties. There are other reasons leading to the extensive
study of geometric reasoning. The existence of a diagram for each geometry theorem
makes geometry theorem proving easy to understand by general audiences. There
are a huge amount of theorems in geometry and there are always new research
topics.

Besides these, are there any practical purposes to study geometric reasoning? The
answer is yes.

Study of geometric reasoning has led to the invention of new concepts and new
algorithms. For instance, Gelernter’s work led to several important ideas in auto-
mated reasoning, such as using a model and using lemmas. As another example,
Wu’s method leads to the rediscovery and improvements of Ritt’s work on charac-
teristic sets which has much more applications besides geometry reasoning. Also, as
pointed out in [Davis 1995], study of AGTP may lead to the reviving of the classic
Euclidean geometry.

Theories of geometric reasoning may have commercial potentials. Various methods
developed in automated geometry reasoning can be used to solve problems from
robotics [Huang and Wu 1992, Wu 19895, Kapur 1997, Yang et al. 1997], linkage
design [Gao, Zhu and Huang 19984], computer vision [Kapur and Mundy 1988, Gao
and Cheng 1998, Wang 19984, Bondyfalat et al. 1999], intelligent CAD [Gao and
Chou 19984, Gao and Chou 19985], intelligent CATI [Gao, Zhu and Huang 19985, Li
and Zhang 1998], solid modeling [Wu 1993, Kapur 1997], etc.

5.2. Further research directions

First, we should say that theories of automated geometry reasoning are quite mature
in that we can not only prove most of the geometry theorems efficiently but also
produce elegant proofs for most of them. In our point of view the further research
should focus on developing more general purpose techniques than proving geometry
theorem alone and techniques with industrial application potential. Some possible
directions are:

e In the AT setting, there is a need to develop more powerful search strategies, es-
pecially strategies used to control redundant deductions. The mechanization of
other traditional proof techniques in geometry such as proving by contradiction,
proving by coincidence, etc., is also very interesting.

e In the setting of coordinate-free approach, the current research focus has shifted
to finding general elimination theories in the vector level and building more
powerful geometric models with the Clifford algebra and other algebraic tech-
nologies [Havel 1998, Fearnley-Sander and Stokes 1998, Li 1998a]. This research
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direction is still at the beginning stage.

e In the setting of coordinate approach, the focus should be on powerful elim-
ination techniques for both complex and real number fields in order to solve
difficult problems raised in the practical fields such as robotics and mechanical
design.

e Automated reasoning in differential geometry, especially in the theory of sur-
faces, still needs more efficient algorithms and practical programs.

e The field of automated diagram generating is still quite open for development.
One interesting question is that can we design a rule-based complete method
for ruler and compass construction?
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