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Abstract. We present a complete method of implicitization for general ra-
tional parametric equations. We also present a method to decide whether the
parameters of a set of parametric equations are independent, and if not, repa-
rameterize the parametric equations so that the new parametric equations have
independent parameters. We give a method to compute the inversion maps of
parametric equations with independent parameters, and as a consequence, we
can decide whether the parametric equations are proper. A new method to
find a proper reparameterization for a set of improper parametric equations of
algebraic curves is presented.

1 Introduction

Methods of converting rational parametric equations to their implicit equa-
tions are of fundamental importance in computer modeling and computer graph-
ics. Several methods to find the implicit equations for a set of rational para-
metric equations were presented. The first method was based on elimination
theories [Sederberg, 1984]. The second method was based on Gröbner bases (see
[Arnon & Sederberg, 1984], and in more general case [Buchberger, 1987]). The
above methods are only complete for polynomial parametric equations. Com-
plete methods to find the implicit equations of space curves and surfaces were
presented in [Chuang & Hoffman, 1989], [Kalkbrener, 1990], and [Manocha &
Canny, 1990]. Recently, a method to compute the images of parametric equa-
tions was given in [Wu, 1989] and [Li, 1989]. But the following kind of parametric
equations is not considered in the above methods. The following example shows
that in general case, the parameters of a set of parametric equation may not be
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independent. One might think that the parametric equations

(1.1) x = u + v, y = u2 + v2 + 2uv − 1, z = u3 + v3 + 3u2v + 3v2u + 1

represent a space surface. Actually, they represent a space curve, because let
t = u + v, then the above parametric equations become

x = t, y = t2 − 1, z = t3 + 1.

For the above example, each point of the curve corresponds to infinitely many
values of u and v. Hence the solution of the inversion problem is not clear. This
paper addresses the implicitization of this kind of rational parametric equations
with any dimensions.

We show that each set of rational parametric equations determines a unique
implicit irreducible variety. We give a method to find a set of polynomials the
zero set of which is the implicit irreducible variety of the parametric equations.
We also give a method to decide whether the parameters of a set of para-
metric equations are independent, and if not, reparameterize the parametric
equations so that the new parametric equations have independent parameters.
We present a close form solution to the inversion problem, i.e., we present a
method to compute the inversion maps of parametric equations with indepen-
dent parameters, and as a consequence, we can decide whether the parametric
equations are proper, i.e., whether the implicit variety is not multiply traced by
the parametric equations. If the parametric equations are not proper, naturally
we might ask whether we can reparameterize them so that the new parametric
equations are proper. The answer is negative in general. However, in the case of
algebraic curves, this is true by Lüroth’s theorem [Walker, 1950] and Sederberg
presented a method to find proper parametric equations [Sederberg 1986]. In
this paper, we shall show that as an application of our method, we can also find
a proper reparametrization for a set of improper parametric equations of an
algebraic curve and our method does not need to randomly select sample points
on the curve as Sederberg’s method does. For the case of algebraic surfaces,
if the ground field K is the complex field C then there always exists a proper
reparametrization for the original improper parametric equations [Castelnuovo
1894]. However if the base field K is Q or R this need not to be the case [Segre
1951]. For the complex case, it seems there is no algorithm to transform an
improper parametric equations to a proper one. For some experiment results,
see [Gao & Chou, 1990]. If the variety represented by the parametric equations
are of dimension > 2, then even for K = C there are improper parametric
equations that do not have proper reparametrization [Artin & Mumford 1971].

This paper is organized as follows. In section 2, we give some basic definitions
and properties of parametric equations, and state the main theorem of this
paper. In section 3, we give a proof of the main theorem. In the appendix,
we give some results about Ritt-Wu’s decomposition algorithm which is the
computation tool of our algorithms.
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2 Preliminaries and the Main Result

Let K be a computable field of characteristic zero, e.g., Q. We use K[x1, ..., xn]
or K[x] to denote the ring of polynomials in the indeterminates x1, ..., xn. Unless
explicitly mentioned otherwise, all polynomials in this paper are in K[x]. Let
E be a universal extension of K, i.e., an algebraic closed extension of K which
contains sufficiently many independent indeterminates over K. For a polynomial
set PS, let

Zero(PS) = {x = (x1, ..., xn) ∈ En | ∀P ∈ PS, P (x) = 0}.

