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Abstract

We present a method which can produce traditional proofs for a class of geometry state-
ments whose hypotheses can be described constructively and whose conclusions can be repre-
sented by polynomial equations of three kinds of geometry quantities: ratios of line segments,
areas of triangles, and Pythagoras differences of triangles. This class covers a large portion of
the geometry theorems about straight lines and circles. The method involves the elimination
of the constructed points from the conclusion using a few basic geometry propositions. Our
program based on the method can produce short and readable proofs of many hard geometry
theorems such as Pappus’ theorem, Simson’s theorem, the Butterfly theorem, Pascal’s theo-
rem, etc. Currently, it has produced proofs of 400 nontrivial theorems entirely automatically.
The proofs produced by our program are generally short and readable. This method seems
to be the first to produce traditional proofs for hard geometry theorems efficiently.

Keywords. Machine proof, automated geometry theorem proving, Euclidean traditional proof,
area method, Pythagoras difference, constructive geometry statements.

1 Introduction

Geometry theorem proving on computers began in earnest in the 50s with the work of Gelernter,
J. R. Hanson, and D. W. Loveland [8]. This work and most of the subsequent work [10, 12, 7]
was synthetic, i.e., researchers focused on the automation of the traditional proof method. The
main problem of this approach was controlling the search space, or equivalently, guiding the
program toward the right deductions. Despite the initial success, this approach did not make
much progress in proving many difficult theorems.

fThe work reported here was supported in part by the NSF Grant CCR-9117870 and the Chinese National
Science Foundation.



On the other hand, earlier in the 1930s, A. Tarski, introduced a quantifier elimination method
based on the algebraic approach [13] to prove theorems in elementary geometry. A breakthrough
in the use of algebraic method came with the work of Wen-Tstin Wu, who introduced an algebraic
method which, for the first time, was used to prove hundreds of geometry theorems automatically
[14]. Since Wu’s work, highly successful algebraic methods for automated proving geometry
theorems have been developed. Computer programs based on these methods have been used
to prove many non-trivial geometry theorems [6, 9, 11, 15]. Especially the program developed
at the University of Texas has proved about 600 theorems from Euclidean and non—Euclidean
geometries [1]. Many hard theorems whose traditional proofs need an enormous amount of
human intelligence, such as Feuerbach’s theorem, Morley’s trisector theorem, etc., can be proved
by computer programs based on algebraic methods within seconds.

Algebraic methods, which are very different from the traditional proof methods used by
geometers since Euclid, generally can only tell whether a statement is true or not. If one
wishes to look at the proofs produced by the machine, he/she will find tedious and formidable
computations of polynomials. The polynomials involved in the proofs can contain hundreds
of terms with more than a dozen variables. Because of this, producing short, readable proofs
remains a prominent challenge.

In [18], by combining ideas from both the algebraic approach and the synthetic approach, we
present a method that can produce short and readable proofs for more than 100 theorems about
line intersections. The success of the method is based on the extensive study of the traditional
area method [16, 17]. In [4], we extend the area method to the volume method which is very
successful in automated theorem proving in solid geometry.

This paper, which is the full version of the extended abstract [2], is a further extension of the
area method in plane geometry to a wider class of constructive geometry statements involving
perpendicularity and circles. The concept of Pythagoras differences of triangles is introduced
as the key tool in dealing with perpendiculars and circles. Most of the geometry theorems of
equality type in geometry textbooks are in this class. Among the 512 theorems in [1], about 420
are in this class. The method is complete and the complexity of the algorithm is given.

Our program! implements this method and can produce traditional proofs of many hard

geometry theorems such as Simson’s theorem, the Butterfly theorem, Pascal’s theorem, the
Pascal conic theorems, etc. Currently, it has produced proofs for 400 nontrivial theorems entirely
automatically [5]. The program is very efficient. Most of the 400 theorems are proved within a
few seconds. The most important feature of our work is that the proofs produced by the program
are generally short: the formulas in the proofs usually contain several terms, and hence readable
by people. This is the main theme of our research. To achieve this, we need to use proper
geometry quantities and to find proper ways of doing elimination. For the detailed statistics
of the lengths and the timings of the proofs for the 400 examples, see Section 6. This method
seems to be the first that can produce readable proofs for hard geometry theorems efficiently.

Based on the performance of our prover, we believe that the area method may have potential
use in geometry education, since the proofs produced according to the method are generally
short and in a shape that a student of mathematics could learn to design with pencil and paper.

In Section 2, we present the basic propositions which are the deductive basis of the method.
In Section 3, we define the constructive statements. In Section 4, we present the method. In

'} The prover is available via ftp at emcity.cs.twsu.edu: pub/geometry.



Section 5, we present some techniques of producing short proofs. In Section 6, we give the
experiment results and comparisons.

2 Basic Geometry Quantities and Propositions

We use three basic geometry quantities: the ratio of parallel line segments, the signed area, and
the Pythagoras difference. The basic propositions, which formally describe the properties of
these quantities, are the deductive basis of the area method. The validity of these propositions
are taken for granted in this paper. However their proofs can be found in the appendix of the
technical report form of [2].

We use capital English letters to denote points in the Euclidean plane. Let R be the field of
the real numbers. The following proposition formally defines the ratio of line segments.

Proposition 2.1 For four collinear points P, ), A, and B such that A # B, %, the ratio of
the directed segments, is an element in R and satisfies

1. PQ _ _QP _ QP _ _PQ
AB~ AB  BA  BA
PO _gigp=
2. £ =0if P=0Q.
AP | PB _
3 26145~
4. For r € R, there exists a unique point P which is collinear with A and B and satisfies
AP
L —
AB

Let r = %. We sometimes also write PQ = rAB. A point P on line AB is determined uniquely

by % or £2. We thus call

AP _PB

a6 " T AB

the position ratio or position coordinates of the point P with respect to AB. It is clear that
zp+yp =1.

rp =

2.1 Propositions about Signed Areas

We denote by Sapc the signed area of the triangle ABC.

Proposition 2.2 For any points A, B, C, and D, we have

1. SaBc = Scap = Spca = —SacB = —Spac = —ScBa-

2. Sapc =0iff A, B, and C are collinear.

3. Sapc = Sapp + Sapc + Spsc-
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Proposition 2.3 If points C' and D are on line AB and P is any point not on line AB (Figure
1), then

Spcp  CD

Spap  AB’

Proposition 2.4 (The Co-side Theorem) Let M be the intersection of two lines AB and
PQ and Q # M (Figure 2). Then

PM _ Spap PM _ Spap QM _ Sgas
QM  Soap’ PQ Spagp PQ  Spagp

Proposition 2.5 Let R be a point on line P

R
P@Q. Then for any two points A and B W

PR R
SraB = ==S50AB + :QSPAB-

PQ PQ

Definition 2.6 We use the notation AB || PQ to denote the fact that A, B, P, and @ satisfy
one of the following conditions: (1) A= B or P =(Q; (2) A, B, P and @ are on the same line;
or (3) line AB and line PQ do not have a common point.

Proposition 2.7 PQ || AB iff Spap = Sqgas, i.e., iff Spagp = 0.

A parallelogram is a quadrilateral ABC'D such that AB || CD, BC || AD, and no three
vertices of it are on the same line. Let ABCD be a parallelogram and P,Q be two points on
CD. We define the ratio of two parallel line segments as follows

PQ _PQ
AB DC’
In our machine proofs, auziliary parallelograms are often added automatically and the following

two propositions are used frequently.

