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Abstract. For a parametric polynomial systemy; = 0,---,p, = 0,d; #
0,---,ds # 0 wherep; andd; are in K[uy,- -, up,x1,- -, 2, and theu are
parameters, we present a method for identifying all parametric values for which
the system has solutions for thgand at the same time giving the solutions (for
the z;) of the system in an explicit way, i.e., the solutions are given by polyno-
mial sets in triangular form. The algorithm has been implemented and several
examples reported in this paper show the algorithm is of practical value.

1. Introduction

Consider the following algebraic equation system from [BU1]. We need to
solvex, xq, x3, x4 in terms of the parametets, a., as, a4.

Ty — Qg + Qg = 0

JZ4+ZE3+ZL’2+I1—CL4—(I3—G1:O (11)

3Ty + T124 + Loz + 123 + (—as — a1)ag — ara3 =0

T1T3%4 — ara3a4 = 0,

In the literature of solving polynomial equations, e.g., [BU1,LA1,WU3], para-
metric systems as (1.1) are solvediin= B[x1, 22, 3, 24 WhereB = Q(ay, az, as, ay)
is the field of rational functions af;. The solutions of (1.1) ik are given by the
equations (1.2) below [BU1].

2.2 2
3 2 ajasa .
Ty — x] + Cary — (aij’;;;;g =0
To+ 372 + ¢y +ag —ag =0 (1.2)

x3+c5x%+cﬁx1—a4—a3—a1:0
:174—a4+a2:0



where ther; are inQ(aq, - - -, a4). (1.2) only gives the general solutions of (1.1)
and some special solutions of (1.1) are missing, eg= 0, 1 = 0, 52 = ao,
x3 = as, r4 = a4 — a Provide a solution of (1.1), but are not in (1.2).

In this paper, we present a method of solving parametric systems like (1.1).
Our method works as follows: for a parametric polynomial system:

pl:07."7pr20’d1?AO’"WdS?éO

wherep; andd; are inK [uy, - - -, un,, x1, - - -, 2,] and theu are parameters, we can
construct some unmixed quasi algebraic sets,%ay = 1,---, s, in the para-
metric space. For each there is a polynomial set SC; C K[U, X| — K[U] in
triangular form such that for a parametric vatdes S;, if 2’ is a solution ofASC;
corresponding:’ which do not make the leading coefficients of the polynomials
in ASC; zero (all such solutions consist of an unmixed quasi algebraic set) then
(u', 2') is a solution of the parametric system. Furthermore all the solutions of the
system can be obtained in this way. Sint€C; are in triangular form, we can
solve ther; successively in an explicit way.

In [SI1], similar problems for linear parametric systems are studied carefully
by W. Sit. In [WE1], Weispfenning studied parametric systems through the con-
cept of comprehensive Gbner bases. His work, though also deals with para-
metric systems, is with different emphasis and uses different methods with our
algorithm. An advantage of our approach is that it can be extended to deal with
algebraic differential equations, details of which will be given in another paper.

We present our method in two forms. The coarse form (Section 3.2) is a di-
rect application of Wu's projection algorithm [WU2]. The difference is that Wu'’s
projection algorithm eliminates the variables one by one while our algorithm here
can eliminate all the variables for a triangular polynomial set directly. Another
improvement is that by using our extended affine dimension theorem (see The-
orem (4.4), [CG1]), we may insure that each non-empty set in the projection is
an unmixed quasi algebraic set. The refined form (Section 3.3) uses the concept
of regular chain which has been studied by many researchers [CY1, KA1, LAL,
ZY1]. For the refined form, we not only know the dimension but also the degree
of the unmixed solution sets obtained by our algorithm. We also give a method to
reduce solving of certain one dimensional systems to solving of zero dimensional
systems.

The basis of our algorithm is the coarse form of Ritt-Wu’s decomposition al-
gorithm (see Theorem 3.2) which only uses the operatians, x, and pseudo re-
mainder of polynomials. In essence the decomposition algorithm is to decompose



a quasi algebraic set into the union of quasi algebraic sets in triangular form using
generalized polynomial remainder sequendaghe implementation, we actually

use many techniques, e.g., the Collin’s reduced prs, reduced prs for several poly-
nomials [LI1], polynomial factorization, affine dimension theorem, techniques
from Grobner bases, etc., to enhance the efficiency [CG2]. For partial analysis of
the complexity of the algorithm, see [GM1]. We implemented our algorithm and
the examples reported in this paper show that our algorithm is quite efficient.