For two polynomial sets PS and DS, we define Zero(PS/DS) = Zero(PS) −
∪d∈DSZero(d).

Let t1, ..., tm be indeterminates in E which are independent over K. For
nonzero polynomials P1, ..., Pn, Q1, ..., Qn in K[t1, ..., tm], we call

(2.1) x1 =
P1

Q1
, ..., xn =

Pn

Qn

a set of (rational) parametric equations. We assume that not all Pi and Qi are
constants and gcd(Pi, Qi) = 1. The image of (2.1) in En is

IM(P, Q) = {(x1, ..., xn) | ∃τ ∈ Em(xi = Pi(τ)/Qi(τ))}.

Lemma 2.2. We can find polynomial sets PSi and polynomials di, i = 1, ..., t,
such that

(2.2.1) IM(P, Q) = ∪t
i=1Zero(PSi/{di}).

Proof. It is obvious that IM(P, Q) = {(x1, ..., xn) | ∃τ ∈ Em(Qi(τ)xi−Pi(τ) =
0 ∧Qi(τ) 6= 0)}. Thus by the quantifier elimination theory for an algebraically
closed field [Tarski, 1951] or [WU, 1989], we can find the PSi and di such that
(2.2.1) is correct. .QED.

Definition 2.3. Let V be an irreducible variety of dimension d > 0 in En.
Then (2.1) is called a set of parametric equations of V if (1) IM(P, Q) ⊂ V ;
and (2) V − IM(P, Q) is contained in an algebraic set with dimension less than
d.

In Definition 2.3, we also say that (2.1) defines V , or V is the implicit variety
of (2.1).

Theorem 2.4. Each set of parametric equations of the form (2.1) defines a
unique irreducible variety in En whose dimension equals to the transendental
degree of K(P1/Q1, ..., Pn/Qn) over K.

Proof. Let I = {F ∈ K[x] | F (P1/Q1, ..., Pn/Qn) = 0}, then I is a prime ideal
with a generic point η = (P1/Q1, ..., Pn/Qn). Let V = Zero(I), then it is clear
that IM(P, Q) ⊂ V . We still need to prove that V − IM(P, Q) is contained
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in an algebraic set of less dimension than that of I. By (2.2.1), IM(P, Q) =
∪t

i=1Zero(PSi/{di}). Furthermore we can assume that each Ideal(PSi) (the
ideal generated by PSi) is a prime ideal and di is not in Ideal(PSi) by the
decomposition theorem in algebraic geometry. Since η ∈ IM(P, Q), η must be
in some components, say in Zero(PS1/{d1}). Note that η is a generic point
for I and Zero(PS1) ⊂ V , then Ideal(PS1) = I. Hence V − IM(P, Q) =
Zero(I ∪ {d1}) − ∪t

i=2Zero(PSi/{di}). Thus V − IM(P, Q) is contained in
Zero(I ∪{d1}) the dimension of which is less than the dimension of I since d1 is
not contained in I = Ideal(PS1). Since η is a generic point of I, the dimension
of I is equal to the transendental degree of K(P1/Q1, ..., Pn/Qn) over K. It is
obvious that V is uniquely determined. .QED.

Definition 2.5. The parameters t1, ..., tm of (2.1) are called independent if
the parametric equation (2.1) defines a variety of dimension m, or

equivalently the transendental degree of K(P1/Q1, ..., Pn/Qn) over K is m
(by Theorem 2.4).

Definition 2.6. Inversion maps for (2.1) are functions

(2.6.1) t1 = f1(x1, ..., xn), ..., tm = fm(x1, ..., xn)

such that xi = Pi(f1, ..., fm)/Qi(f1, ..., fm), i = 1, ..., n, are true on IM(P, Q),
i.e., functions which give the parameter values corresponding to points on the
image of (2.1).