Proposition 2.8 Let ABCD be a parallelogram. Then for two points P and @, we have

SapqQ + Scrq = Sprq + Sprq or Spaqs = SppQC-



Proposition 2.9 Let ABCD be a parallelogram and P be any point. Then

Spa = Sppc — Sapc = Sppac-

We use a simple example to illustrate how to use these propositions to prove theorems. The
following proof is essentially the same as the proof produced by our prover.

Example 2.10 (Ceva’s Theorem) Let AABC be N
a triangle and P be any point in the plane. Let D =
APNCB, E=BPNAC, and F = CPNAB (Figure n
4). Show that

=1.

Sk
ol

Proof. Our aim is to eliminate the constructed points F', £ and D from the left hand side of
the conclusion. Using the co-side theorem three times, we can eliminate E, F, and D

@ . @ _ Sapc Spra ScpB
DC EA Scp Scap Sapp

AF
— =1.
FB

2.2 Propositions about Pythagoras Differences
For three points A, B, and C, the Pythagoras difference Papc is defined to be
Papc = E2 +0732 — @2.

It is easy to check that

1. Psaap =0; Papc = Fopa.

2. Papa = 2@2.

3. If A, B,C are collinear, Papc = 2BA - BC.
For a quadrilateral ABC' D, we define

Pipcp = Papp — Popp = E2 +07D2 —3702 — mz.

Then we have Papcp = —Papcs = Ppapc = —Ppcpa = Pecpap = —Popap = Ppcpa =
—PpaBc-

Definition 2.11 For four points A, B, C, and D, the notation AB1C'D implies that one of the
following conditions is true: A = B, or C' = D, or the line AB is perpendicular to line CD.

Proposition 2.12 (Pythagorean Theorem) AB|BC' iff Pypc = 0.



PI‘OpOSitiOn 2.13 AB1CD iff PACD :PBCD or PACBD = 0.

The above generalized Pythagorean proposition is one of the most useful tools in our mechanical
theorem proving method.

Q

/‘
’
\
n .

Proposition 2.14 Let D be the foot of the perpendicular drawn from point P to a line AB
(Figure 5). Then we have

AD  Ppap AD Ppasp DB _ Pppa

DB Pppa’ AB 94> AB 24B*

Proposition 2.15 Let AB and PQ be two non-perpendicular lines and Y be the intersection
of line PQ and the line passing through A and perpendicular to AB (Figure 6). Then

i _ Ppas E _ Pras @ _ Poas

QY Poap’ PQ Ppragp PQ Praos

Proposition 2.16 Let R be a point on line PQ with position ratios r; = g;g, ro = % with
respect to P(Q). Then for points A, B, we have

Prap = rmPga+12Ppap

Parp = r1PagB +12PapB — riraPpgp.

Proposition 2.17 Let ABCD be a parallelogram. Then for any points P and @, we have

Papqg + Pcrq = Pprq+ Pppqg or Pappq = Ppprcq
Ppag + Ppcg = Pppg+ Pppg +2PpaD

Example 2.18 (The Orthocenter Theorem) Show that the three altitudes of a triangle are

concurrent. A

Proof. Let the two altitudes AF and BFE of triangle
ABC meet in H. We only need to prove CH 1 AB,
i.e., Pacy = Ppcy. Since BH1AC and AH1BC,
by Proposition 2.13, Pacg = Pacp = Ppca =
Ppcu. [

Remark 2.19 The 14 propositions are not independent. Actually all the propositions can be
derived from Propositions 2.1, 2.2, 2.3, and 2.13. We use all of them as basic propositions with
the intention of producing short proofs.



3 The Constructive Geometry Statements

3.1 Constructive Geometry Statements

In Section 2, we have introduced three geometric quantities: the area of a triangle or a quadri-
lateral, the Pythagoras difference of a triangle or a quadrilateral, and the ratio of parallel line
segments.

Points are the basic geometry objects, from which we can introduce two other basic geometric
objects: lines and circles. A straight line can be given in one of the following four forms

LINE U V) is the line passing through two points U and V.
PLINE W U V) is the line passing through point W and parallel to (LINE U V).

(
(
(TLINE W U V) is the line passing through point W and perpendicular to (LINE U V).
(

BLINE U V) is the perpendicular-bisector of UV'.

To make sure that the four kinds of lines are well defined, we need to assume U # V which is
called the nondegenerate condition (ndg) of the corresponding line.

A circle with point O as its center and passing through point U is denoted by (CIR O U).

A construction is one of the following ways of introducing new points. For each construction,
we also give its ndg condition and the degree of freedom for the constructed point.

C1 ( POINTIS] Y3,---,Y;). Take arbitrary points Y7,---,Y; in the plane. Each Y; has two
degrees of freedom.

C2 (ONY In). Take a point Y on a line In. The ndg condition of C2 is the ndg condition
of the line In. Point Y has one degree of freedom.

C3 (ONY (CIR O P)). Take a point Y on a circle (CIR O P). The ndg condition is O # P.
Point Y has one degree of freedom.

C4 (INTER Y Inl [n2). Point Y is the intersection of line In1 and line [n2. Point Y is a fixed
point. The ndg condition is Inl |[fIn2. More precisely, we have
1. If inlis (LINE U V) or (PLINE W U V) and in2 is (LINE P Q) or (PLINE R P Q),

then the ndg condition is UV |} PQ.

9. If inl is (LINE U V) or (PLINE W U V) and in2 is (BLINE P Q) or (TLINE R P
@), then the ndg condition is —=(UV LPQ).

3. If Inl is (BLINE U V) or (TLINE W U V) and In2 is (BLINE P Q) or (TLINE R P
@), then the ndg condition is UV |f PQ.

C5 (INTER Y In (CIR O P)). Point Y is the intersection of line In and circle (CIR O P)
other than point P. Line In could be (LINE P U), (PLINE P U V), and (TLINE P U
V). The ndg conditions are O # P, Y # P, and line In is not degenerate. Point Y is a
fixed point.



C6 (INTER Y (CIR O; P) (CIR Oy P)). Point Y is the intersection of the circle (CIR Oy
P) and the circle (CIR Oz P) other than point P. The ndg condition is that O, Oz, and
P are not collinear. Point Y is a fixed point.

C7 ( PRATIOY W U V r). Take apoint Y on the line (PLINE W U V) such that WY = UV,
where r can be a rational number, a rational expression in geometric quantities, or a
variable.

If r is a fixed quantity then Y is a fixed point; if r is a variable then Y has one degree of
freedom. The ndg condition is U # V. If r is a rational expression in geometry quantities
then we will further assume that the denominator of r could not be zero.

C8 ( TRATIO Y U V r). Take a point Y on line (TLINE U U V') such that r = %(: %),
where r can be a rational number, a rational expression in geometric quantities, or a
variable.

If r is a fixed quantity then Y is a fixed point; if r is a variable then Y has one degree of
freedom. The ndg condition is the same as that of C7.

Since there are four kinds of lines, constructions C2, C4, and C5 have 4, 10, and 3 possible
forms respectively. Thus, totally we have 22 different forms of constructions.

Definition 3.1 Now class C, the class of constructive geometry statements, can be defined as
follows. A statement in class C is a list S = (C,Cy,...,C, G) where C;, i = 1,...,k, are
constructions such that each C; introduces a new point from the points introduced before; and
G = (Eh, E2) where E; and Ey are polynomials in geometric quantities of the points introduced
by the C; and E; = Ej is the conclusion of the statement.

Let S = (Cy,Cy,...,Ck, (E1, E2)) be a statement in C. The ndg condition of S is the set of ndg
conditions of the C; plus the condition that the denominators of the length ratios in Fq and F»
are not equal to zero.