It is easy to see that Algorithm 3.5 itself provides a new quantifier elimination
method over algebraic closed fields. As a direct application, we may give the
dimensions of all the components of the parametric systems. Other applications
may be seen from the solution of various parametric systems from various fields.

In Section 2, we present our main result. In Section 3, several methods are
provided. Section 4 is a collection of several examples.

2. Statement of the Problem

Let K be a computable field of characteristic zero ahe= Bz, ..., x,] Or
B[X] where B = Kluy,---,u,]. A polynomial (ab. pol) inB is called au-
pol. For P € B[X] — B, we can writeP = cqz} + ... + c1z, + co, Where
¢; € Blxy,...,xp_1], p > 0, andey # 0. We callp theclass ¢, theinitial, x,, the
leading variable andd the leading degreef P respectively, orlass(P) = p,
init(P) = cq, lv(P) =, ld(P) = d.

A sequence of polsASC = Ay, ..., A, in B[X] is said to be ajuasi as-
cending &b. asc) chainor in triangular form if eitherp = 1 andA; # 0 or
0 < class(4;) < class(A;) for 1 < ¢ < j. The variable sefzy,---,z,} —
{lv(Ay),---,lv(A,)} is called theparameter sedf ASC. We define the dimen-
sion of ASC to be DIM(ASC) = n — p, i.e. the number of the parameters of
ASC.

Let PS be a pol setir[U, X|. For an algebraic closed field containingk’,
let Zero(PS) ={a € E™" |VP € PS, P(a) =0}

For two pol sets”S andDS in K[U, X], we define

Zero(PS/DS) = Zero(PS) — UgepsZero(d).
Following [WU2], aquasi varietyis defined to beD = U!_, Zero(PS;/DS;)
wherePS; and DS; are pol sets inK[U, X]. D is calledunmixedif the PS; are
prime ideals with the same dimension.

For pol setsPS and DS in K[U, X], we define the projection with the as
follows

Projy, ..., Zero(PS/DS) =



{e€ E™ | Ja € E"s.t.(e,a) € Zero(PS/DS)

If m = 0, we defineProj,, ..., Zero(PS/DS) = Truth it Zero(PS/DS) #
(), and False otherwise. It is well known that the projection of a quasi variety is
also a quasi variety [JA1].

For two pol sets

PS = {pb' ' '7pt} andDS — {d17 e 7d7"}
in K[U, X], consider the following parametric equation system
(21) p1:O/\~~-/\pt:0/\d17&0/\--~/\d7«7é0

or equivalentlyZero(PS/DS). Following [SI1], we have the following defini-
tion.
Definition 2.2. A solution functionof (2.1) is a pair(S, ASC) where S is an
unmixed quasi variety i and ASC'is a triangular set inBB[X] — B such
that (a) for each/ € S, let ASC’ be obtained by replacing the by «/, then
Zero(ASC'/J") (whereJ’ is the production of the initials of the pols iSC' with
the « replaced byu') is an unmixed quasi variety of dimensi@W M (ASC) =
n —|ASC|in E™; (b) for eachw’ € Zero(ASC'/J'), (v',2") € Zero(PS/DS).
We call(v/, z) a solution of(S, ASC'). We call the dimension af ero(ASC’/.J’)
the dimension of the solution functid$, ASC).
Definition 2.3. A coverof (2.1) is a set of solution functions of (2.4)S;, ASC}),
oo, (S5, ASC) } such that eacl/, ') € Zero(PS/DS) is a solution of some
(Si, ASC;).
Theorem 2.4. We have an algorithm to find a cover for the parametric system
(2.1).

For a proof of Theorem 2.4, see Section 3. We first state some consequences.
Let

C = {(Sla ASC1), T (857 ASOS)}

be a cover of (2.1). Then we have

(1) DIM(ASC;) =n — |ASC;|,i = 1,---, s are all the possible dimensions
of the parametric system (2.1).

(2). LetM C C be the set of thosgs;, ASC;) such thatS; is of dimensionn,
theninK (U)[X] we haveZero(PS/DS) = Us; ascemZero(ASC;/J;UDS).

(3) Those(S;, ASC;) with dimension zero provide all the isolated solutions of
(2.1).



3. Methods of Solving Parametric Systems
3.1. Preliminaries

For polsP andG with P ¢ K, let prem(G; P) be thepseudo remaindeof
G with P in variablelv(P). For a quasi asc chaiASC = A, ..., A, such that
A1 € K, we define the pseudo remainder of a golvith ASC' inductively as

prem(G; ASC) = prem(prem(G; Ap); Ax, ..., Ap_q).