Definition 2.7. (2.1) is called proper if for each (a1, ..., an) ∈ IM(P, Q) there
exists only one (τ1, ..., τm) ∈ Em such that ai = Pi(τ1, ..., τm)/Qi(τ1, ..., τm),
i = 1, ..., n.

The following algorithmic theorem is the main result of this paper.

Main Theorem 2.8. For a set of parametric equations of the form (2.1),

(a) we can find a polynomial set PS such that Zero(PS) is the implicit variety
of (2.1);

(b) we can decide whether the parameters t1, ..., tm are independent, and if
not, reparameterize (2.1) so that the parameters of the new parametric equations
are independent;

(c) if the parameters of (2.1) are independent, we can construct a set of
polynomial equations

B1(x1, ..., xn, t1) = 0, B2(x1, ..., xn, t1, t2) = 0, ..., Bm(x1, ..., xm, t1, ..., tm) = 0

which determine ti as functions of x1, ..., xn. These functions are inversion maps
of (2.1). Furthermore, (2.1) is proper iff the Bi are linear in ti, i = 1, ..., m.

(d) if m = 1 and (2.1) is not proper, we can reparameterize (2.1) such that
the new parametric equations are proper.
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3 A Proof of the Main Theorem

In this section, we will use some notions and results about Ritt-Wu’s decom-
position algorithm which can be found in the appendix of this paper.

3.1. The Implicit Variety and Independent Parameters

For a set of rational parametric equations of the form (2.1), let PS = {F1,
· · · , Fn} and DS = {Q1, · · · , Qn}, where Fi = Qixi − Pi, i = 1, ..., n. It is
obvious that

IM(P, Q) = {(x1, ..., xn) | ∃(τ1, · · · , τm) ∈ Em

(τ1, · · · , τm, x1, · · · , xn) ∈ Zero(PS/DS)(3.1)

Note that under the variable order t1 < · · · < tm < x1 < · · · < xn, PS =
{F1, · · · , Fn} is an irreducible ascending chain in K[t, x]. Thus by Theorem A.3
(i.e., Theorem A.3 in the Appendix), PD(PS) (for the definition of PD, see the
Appendix) is a prime ideal of dimension m. Note that DS is the set of initials
of the polynomials in PS, then by (A.1.1) we have

(3.2) Zero(PS/DS) = Zero(PD(PS)/DS).

By Theorem A.6 and (3.2), we can find an irreducible ascending chain ASC
under the new variable order x1 < · · · < xn < t1 < · · · < tm such that

(3.3) Zero(PS/DS) = Zero(PD(ASC)/DS).

ASC has the same dimension m as PS. Hence ASC contains n polynomials.
Then by changing the order of the variables properly, we can assume ASC to
be

A1(x1, · · · , xd+1), · · · , An−d(x1, · · · , xn),(3.4)
B1(x1, · · · , xn, t1, · · · , ts+1), · · · , Bm−s(x1, · · · , xn, t1, · · · , tm)

where d + s = m. Note that the parameter set of ASC is {x1, ..., xd, t1, ..., ts}.
Lemma 3.5. The transendental degree of K ′ = K(P1/Q1, · · · , Pn/Qn) over K
is d = m− s > 0.

Proof. By (2.1), the transendental degree of K ′ = K(P1/Q1, · · · , Pn/Qn) over
K is the maximal number of the independent quantities x1 = P1/Q1, ..., xn =
Pn/Qn, hence is d by (3.4). Since not all of Pi and Qi are constants in K and
gcd(Pi, Qi) = 1, some xi must depend on the t effectively. Hence d = m−s > 0.
.QED.

By Definition 2.5, we have

Corollary 3.5.1. The parameters of (2.1) are independent iff s = 0.

Theorem 3.6. The implicit variety of (2.1) is V = Zero(PD(A1, · · · , An−d)).
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Proof. By Theorem 2.4 and Lemma 3.5, (2.1) defines a variety W of dimension
d. By (3.1) and (3.3), it is clear that IM(P, Q) ⊂ V . Then W ⊂ V . By
Theorem A.3, V is also of dimension d. Therefore V = W . .QED.