Example 3.2 (Ceva’s Theorem) Continue from Example 2.10. The constructive description
for Ceva’s theorem is as follows.

(¢ POINTS 4 B C P)

(¢ INTER D (¢ LINE B ¢) (c LINE P A4))
(¢ INTER E (¢ LINE 4 ¢) (¢ LINE P B))
(cINTER F (¢ LINE 4 B) (c LINE P ¢))

AF BD CE
FB DC E =1)

sy
by

The ndg conditions for Ceva’s theorem are Figure 8
BC |fAP;AC | BP;AB [|CP;F # B;D #C;E # A,

i.e., point P can not be on the three sides of AABC and the three dotted lines in Figure 8.
You may wonder that the condition “A, B, and C not collinear” is not in the ndg conditions.
Indeed, when A, B, and C are three different (this comes from the ndg condition) points on the
same line, the Ceva’s theorem is still true (now F = C,D = A, and E = B) and the proofs
based on the area method is still valid in this case. The ndg conditions produced according to



our method guarantee that we can produce a proof for the statement. Certainly, we can avoid
this seemingly unpleasant fact by introduce a new construction: TRIANGLE which introduces
three non-collinear points. But theoretically, this is not necessary.

The 22 constructions are not independent to each other. We now introduce a minimal set of
constructions which are equivalent to all the 22 constructions but much few in number.

A minimal set of constructions consists of C1, C7, C8 and the following two constructions.

C41 (INTER Y (LINE U V) (LINE P Q)).

C42 (FOOTY P U V), or equivalently ( INTER Y (LINE U V) (TLINE P U V))). The ndg
condition is U # V.

We first show how to represent the four kinds of lines by one kind: (LINE U V).

For In = (PLINE W U V), we first introduce a new point N by (PRATIO N W U V 1).
Then In = (LINE W N).

For in = (TLINE W U V), we have two cases: if W, U, V are collinear, In = (LINE N W)
where N is introduced by (TRATIO N W U 1); otherwise in = (LINE N W) where N is given
by (FOOT N W U V).

(BLINE U V) can be written as (LINE N M) where N and M are introduced as follows
(MIDPOINT M U V) (i.e., (PRATIO M U U V 1/2)), (TRATIO N M U 1).

Since now there is only one kind of line, to represent all the 22 constructions by the con-
structions in the minimal set we only need to consider the following cases.

e (ONY (LINE U V)) is equivalent to ( PRATIO Y U U V r) where r is an indeterminate.

e (INTERY (LINE U V) (CIR O U)) is equivalent to two constructions: (FOOT N O U
V), (PRATIOY N N U -1).

e C6 can be reduced to (FOOT N P Oy O3) and (PRATIOY N N P -1).

e For C3, i.e., to take an arbitrary point Y on a circle (CIR O P), we first take an arbitrary
point ). Then Y is introduced by (INTER Y (LINE P @) (CIR O P)).

3.2 The Predicate Form

The constructive description of geometry statements can be transformed into the commonly
used predicate form. We introduce five predicates.

1. Point POINT(P): P is a point in the plane.

2. Collinear COLL(Py, P2, P3): points Py, Py, P3 are on the same line. It is equivalent to
S P PPy = 0.

3. Parallel PARA(Pl, PQ, Pg, P4)Z P1P2 H P3P4. It is equivalent to Splpgpzpz1 =0.
4. Perpendicular (PERP Py, Py, P3, Py): PiP> L P3Py. It is equivalent to Pp,p,p,p, = 0.



5. Congruence (CONG Py, Py, P, Py): Segment Pj P, is congruent to P3Py. It is equivalent
to Pp,p,p, = Ppyp,py-

To transform constructions into predicate forms, we only need to consider the minimal set of
constructions introduced in the preceding subsection.

C41 (INTERY (LINE U V) (LINE P Q)) is equivalent to (COLL Y U V), (COLLY P @),
and ~(PARA U V P Q).

C42 (FOOTY P U V) is equivalent to (COLLY U V), (PERPY PU V),and U # V.

C7 (PRATIO Y W U V r) is equivalent to (PARA Y W U V), 2L =r and U £ V.
C8 ( TRATIO Y U V r) is equivalent to (PERP Y U U V), r = 48U and U # V.

Pyvu

Now a constructive statement S = (C1,---,Cy, (E, F)) can be transformed into the following
predicate form
VYP[(P(C1)A--- A P(Cy)) = (E = F)]

where P(C;) is the predicate form for C; and P; is the point introduced by C;.

We now discuss what geometry properties can be the conclusion of a geometry statement
in C, i.e., what geometry properties can be represented by polynomial equations of geometry
quantities. To see that, let us give an algebraic interpretation for the area and Pythagoras
difference. Let A, B, C, and D be four points in the Euclidean plane. Then Sapcp and Papcp
are propositional to the exterior and inner product of the vectors AC and BD of the quadrilateral
ABC:

Sapcp = %[E,ﬁ], Papep = 2(AC, DB).

So any geometry property that can be represented by an equation of the inner and exterior
products can be the conclusion of a geometry statement. As examples, we show how to represent
several often used geometry properties by the geometry quantities.

(COLLINEAR A B C). Points A, B, and C are collinear iff Sypc = 0.
(PARALLEL A B C D). AB is parallel to CD iff Sycp = Spep.
(PERPENDICULAR A B C D). AB is perpendicular to CD iff Pscp = Ppcp.
(MIDPOINT O A B). O is the midpoint of AB iff 42 = 1.

(EQDISTANCE A B C D). AB has the same length as CD iff Papa = Pope-

(HARMONIC A B C D). A, B and C, D are harmonic points iff % = %-

(COCIRCLE A B C D). Points A, B,C, and D are co-circle iff ScapPepp = PcapPopp-

Example 3.3 (Ceva’s Theorem) Continue from Example 3.2. The predicate form for Ceva’s
theorem is

VA,B,C,P,E,F,D(HY P = CONC)

10



where

HYP= (COLL D B C)A(COLL D AO)A—~(PARA B C A O) A
(COLL E AC)A(COLL E B O) A~(PARA A C B O) A
(COLL F A B)A(COLL F C D)A—~(PARA A B C O) A
B#FAD#CANA#E
AF BD CE 0.

FB DC FEA

4 The Algorithm

Before presenting the method, let us re-examine the proof of Ceva’s theorem. By describ-
ing Ceva’s theorem constructively, we can introduce an order among the points naturally:
A, B,C,P,D,FE, and F, i.e., the order according to which the points are introduced. The
proof is actually to eliminate the points from the conclusions according to the reverse order:
F,E,D,P,C,B, and A. We thus have the proof:

AF Sacp imi i
I — . Socr Eliminate point F.
CE _ Spcp imi i
€= = SASI?P Eliminate point F.
BD ABP M3 i
il Sher Eliminate point D.

Then

AF BD CF _ SacrSpcrSipe _

FB DC EA  SpcpSacrSasp

Thus the key step of the method is to eliminate points from geometry quantities. We will show
how this is done in the next subsection.

4.1 The Elimination Procedures

As mentioned in Section 3, we only need to consider the minimal set of constructions: C1, C7,
C8, C41, C42. We will discuss C1 in Section 4.2. Thus we need to eliminate points introduced
by four constructions from three kinds of geometry quantities.

Let G(Y') be one of the following geometry quantities: Sapy,Sapcy, Papy, or Papcy for
distinct points A, B, C, and Y. For three collinear points Y, U, and V', by Propositions 2.5 and
2.16 we have

Uy YV

T G(V) + £ GUU)

(1) G(Y) 7

We call G(Y) a linear geometry quantity for variable Y. Elimination procedures for all linear
geometry quantities are similar for constructions C7, C41, and C42.

Lemma 4.1 Let G(Y') be a linear geometry quantity and point ¥ be introduced by construction
(PRATIOY W U V r). Then we have G(Y) = G(W) +r(G(V) — G(U)).

11



Proof. Take a point S such that WS = UV. By (I)

WY YS
(V) = 7= G(8) + =—=G(W) = 1G(8) + (1 = )G(V)
By Propositions 2.8 and 2.17, G(S) = G(W) + G(V) — G(U). Substituting this into the above
equation, we obtain the result. Notice that we need the ndg condition U # V. 1

Lemma 4.2 Let G(Y) be a linear geometry quantity and Y be introduced by (INTER Y (LINE
U V) (LINE P Q)). Then

_ SUPQG(V) — SVPQG(U)

G(Y) .
SupvQ
o @ _ SUPQ @ _ SVPQ . . .
Proof. By the co-side theorem, TV = Survo' TV = Surva Substituting these into (I), we
prove the result. I

Lemma 4.3 Let G(Y) be a linear geometry quantity and Y be introduced by (FOOT Y P U
V). Then

G(Y) = PPUVG(VQ)L;;ZPVUG(U)'

UY _ Ppyv YV _ Ppyy it ol
Pmol{. By Proposition 2.14, v = P o = Pore Substituting these into (I), we prove the
result, |

Let G(Y) = Payp. By Proposition 2.16, for three collinear points Y, U, and V'

Uy YV Uy YV

T L s
Since we have obtained the position ratios Q, YV for Y when it is introduced by C7, C41, C42
in the above three lemmas, we can substitute them into (II) to eliminate point ¥ from G(Y).
Notice that in the case of construction C7, we need to use the second formula of Proposition
2.17. The result is as follows.

(I1) G(Y)

Lemma 4.4 Let Y be introduced by (PRATIO Y W U V r). Then we have
Payp = Pawp + m(Pave — Pavs + Pwuv) — (1 = r)Pyvu.
Construction C8 needs special treatment.

Lemma 4.5 Let Y be introduced by (TRATIO Y P @ r). Then we have Sapy = Sapp —
T

1PrPagB-

1

Proof. Let Ay be the orthogonal projection from A
to PQ. Then by Propositions 2.7 and 2.14

Spay _ Spay _ PA1_ Paypq _ Parq
Seqv. Spqv. PQ  FPorq  Porq

12



P . P
Pore OPQy = §Papq. Similarly, Sppy = 5202Spoy = §Ppq. Now Sapy =

Sapp + Sppy — Spay = Sapp — 7PragB- [

Thus Spay =

Lemma 4.6 Let Y be introduced by (TRATIO Y P @ r). Then we have Papy = Papp —
4rSpagB-

Proof. Let the orthogonal projections from A and B to
PY be A and B;. Then

Pppay  Pppayy A1B1 Spag,  Spags

Py py Py py PY Sprqy Spoy

Since PY LPQ, SIQDQY = i@Q . PY>. Then Pypy = 9Py = 4rSpqy. Therefore Pspy =
Papp — Pppay = Papp —4rSpagB- 1

Lemma 4.7 Let Y be introduced by (TRATIO Y P @ r). Then we have

Payp = Papp +1?Ppop — 4r(Sapg + Sppo)-

Proof. By Lemma 4.6,
Papy = 4rSapq, Pepy = 4rSppq-
Then
Pypy = QWQ = 4TSPQY = TQPPQP.
Then Payp = Papp — Papy — Pppy + Pypy = Papp +12Ppop — 4r(Sapg + Sepg)- |1

Now we consider how to eliminate points from the ratio of lengths.

Lemma 4.8 Let point Y be introduced by (INTER Y (LINE U V) (LINE P @)). Then

APQ

S otherwise
CPDQ

a0 UDV
CD

Ay_{ AUV if A is not on UV

Proof. If A is not on UV, let S be a point such that AS = UV. By Propositions 2.4 and 2.8.
AY _ AY _ Sauv _ Sauv
CD ~ AS = Sauvsv =~ Scupv’ 1

Lemma 4.9 Let Y be introduced by (FOOT Y P U V). We assume D # U; otherwise
interchange U and V.

AY [ fpean it AeUV.

CD | g2 ifA¢UV.

Proof. If A€ UV, let T be a point such that AT = CD. By Propositions 2.14 and 2.17

E _ @ _ Ppar _ Ppcap
CD AT  Para  Pope

The second equation is a direct consequence of the co-side theorem. I

13



Lemma 4.10 Let point Y be introduced by construction (PRATIO Y R P @ r). Then we have

AY _ <5 if Ae RY.
D Sirra
Proof. The first case is obvious. For the second case, take points 7" and S such that % =1
and ?:g = 1. By the co-side theorem,
AY AY  Sarr _ Sarrq
CD AS  Sarst Scrpg
Lemma 4.11 Let Y be introduced by (TRATIO Y P Q r).
— Paprg .
o AY _ ] Toroa, if A¢ PY.
CD Saprq=3Prop if A e PY
ScppQ :
AP _YP

Proof. The first case is a direct consequence of Proposition 2.15. If A € PY’, then g;g =555
By the co-side theorem,

ﬁ: SAPQ ‘W: SYPQ _ T’PPQP
CD  Sceppqg’' CD  Scppq  4Scppq

Now the second result follows immediately. I

4.2 Free Points and the Algorithm

For a geometry statement S = (C1,Ca,...,Cy, (E, F)), after eliminating all the nonfree points
introduced by C; from F and F using the lemmas in the preceding subsection, we obtain two
rational expressions E’ and F’ in indeterminates, areas and Pythagoras differences of free points.
These geometric quantities are generally not independent, e.g. for any four points A, B,C, D
we have

Sapc = Sasp + Sapc + Spac-

We thus need to reduce E’ and F’ to expressions in independent variables. To do that, we need
the concept of area coordinates.

Definition 4.12 Let A, O, U, and V be four points such that O, U, and V are not collinear.
The area coordinates of A with respect to OUV are

_ Soua s = Soav . Savv
— — : — ,
Souvv’ Souv Souv

TA

It is clear that x4 +y4 + 24 = 1. Since x 4,y4, and z4 are not independent, we also call x4, y4
the area coordinates of (Q with respect to OUV.

14



It is clear that the points in the plane are in a one to one correspondence with their area
coordinates. To represent £ and F' as expressions in independent variables, we first introduce
three new points O, U, V such that UOLOV. We will reduce E and F' to expressions in the area
coordinates of the free points with respect to to OUV.

Lemma 4.13 For any free points A, B, C, we have

_ (Sove=Sovc)Souat(Sovc—Sova)Sour+(Sova—Sove)Souc

1. Sapc Souv

9. Papo = AB° +CB° — 4AB".

“B2 _ OU (Sova—Sovs)? | OV (Soua—Sous)?
3. AB° = ( ov A ovs)® | ( OS%A oun)®
ouv ouv

——2 ——2
Proof. For the proof of 1, see Case 15 of Algorithm ELIM in [18]. Case 2 is the definition of
Pythagoras difference. For case 3, we introduce a new point M by construction (INTER M
(PLINE A O U) (PLINE B O V)). Then by Proposition 2.12, AB° = AM" + BM". By the
second case of Lemma 4.10, 44 — Saopv — Saoy—Spov. BM _ Saou=Spou e have proved

) ; U ~ Soouv — Souv 7 OV Souv
3. Case 4 is another basic fact taken for granted. I

Using Lemma 4.13, E and F can be written as expressions in OU, OV, and the area coordi-
nates of the free points. Since the area coordinates of free points are independent, £ = F iff £
and F' are literally the same.