Remark. An algorithm to compute a basis of PD(A1, · · · , An−d) can be found
in [Chou, Schelter & Yang, 1990]. Thus we have proved (a) of the Main Theorem
2.8.

For example (1.1), let PS = {x− u− v, y − u2 − v2 − 2uv + 1, z − u3 − v3 −
3u2v−3v2u−1}. By Theorem A.6, under the variable order x < y < z < u < v,
we have Zero(PS) = Zero(PD(ASC1)) where

(3.6.1) ASC1 = {y − x2 + 1, z − x3 − 1, v + u− x}.
By Theorem 3.6, (1.1) defines a curve Zero(y − x2 + 1, z − x3 − 1). Note that
s = 1, then the variable u and v are not independent.

Theorem 3.7. If the parameters of (2.1) are not independent, we can find a
set of new parametric equations

(3.7.1) x1 = P ′1/Q′1, · · · , xn = P ′n/Q′n

which has the same implicit variety as (2.1) and with independent parameters.

Proof. By Theorem A.6, we can find (3.4) from (2.1). By Theorem A.5, we
can assume the initial Ii of Bi and the initial Jj of Aj in (3.4) are polyno-
mials of the parameters of ASC, i.e., of x1, ..., xd, t1, ..., ts. Since Qi is not in
PD(F1, ..., Fn) = PD(ASC), by Lemma A.4 we can find a nonzero polynomial
qi of the parameters of ASC, i.e., x1, ..., xd and t1, ..., ts, such that

(3.7.2) qi ∈ Ideal(A1, ..., An−d, B1, ..., Bm−s, Qi).

Let M =
∏m−s

i=1 Ii ·
∏n

j=1 qj . Then M is a polynomial of x1, ..., xd, t1, ..., ts. Let
h1, ..., hs be integers such that when replacing ti by hi, i = 1, ..., s, M becomes
a nonzero polynomial of x1, ..., xd. Let P ′i and Q′i be the polynomials obtained
from Pi and Qi by replacing ti by hi, i = 1, ..., s. Now we have obtained (3.7.1).
The proof that (3.7.1) satisfies the condition is somewhat lengthy and can be
found in [Gao & Chou, 1990]. .QED.

Remark. It is worth noting that almost all integer sets can be used to obtain
the new parametric equations.

For example (1.1), by (3.6.1), M in the proof of Theorem 3.7 is 1. Hence u
can take any integers, say 1. Then (1.1) becomes

x = v + 1, y = v2 + 2v, z = v3 + 3v2 + 3v + 2

which defines the same curve as (1.1) and has an independent parameter v.

3.2. Inversion Maps and Proper Parameterization

Now let us assume that the parameters t1, ..., tm of (2.1) are independent, i.e.,
s = 0, then (3.4) becomes

A1(x1, · · · , xm+1), · · · , An−m(x1, · · · , xn)
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B1(x1, · · · , xn, t1), · · · , Bm(x1, · · · , xn, t1, · · · , tm)(3.8)

Theorem 3.9. Using the same notations as above, we have

(a) Bi(x, t1, ..., ti) = 0, i = 1, ..., m, determine ti, i = 1, ..., m, as functions of
x1, ..., xn which are a set of inversion maps for (2.1).

(b) (2.1) is proper if and only if Bi are linear in ti, i = 1, ..., m, and if this is
true, the inversion maps are

t1 = I1/U1, ..., tm = Im/Um

where the Ii and Ui are polynomials in K[x].

Proof. Note that Bi = 0, i = 1, ..., m, are the relations between the x and
t1, ..., ti in PD(PS) which have the lowest degree in ti. Hence a set of solutions
of ti in terms of the x of the equations Bi(x, t1, ..., ti) = 0, i = 1, ..., m gives
a set of inversion maps for (2.1). To prove (b), note that different solutions of
Bi = 0 for the same x give same value for the xi. Since (3.8) is irreducible, (b)
comes from the fact that a point x ∈ IM(P, Q) corresponds to one set of values
for ti iff Bi are linear in ti, i = 1, ..., m. Let Bi = Iiti − Ui where Ii and Ui are
in K[x] then the inversion maps are ti = Ui/Ii, i = 1, ..., m. .QED.

Remark. If (2.1) is proper, then the variety V defined by (2.1) is a rational
variety, i.e., V is birational to Em.

We have proved (c) of the Main Theorem 2.8, and (d) of the Theorem 2.8 can
be summarized as the following theorem.

Theorem 3.10. If m = 1 and (2.1) is not proper, we can find a new parameter
s = f(t1)/g(t1) where f and g are in K[t1] such that the reparametrization of
(2.1) in terms of s

(3.10.1) x1 =
F1(s)
G1(s)

, ..., xn =
Fn(s)
Gn(s)

are proper.

Proof. Since m = 1, (2.1) defines a curve C. Let K ′ = K(P1/Q1, ..., Pn/Qn)
be the rational field of C. Note that P1(t1) − Q1(t1)lm = 0 where lm =
P1(t1)/Q1(t1) ∈ K ′, then t1 is algebraic over K ′. Let f(y) = ary

r + ... + a0 be
an irreducible polynomial in K ′[y] for which f(t1) = 0. Then at least one of
ai/ar, say η = as/ar, is not in K. By a proof of Lüroth theorem (p149, [Walker,
1950]), we have K ′ = K(η). This means that xi = Pi/Qi can be expressed as
rational functions of η and η can also be expressed as a rational function of
xi = Pi/Qi, i.e., η is the new parameter we seek. Now the only problem is how
to compute the f .

By Theorem 3.9, we can find an inversion map B1(x1, ..., xn, t1) = 0 of the
curve. Then B1 is a relation between the x and t1 with lowest degree in t1
module the curve, in other words B′

1(y) = B1(P1/Q1, ..., Pn/Qn, y) = 0 is a
polynomial in K ′[y] with lowest degree in y such that B′

1(t1) = 0, i.e., B′
1(y)
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can be taken as f . Once s = f(t1)/g(t1) has been found, the Fi and Gi can be
computed easily. .QED.

Theorem 3.10 also provides a new constructive proof for Lüroth’s Theorem,
i.e., we have

Corollary 3.11. Let g1(t1), ..., gr(t1) be elements of K(t1), then we can find a
g(t1) ∈ K(t1) such that K(g1, ..., gr) = K(g).

Example 3.12. Consider the following parametric equations

(3.12.1) x =
t4 − 4t2 + 1

t4 + 1
, y =

2
√

2(−t3 + t)
t4 + 1

.

Let PS = {(t4+1)x−(t4−4t2+1), (t4+1)y−2
√

2(−t3+t)}, DS = {t4+1}, and
by Theorem A.6, under the variable order x < y < t we have Zero(PS/DS) =
Zero(PD(ASC)) where

ASC = {y2 + x2 − 1,
√

2(x− 1)t2 − 2yt−
√

2x +
√

2}.
By Theorem 3.5 and Theorem 3.9, the implicit variety of (3.12.1) is the unit
circle y2 + x2 − 1 = 0 and (3.12.1) is not proper. An inversion map of (3.12.1)
can be found by solving the following equation

√
2(x− 1)t2 − 2yt−

√
2x +

√
2 = 0

e.g., t = (y−
√

y2 + 2(x− 1)2)/(
√

2x−√2). To find a set of proper parametric
equations for the unit circle, by Theorem 3.10 we select a new parameter s =
y/(x − 1) = (t2 − 1)/(

√
2t). Expressing x and y in terms of s using Theorem

A.6, we have
x = (s2 − 1)/(s2 + 1), y = 2s/(s2 + 1)

which is a set of proper parametric equations for the unit circle with inversion
map s = y/(x− 1).
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Appendix. Some Results about Ritt-Wu’s Decomposition Algorithm