Algorithm 4.14 (AREA)

INPUT: S = (C1,Cs,...,Ck, (E,F)) is a statement in C.

OUTPUT: The algorithm tells whether S is true or not, and if it is true, produces a proof for
S.

S1. Fori=k,---,1,do S2, S3, S4 and finally do S5.

S2. Check whether the ndg conditions of C; are satisfied. The ndg condition of a construction
has three forms: A # B, PQ |fUV, or PQ Y UV. For the first case, we check whether
Pipa = 94B> = 0. For the second case, we check whether Spyy = Sguy. For the third
case, we check whether Ppyy = Poyy. If a ndg condition of a geometry statement is not
satisfied, the statement is trivially true. The algorithm terminates.

S3. Let Gy, -, s be the geometric quantities occurring in £ and F. For j=1,---,s do S4.

S4. Let H; be the result obtained by eliminating the point introduced by construction C; from
Gj using the lemmas in this section and replace G; by H; in E and F' to obtain the new
FE and F.

S5. Now FE and F are rational expressions in independent variables. Hence if & = F', S is true.
Otherwise S is false.
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Proof of the correctness. Only the last step needs explanation. If £ = F, the statement is
obviously true. Note that the ndg conditions ensure that the denominators of all the expressions
occurring in the proof do not vanish.

Otherwise, since the geometric quantities in F and F' are all free parameters, i.e., in the
geometric configuration of S they can take arbitrary values. Since E # F, we can take some
concrete values for these quantities such that when replacing these quantities by the correspond-
ing values in F and F', we obtain two different numbers. In other words, we obtain a counter
example for S. I

For the complexity of the algorithm, let n be the number of the non-free points in a statement
which is described using constructions C1-C8. By the analysis in Section 3, we will use at
most 5n constructions in the minimal set to represent the hypotheses (we need five minimal
constructions to represent construction (INTER A (BLINE U V) (BLINE P @))). Then we will
use at most 5n minimal constructions to describe the statement. Notice that each lemma will
replace a geometric quantity by a rational expression with degree less than or equal to three.
Then if the conclusion of the geometry statement is of degree d, the output of our algorithm is
at most degree 3°"d. In the last step, we need to represent the area and Pythagoras difference
by area coordinates. In the worst case, a geometry quantity (Pythagoras difference) will be
replaced by an expression of degree five. Thus the degree of the final polynomial is at most
5d3°™.

Example 4.15 Continue from Example 3.3. The machine produced proof (in Latex form) for
Ceva’s theorem is as follows. In the proof, a L means that b is the result obtained by eliminating

. impli . . .
point P from a; a SELY b means that b is obtained by canceling some common factors from the
denominator and numerator of a; “eliminants” are the results obtained by eliminating points
from separate geometry quantities.

The machine proof The eliminants
_CE BD AF Ar F Sacp
AL CD BF LL=zack
£ —(=Sacr) . E BD CEE Spcp.
—-SBcP AE CD AE —SaBp
E _Spep-Sace . BD BDDSABP
Spcp(—SaBp) <CD cD Sacp

simglify Sacp . BD
Sapp CD

D Sapp-Sacp Stmplify 1
Sapp-Sacp

We use a sequence of consecutive equations to represent a machine proof. It is very easy to
rewrite a proof in consecutive equations as the usual form. For instance, the proof of Ceva’s
theorem on page 11 can be obtained from the above machine proof easily.

5 Producing Short and Readable Proofs

We have presented a complete method for proving geometry statements in class C by consid-
ering a minimal set of constructions. But if only using those five constructions, we have to
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introduce many auxiliary points in the description of geometry statements. More points usually
mean longer proofs. In this section we will introduce more constructions and more elimination
techniques which will enable us to obtain shorter proofs.

5.1 Refined Elimination Techniques

Fach lemma in Subsection 4.1 only gives the elimination result in the general case. In some
special cases, the results are much more simple. For the construction FOOT, we have.

Proposition 5.1 Let point Y be introduced by construction (FOOT Y P U V). Then

Sasu if AB||UV;

S ) Sasp if ABLUV;

ABY = W if U,V, and A are collinear;

W if U,V, and B are collinear.
Papp if AB || UV;

Papy = Papu it ABLUV;
% if U,V, and B are collinear.

Payp = Pyvu 1 ;
e i A=UB=V.

The proof is omitted. We use this kind of refined elimination techniques for all constructions.

Example 5.2 Continue from Example 2.18. The following machine proof of the orthocenter
theorem uses the above proposition.

Constructive description The machine proof The eliminants
( (¢ POINTS 4 B ©) Pach PoculPacs

(c FOOT E B A ©) Ppcn PaonZp

(¢ FOOT F A B 0) H Pios acu=Pacp

(¢ INTER # (¢ LINE 4 F) (¢ LINE B BB)cp
(¢ PERPENDICULAR A B C H) )  simplify )

Since BCLAH and AC1BH, by Proposition 5.1 Pgcg = Peca and Pacy = PacB.
Example 5.3 2 Let M be a point on line AB. Two squares AMCD and BMEF are drawn

on the same side of AB. Let U and V' be the center of the squares AMCD and BMEF. Line
BC and circle VB meet in N. Show that A, F, and N are collinear.

2b This is a problem from the 1959 International Mathematical Olympiad.
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Constructive description F o E
(( ¢ POINTS 4 B)
(¢ ON M (¢ LINE 4 B)) N
(¢ TRATIO ¢ Mm A1) (¢ TRATIO E M B -1) Vv D
(¢ MIDPOINT v E B) %

(¢ INTER N (¢ LINE B¢) (c CIR v B))
(

(EE = BL))
N _ °oT
The ndg conditions:
A#+#B M#+A M+B,B+FE,
B#C,V#B,BC|AE,C # N,and C #T.
The machine proof The eliminants
R p— BT L SABE
(ﬂ)/(g) CT  SAcCE
cN//\CT ENN -
T —Sice . BN CN  (3)(2PcBv—PpcB)
==z 2= Vi
ABE - CN PCBV:§(PCBE)
N Pepv-Sace S E_ l(P )
Sape-(Pcpv—3PpcB) ABEEI 4\TABM
1 SACE=*(PMABC*4SAMC)
v (5PcBE)-Sace E4
- (L _1 P, =P, +4S
Sape-(3PcBE—5PBCB) cBE=PMmBCc+4SBMC
c
E (Pupc+4Spmc)- (3 PMaBc—Samc) PBCBzPBA/IlB+PA1”A
(—2Papm) (Pupc—Peep+4SEMc) Samc= — Z(PA]VIA)
c
C —(PeuB—PamB) (Pevp+Pama—Papm) Pyapc=PemB—PaBm
Papym-(—PanmB—Panma) Spucs — %(PAMB)
—PainsAM | p (2Panas-(AMY2_p. . AM PyscSPauap
M (=Papa-==+Papa)(2Papa(55)°—Papa-£=) .
= AB AB AB P M ( A _qy.p )
(~Papa-22 +Papa)-(2Papa-(24)2—Pypa-2Y) ABM= AB ABA
AB AB AB P My T2
simplify AMA=EABA (ﬁ)
= 1 M, AM

Pamp=(55—1)-Papa-

M, Gaf
PBMB=(%*1)2'PABA

. . . . c M
In this example, we use several refined elimination techniques, such as Py pc=Ppayp, Papma =

Pag A-(%)Z’. The geometric meaning for them are very clear.

5.2 Co-Circle Points

We first introduce a new construction.

C9 (CIRCLE A;--- A ), (s > 3). Points Aj--- A are on the same circle. There is no ndg
condition for this construction. The degree of freedom of all the points is s + 3.

Let Ay--- As be points on a circle with center O. We choose a point, say A, as the reference
point. Then point A; is uniquely determined by the oriented angle % (we assume that all

angles have values from — to w). We thus can also talk about oriented chords.

Lemma 5.4 Let A, B,C, D be points on a circle with center O and diameter 4, and A the
reference point. We denote /B to be ZA%. Then
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IS _ BC-CD-BD
BCD — 25 .

Pgep =2BC - DC cos(/D — /B).
BC = §sin(/C — /B).

This lemma can be proved using the sine and cosine laws. In this lemma, we actually use
something more than the basic propositions in Section 2. Some simple properties of trigonometric
functions are used. These properties can be developed using the basic propositions in Section 2
alone. See [2] for more details.

Using Lemma 5.4, an expression of areas and Pythagoras differences of points on a circle
can be reduced to an expression of the diameter § of the circle and trigonometric functions of
independent angles. Two such expressions have the same value iff when substituting, for each
angle a, (sina)? by 1 — (cosa)? the resulting expression should be the same. We thus have a
complete method for this construction. The reader may have noticed that this construction can
only be the first construction in the description of the statement. Otherwise, in the next step,
we do not know how to eliminate those trigonometric functions introduced in this step.

Example 5.5 (Simson’s Theorem) Let D be a point on the circumscribed circle of triangle
ABC. From D three perpendiculars are drawn to the three sides BC, AC, and AB of triangle
ABC. Let E, I, and G be the three feet respectively. Show that E, F' and G are collinear.

Here is the input to our program.
(b CIRCLE A B ¢ D)
(FOOT E D B )
(FOOT F D a0
(FOOT ¢ D A B)
(INTER & (b LINE E F) (b LINE 4 B))

AG _ AGy
(3¢ = 56,

The ndg conditions: B# C, A# C, A#+ B, EF || AB, B # G, B # G1.

Here is the machine proof. The last step of the proof (CO;C") uses Lemma 5.4 to eliminate
the co-circle points.

. The eliminants
The machine proof
N _ AGq Cil SAEF
(i)/(AG*I) BGq 7SBEF
BG BG, o
AGG _Ppap
BG —PaBp

G1 Sppr . Aa
SAer BG g F—Pcap-SACE
AEF=

Paca
S graabtpr, SmprtEagpSane
£ —Ppap-Pacp-Sapp-Paca SACEE—FBCDSABC
(=PcapSacge)Papp-Paca BCB
simplify  Pgap-Pacp-Saps SABEE%.CS;BC
Poap-Sace Pasp Papp— — 2(%.;@@05(/‘1}))
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Ppop= — 2(CD-BC-cos(BD))
Poap=2(AD-AC-cos(CD))
Pepp=2(BD-BC-cos(CD))
Pacp= — 2(CD-AC-cos(AD))
Ppap=2(AD-AB-cos(BD))

E Ppap-Pacp-Popp-Sasc-Peos

Pocap-(—Ppcp-Sapc)-PaBp-PcB
simplify  Ppap-Pacp-Posp
—Pcap-PecpPaBp

co—cir  (2AD-AB-cos(BD))-(—2CD-AC-cos(AD))-(2BD-BCcos(CD))
© —(2AD-AC-cos(CD))-(—2CD-BC-cos(BD))-(—2BD-AB-cos(AD))
simplify 1

Example 5.6 (The General Butterfly Theorem.) As in the figure, A, B, C, D, E, F are
six points on a circle. M = ABNCD;N = ABNEF;G = ABNCF;H = ABN DE. Show

that MG BH AN __

AG NH MB

Constructive description c
((bCIRCLE A BC D E F) E
(bINTER M (b LINE D ¢) (b LINE 4 B)) H o) G

(b INTER ~ (b LINE E F) (b LINE 4 B)) AN nNSm [ /B

(bINTER ¢ (b LINE 4 B) (b LINE ¢ F))
(bINTER # (b LINE D E) (b LINE A B))

MGEAE _ BN EA) )
AG NH ‘AB AN

The eliminants

The machine proof

MG BH
AG _NH
BJW AB

AB AN

T

4  SppE .

~ _BM AB SpEN
AB AN

X
Q

b
Q

Q

& —Scrm-SBDE
BM AB .S .S
AB AN CDENWACE

|=

—Scrm-SBDE (—SAEBF)-SAEF

BM
=% SaEBr-SpEr-SaBE-SaCF

simplify  Scpy-Sppe-Sapr

BM g .S .S
AB DEF'®PABE'PACF

M (-Scpr-Sapc)Sepr-Sapr(=SacsDp)
(=SBcp)-Sper-SaBE-SAacr-(—SacBD)

Slmp“fy ScprSapcSBDESAEF
SpcpSpDEF-SABESACF

co—cir (~DF- CF CD) (- BC AC’ AB) (-DE-BE- BD) (—EF-AF-AE)-((2d))*

(~CD-BD-BC)-(—EF-DF-DE)-(—BE-AE-AB)-(—CF-AF-AC)-((2d))*

simpli fy 1

Example 5.7 (Pascal’s Theorem on a Circle) Let A, B,C, D, E, and F be six points on a
circle. Let P = ABNDF, Q = BCNEF,and S = CDNFEA. Show that P,Q, and S are

collinear.
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BHHSBDE

NH SDEN

MGG Scrm

AG ~ SAcF

g NSpEr-SABE
DEN="_SAEBF

ABNSAEBF

AN~ SAEF

BMM Spcp

AB  SacBD

Sop IIESCDF Sapc

__SACED

.. _CF-AFAC
ACF=""("2)d

o FPAR.AB
ABE— (—2)~d

o _BF-DR.DE
DEF=""(_3)d

o _GbBp.AC
BCD=— ( 2)d

g EF-AF-AE
AEF= ( 2)

DE-BE-BD
SBDE=""("3)4
g, _BCAC-AB
ABC— (72)-(1
o _DBrCRcD
CDF— (—2)~d



Here is the input to the program.

((bCIRCLE ABCDFE)
(bINTER P (b LINE b F) (b LINE 4 B))

(bINTER @ (b LINE F E) (bLINE BC)) a
(bINTER s (b LINE E 4) (b LINE ¢ D)) \\
HﬂNg@subLmEP@(bLmEcm)

cs _ CSi
(55 = 55,))

The ndg conditions:

DF [ AB, EF || BC, AE |{CD, PQ ||/CD, D # S, D # S,.

The machine proof

(2)/(E)

51 Sprq | s
Scpq Ds
S Sace-Sprg

ScpQ-SADE

g Sace (—Spep-SBcF)-SBFCE
(=Scre-SBcp)-Sape-(—SBFCE)

simplify  —S,cp-Sppp-Spck
ScrE-SBCcPSADE

P —Sace(=Spre-Sapp)Spcr-SapBr
Scre(=Sepr-Sapc)Sape(—SADBF)

simplify  S,cp-Sprp-Sapp-Secr
ScFESBDFSABC SADE

co—cir (—~CE-AE-AC)-(—FE-DE-DF)-(—~BD-AD-AB)(—~CF-BF-BC)-((2d))*

(-FE-CE-CF)-(—DF-BF-BD)-(—BC-AC-AB)-(—DE-AE-AD)-((2d))*

simplify 1

5.3 Area Coordinates and Special Points of Triangles

We introduce a new construction.