A detailed description of Ritt-Wu’s Decomposition algorithm can be found in
[Wu, 1984]. The implementation of the algorithms in this paper is based on a
new version of the decomposition algorithm in [Chou & Gao, 1990].
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Let P be a polynomial. The class of P , denoted by class(P ), is the largest
p such that some xp actually occurs in P . If P ∈ K, class(P ) = 0. Let a
polynomial P be of class p > 0. The coefficient of the highest power of xp in P
considered as a polynomial of xp is called the initial of P . For polynomials P
and G with class(P ) > 0, let prem(G;P ) be the pseudo remainder of G wrpt
P .

A sequence of polynomials ASC = A1, ..., Ap is said to be an ascending (ab.
asc) chain, if either p = 1 and A1 6= 0 or 0 < class(Ai) < class(Aj) for 1 ≤ i < j
and Ak is of higher degree than Am for m > k in xnk

where nk = class(Ak).

For an asc chain ASC = A1, ..., Ap with class(A1) > 0, the pseudo remainder
of a polynomial G wrpt ASC is defined inductively as

prem(G;ASC) = prem(prem(G;Ap);A1, ..., Ap−1).

Let R = prem(G;ASC), then from the computation procedure of the pseudo
division procedure, we have the following important remainder formula:

(A.1) JG = B1A1 + · · ·+ BpAp + R

where J is a product of powers of the initials of the polynomials in ASC and
the Bi are polynomials. For an asc chain ASC, we define

PD(ASC) = {g | prem(g, ASC) = 0}

By (A.1), a zero of ASC which does not annul the initials of the polynomials
in ASC is a zero of PD(ASC). More precisely, we have

(A.1.1) Zero(PD(ASC)) = Zero(ASC/J)
⋃
∪d∈JZero(PD(ASC) ∪ {d})

where J is the set of initials of the polynomials in ASC.

For an asc chain ASC = A1, ..., Ap, we make a renaming of the variables.
If Ai is of class mi, we rename xmi as yi, other variables are renamed as
u1, ..., uq, where q = n − p. The variables u1, ..., uq are called a parameter set
of ASC. ASC is said to be an irreducible ascending chain if A1 is irreducible,
and for each i ≤ p Ai is an irreducible polynomial of yi in Ki−1[yi] where
Ki−1 = K(u)[y1, ..., yi−1]/D where D is the ideal generated by (A1, ..., Ai−1) in
K(u)[y1, ..., yi−1].

Definition A.2. The dimension of an irreducible ascending chain ASC =
A1, ..., Ap is defined to be DIM(ASC) = n− p.

Theorem A.3. ([Wu, 1984]) If ASC is an irreducible ascending chain then
PD(ASC) is a prime ideal with dimension DIM(ASC).

Lemma A.4. ([Wu, 1984]) Let ASC be an irreducible asc chain with param-
eters u1, ..., uq. If Q is a polynomial not in PD(ASC), then we can find a
nonzero polynomial P in the u alone such that P ∈ Ideal(ASC, Q) (i.e., the
ideal generated by Q and the polynomials in ASC).
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Appendix

Theorem A.5. Let ASC be an irreducible asc chain with parameters u1, ..., uq,
we can find an irreducible asc chain ASC ′ such that PD(ASC) = PD(ASC ′)
and the initials of the polynomials in ASC ′ are polynomials of the u.

Proof. It is a direct consequence of Lemma A.4. .QED.

Theorem A.6. (Ritt–Wu’s decomposition algorithm) For finite polyno-
mial sets PS and DS, we can either detect the emptiness of Zero(PS/DS) or
find irreducible asc chains ASCi, i = 1, ..., l, such that

Zero(PS/DS) = ∪l
i=1Zero(PD(ASCi)/DS)

The decompositions satisfies (a). there are no i 6= j such that PD(ASCi) ⊂
PD(ASCj); and (b). prem(d,ASCi) 6= 0 for all d ∈ DS and i = 1, ..., l.

Proof. See [Chou & Gao, 1990]. .QED.
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