C9 ( ARATIO AO U V ro ry ry). Take a point A such that

Soav

~ Savv B
- b
Souv

- b
Souv

ro

The eliminants
C51 S15cPQ

DS, Spbrq
S S SacE
DS SADE
IS Q—=Scre-Spcp
CPRT  SprcE
g QSpep-SBCF
PPR="" Sprck
g P—-Sppr-SaBc
BCP= " SADBF
g PSprE-SABD
DEP=""S.pBF
DE-AE-AD
(=2)d
BC-AC-AB
(=2)d
DF-BF-BD
(=2)-d
FE-CE-CF
(—2)d
CF-BF-BC
(=2)d
BD-AD-AB
SABDzi(_Q),d
o _FBDL.DF
DFE=""(—2)4
CE-AE-AC
(=2)d

SADE=
Sapc=
Sppr=
ScrE=

Spcr=

Sace=

_ Sovua
Souv

are the area coordinates of A with respect to OUV. The ro, ry, and ry could be rational
numbers, rational expressions in geometric quantities, and indeterminates. The ndg con-
dition is that O, U, and V are not collinear. The degree of freedom for A is dependent on

the number of indeterminates in {ro,ry,ryv}.
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Lemma 5.8 Let G(Y) be a linear geometry quantity and Y be introduced by (ARATIO Y O
UV roryry). Then
GY)=roGO) +ryGU) + ryG(V).

Proof. Without loss of generality, let OY intersect
UV at T. If OY is parallel to UV, we may consider
the intersection of UY and OV or the intersection
of VY and OU since one of them must exist. By
Proposition 2.5,

oY YT oYy UT vV YT
GY)==GT)+ =G0) = =(=G(V)+ =GU G(O
(V) = Z2G(T) + S=G(0) = Z=(ZZG(V) + Z=G(U) + = G(O).
By the co-side theorem, YT _ rO; oy _ SOUYV UT _ Souy . IV _ Sovv Substituting

v’ UV Sovyv’ UV ~— Souyv
these into the above formula, we obtain the desufed result. I

Lemma 5.9 Let G(Y) = Payp and Y be introduced by (ARATIOY O U V ro ry ry). Then

GY)=r0GO)+ryGU) +ryG(V) — 2(rOrUW2 + TOTVWQ + TUTVWQ).

Proof. Continue from the proof of Lemma 5.8, By (II) on page 12

G(Y) = ZG(T) + LLG(0) - L XL Poro
G(T) =ZLav)+ ZLGU) - L pyyy.

Substituting G(T') into G(Y), we have
GY)-r=-5mmluvu — G5 oro = —rv UVPUVU —raA OTPOT07
where r = ToG(O) +ryGU) +ryG(V). By (II),

TV UT TV
Poro = WPOVO + & Povo — 7 e Fuvu-

OYUTTV oYYT

>~<

Then

GY)—-r
TVP OYUTP OYTVP Y OYWWP
= —ry— —r —ro—= —
Vovitvww o togr gy ove T oo oy vl st ovov VY
S S,
— —rorvPovo — roruPovo — rury (— e 4 29UV
Sovyv  Souvv

= —rorvPovo —roruPovo —rurvPuvu. 1

Pyvy

If Y is introduced by construction ARATIO and we need to eliminate Y from G = g;g.
One of O, U, and V, say O, satisfies the condition that A,Y, and O are not collinear. Then

G= éqo¢‘ Now, we can use Lemma 5.8 to eliminate Y.
OCAD

By using the construction ARATIO, we can treat the following often used constructions
easily.
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(CENTROID G A B C). G is the centroid of triangle ABC'. This is equivalent to

(ARATIO G A B C % %)

Lo =

The ndg condition is that A, B, C are not collinear.

(ORTHOCENTER H A B C). H is the orthocenter of the triangle ABC. This is equiv-
alent to.

P P P P P, P,
(ARATIO H A B C A302 ACB BAC2 BCA CAB2 CBA)
165% ¢ 165% 5 1652 5,
The ndg condition is that A, B, C are not collinear.

(CIRCUMCENTER O A B C). O is the circumcenter of triangle ABC. This is equivalent
to

PpcpPpac PscaPape PapaPacn )
325% 5o 32582 5o 325% 5o

The ndg condition is that A, B, C are not collinear.

(ARATIO O A B C

(INCENTER C I A B) I is the center of the inscribed circle of triangle ABC. This
construction is to construct point C' from points I, A, and B. This is equivalent to

2P1aBPrBa PrapPrpr PrpaPrar
ParpPapa PyrPapa PyrPapa

(ARATIO C T A B —

The ndg conditions are A # B and I A is not perpendicular to IB.

The reader may check these results by direct calculation or just treat them as basic propositions.
The construction INCENTER needs some explanation. If three vertices of a triangle are given
and we need to find the coordinates of the incenter, we generally have an equation of degree
four.
using inequalities. What we do here is to reverse the problem: when an incenter or an excenter
and two vertices of a triangle are given the third vertex is uniquely determined and can be
constructed using the constructions in this paper.

The reason is that we can not distinguish the incenter and the three excenters without

Remark 5.10 In this section, we actually use the centroid theorem, the orthocenter theorem
(Example 2.18), the circumcenter theorem, and the incenter theorem, in the proof of more
complicated theorems. The four theorems themselves can be proved using the basic propositions.

A C
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Example 5.11 A line is drawn through the centroid of a triangle. Show that the sum of the
distances of the line from the two vertices of the triangle situated on the same side of the line is
equal to the distance of the line from the third vertex. (Figure 16)

Constructive description The machine proof The eliminants
( (b POINTS A B C X)

(bCENTROID G 4 ¢y —(§5+2E) ZELgexs
(b FOOT D 4G Xx) _BE g, 8 BEES
b FOOT E B G X) L TApraxeTooxae = Saxe
E b FOOT r ¢ ¢ X) ~(axe) G _ 1
(EBLEC _ _j)) E —(=ScxaSaxcg—SBxa-Saxa) Saxc=— §(SACX+SABX)
DA DA - Saxc(—Saxc)

G 1
simplify  —(Scxc+Sexc) pxe ) 3(Sscx—Sanx)
B G
Saxe SOXG=§(Sch+SACX)
G —(3Sacx+3Sapx)(3)
(—=Sacx—SaBx)-((3))?

simpli fy )

The results SELSCXG apnd BEESBXG g16 obtained by refined elimination techniques.
AD  Saxa AD Saxa

Example 5.12 Two tritangent centers divide the bisector on which they are located, harmon-
ically (Figure 17).

Constructive description The machine proof The eliminants
Al 5 I‘_A PIBA

( (b POINTS B ¢ 1) (_%)/(%) 52 = Proo
Popr-S

(bINCENTER A 1 ¢ B) L Pipp pIBDgw

(bINTER D0 (b LINE a4 1) (b LINE B=y) 1D IAD=SBrca

D Sscr

(b INTER 1, (b LINE 4 1) (b TIENEZHG-LonSoia A=Pep-Ppip-Poor
IBASBICASBCI PIBA= =P, 0 Pron

(b HARMONIC A D 1 14) ) simplify  Pogr-Spra A=Ppip-Ppcr-Spci
= Pipa-Spor Ppic-Ppen

Spra

A Popr(=Pprp-Ppci-Spci)-Ppic-Pece
(=PcprPers-Ppcr)-SepcrPercPece

simpli fy 1

The last tow eliminants are obtained by refined elimination techniques.

Example 5.13 (Euler’s Theorem) The centroid of a triangle is on the segment determined
by the circumcenter O and the orthocenter H of the same triangle and divides OH in the ratio

of 1:2 (Figure 18).

Constructive description The machine proof The eliminants
P
( (b POINTS 4 B C) Y Popu23Popy—2Poso
(b CIRCUMCENTER 0 4 B 0) H - PAB2CP PCB]\JA—/I%(PBCB"FPABC)
(b CENTROID M A B ©) . CBMTEEOBO 01 )
P (3 P, =5 P
(b LRATIO H M 0 -2) - —GPCBOJF%?%C(B)JF:&PABC croTRRer
(b PERPENDICULAR A H BC)) O —Papc(2)
" —2Papc
simpli fy L
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Po Bog%( Pgcp) is obtained by refined elimination techniques.

6 Conclusion Remarks

We have implemented the algorithm using Common Lisp (AKCL) on a NeXT workstation. [5] is
a collection of 400 geometry theorems proved by our prover and machine proofs of 100 theorems.
The following tables contain some timing and proof length statistics about the examples in this
paper and the 400 theorems. Maxterm means the number of terms of the maximal polynomial
occurring in a proof.

Examples | 2.10 | 2.18 | 5.3 5.5 | 5.7 | 5.6 | 5.11 | 5.12 | 5.13
Time (secs) | 0.06 | 0.01 | 0.750 | 0.03 | 0.05 | 0.03 | 0.067 | 0.033 | 0.01
Maxterm 1 1 3 1 1 1 2 1 3

Table 1. The examples in this paper

The Length of the Proofs The Proving Time
Maxterm No. of Theorems | Time (secs) | No. of Theorems
m =1 61 t<0.1 117
m =2 53 01<t<05 120
2<m<5 136 0.6<t<1 58
5<m<10 57 1<t<2 47
10 <m <20 45 2<t<H 36
20<m <94 48 5<t <3l 22

Table 2. Statistics for the 400 theorems

From Table 2, we can see that our program is very fast and can produce short proofs for
many difficult geometry theorems. If we set a standard that a short proof means the maxterm
in the proof is less than or equal to 10. Then 76.7 percent (or 307) of the proofs of the 400
theorems produced by our prover are short and can be considered readable.

There are still many problems not solved or unsolved satisfactorily for this approach. Though
a large portion of the geometry theorems in text book of high school or college geometry can be
proved by our prover, there are still equational theorems which are not in class C, e.g., theorems
which can not be described constructively. These will be our further research topics. From
Table 2, the proofs produced by our prover for many theorems are still too long. Therefore we
need more elimination techniques to obtain shorter proofs.

Comparing to the algebraic methods [14, 1, 9, 11], the area method uses geometry invariants
like areas and Pythagoras differences as basic geometry quantities and the proofs produced by
the area method are generally short and readable. On the other hand, the scope of the algebraic
methods are larger than that of our current method.

Comparing to the synthetic approach, the area method is much more efficient and is complete
for a class of geometry statements. Also the area method is of diagram independent. We choose
the basic propositions according to the standard that most theorems can be deduced from
them easily instead of the usual standard of independence and simplicity. Most of the synthetic
approaches use the properties of congruent triangles as their basic propositions. The difficulty of
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using congruent triangles is that rarely are there congruent triangles in the diagram of a geometry
statement and there exists no automated method of adding auxiliary lines to obtain congruent
triangles. So it is difficult for the approach based on congruent triangles to be complete for a
specific class of geometry statements.

References

1]

2]

S.C. Chou, Mechanical Geometry Theorem Proving, D.Reidel Publishing Company, Dor-
drecht, Netherlands, 1988.

S. C. Chou, X. S. Gao, & J. Z. Zhang, Automated Production of Traditional Proofs for
Constructive Geometry Theorems, Proc. of Fighth IEEE Symposium on Logic in Computer
Science, p.48-56, IEEE Computer Society Press, 1993. ( TR-92-6, Department of Computer
Science, WSU, November, 1992.)

S. C. Chou, X. S. Gao, & J. Z. Zhang, Mechanical Geometry Theorem Proving by Vector
Calculation, Proc. of ISSAC-93, Kiev, p.284-291, ACM Press.

S. C. Chou, X. S. Gao, & J. Z. Zhang, Automated Production of Traditional Proofs for
Theorems in Fuclidean Geometry, II. The Volume Method, TR-92-5, CS Dept., WSU,
September, 1992. (submitted to J. of Automated Reasoning)

S. C. Chou, X. S. Gao, & J. Z. Zhang, Automated Production of Traditional Proofs for
Theorems in Euclidean Geometry, IV. A Collection of 400 Geometry Theorems, TR-92-7,
CS Dept., WSU, November, 1992.

S.C. Chou and W.F. Schelter, Proving Geometry Theorems with Rewrite Rules, J. of
Automated Reasoning 2(4), 253-273, 1986.

H. Coelho & L. M. Pereira, Automated Reasoning in Geometry Theorem Proving with
Prolog, J. of Automated Reasoning, vol. 2, p. 329-390.

H. Gelernter, J.R. Hanson, and D.W. Loveland, Empirical Explorations of the Geometry-
theorem Proving Machine, Proc. West. Joint Computer Conf., 143-147, 1960.

D. Kapur, Geometry Theorem Proving Using Hilbert’s Nullstellensatz, Proc. of SYM-
SAC’86, Waterloo, 1986, 202-208.

K. R. Koedinger and J. R. Anderson, Abstract Planning and Perceptual Chunks: Elements
of Expertise in Geometry, Cognitive Science, 14, 511-550, (1990).

B. Kutzler and S. Stifter, Automated Geometry Theorem Proving Using Buchberger’s Al-
gorithm, Proc. of SYMSAC’86, Waterloo, 1986, 209-214.

A.J. Nevins, Plane Geometry Theorem Proving Using Forward Chaining, Artificial Intelli-
gence, 6, 1-23.

Tarski, A, A Decision Method for Elementary Algebra and Geometry, Univ. of California
Press, Berkeley, Calif., 1951.

26



[14]

[15]

[16]

[17]

[18]

Wu Wen-tsiin, On the Decision Problem and the Mechanization of Theorem in Elementary
Geometry, Scientia Sinica 21(1978), 159-172; Also in Automated Theorem Proving: After
25 years, A.M.S., Contemporary Mathematics, 29(1984), 213-234.

L. Yang, J.Z. Zhang, & X.R. Hou, A Criterion of Dependency Between Algebraic Equa-
tions and Its Applications, Proc. of the 1992 international Workshop on Mechanization of
Mathematics, p.110-134, Inter. Academic Publishers.

J. Z. Zhang, How to Solve Geometry Problems Using Areas, Shanghai Educational Publish-
ing Inc., (in Chinese) 1982.

J. Z. Zhang & P. S. Cao, From Education of Mathematics to Mathematics for Education,
Sichuan Educational Publishing Inc., (in Chinese) 1988.

J. Z. Zhang, S. C. Chou, & X. S. Gao, Automated Production of Traditional Proofs for
Theorems in Euclidean Geometry, I. The Hilbert Intersection Point Theorems, TR-92-3,
Department of Computer Science, WSU, 1992. (to appear in Annals of Mathematics and
Artificial Intelligence)

27