Lemma3.1.Let ASC be a quasi asc chain [ X|— K and.J = []pcagc init(P).
If Zero(ASC/J) # () thenZero(ASC/J) is an unmixed quasi variety of dimen-
sionDIM(ASC).
See Theorem (4.4) [CG1] or Lemma (4.5) in the TR version of [CG1],

We have the following coarse form of Ritt-Wu’s decomposition algorithm.
Theorem 3.2.For two finite pol set?S and DS in K[X], we may either prove
Zero(PS/DS) = () or find quasi asc chaindSC;, i = 1, ..., [, such that

(3.2.1) Zero(PS/DS) = U._, Zero(ASC;/{J;} U DS)

whereJ; is the production of the initials of the pols S C;.

Proof. See [WUL1]. For our implementation of the algorithm, see [CG2];
3.2. A Coarse form

Lemma 3.3.Let B = X!, B;zt € K|[U, z,] whereB; are u-pols, then

(3.3.1) Proj,, Zero(0/B) = Ui_,Zero(0/B;)

It is easy to check.

Lemma 3.4. Let P, be pols inK[U, ;] such thatl = degree(P,z,) > 0 and
degree(Q,z1) > 0, thenProj,, Zero(P/QI) = Proj,, Zero(/RI) wherel is
the initial of P and R = prem/(Q¢, P).

See p. 306 [JA1] or p.44 [WU2]. I
The following algorithm provides a proof of Theorem 2.4.
Algorithm 3.5.

INPUT: Two pol setsPS andDS = {d,,---,d.} in K[U, X].

OUTPUT: A cover ofZero(PS/DS).

S1. LetD = []_,d;. By Theorem 3.2, inK'[U, X] under the variable order
U < < Uy <1 < -+ < Ty, We have

_
9. = Uiy i/ DJi
(3.5.1) Zero(PS/D) = U;_,Zero(ASC;/D.J;)

Fori=1,---,1,do S2 - S8.



S2. Without loss of generality, we writéSC; asBy, - - -, B,,, Ay, - - -, As, where
B; are u-pols andv(A;) = xpij-s,, J=1,---, ;.

S3. LetZ = Zero(ASC;/J;D). If degree(D,x,) = 0, then Proj, 7 =

Zero(ASC'/J;D) whereASC" = {By,---,B,,, A1,---, As,_1}; goto S6. Oth-
erwise, goto S4.

S4. Nowdegree(D, x,,) # 0. By Lemma 3.4,

Proj., 7 = Proj,, Zero(ASC'/J;R)

whereR = prem(D!As) A,).
S5. LetR = S°¢_, Bk, by (3.3.1),

Proj,, Zero(ASC' | J;R) = Ut_,Zero(ASC' | J;Ey).

S6. By now, we have obtaineBlroj,, 7. Repeating S3-S5, we may eliminate
Tn—1, Tn—2, -+ Tni1—s, SiMilarly (note that now/; may involvex,,,, etc). At
last, we have

wnZ =VUj_1Zero({B, -, By, }/Gk)

Proje,., -

)

whereG, is the product of the initials of th8; and a polH;, € KU, z1, - -, zy_s,].

S7. If Hy involveszy, - - -, x,_,, we use (3.3.1) repeatedly to eliminate them. We
have
(3.5.2) Si = Projy, ..., 2 =U,_Zero({By,- -, By, }/F)

whereF}, is the product of the initials of th&; and a u-pol. We may write (3.5.2)
as

(3.5.3) S = Zero({By, - B,}/1) — Zero({ - 27))

wherel; = [T}, init(B;).

S8. Note thatin (3.5.2),By, - - -, B, } is in triangular form and’}, is the product

of the initials of theB; and a u-pol. Then we may compute = Proj,, ....u,,Si

by repeating S3-S7. ID;, = Truth (S; # 0), by Lemma 3.1(S;, ASC;) is a
solution function ofZero(PS/DS). If D; = False, Zero(ASC;/J;D) = . We
discard it. From (3.5.1), all solution functions thus obtained furnish a cover for
Zero(PS/DS). [

Example 3.6. Consider an example from [WU3]. LétS = {y? — zay + 2% +
z—1,xy+ 22— 1,2+ 22+ 22 —r?} wherer is the parameter. Under the variable
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orderr < z < = < y, we have:Zero(PS) = Zero(ASCy/x) U Zero(ASCs)
where
ASCy = {23 — 22 +1r? -1,
ot (22— )t 2t — 222+ 1,
xy + 2% — 1}
ASCy={rt —4r? + 3,z +r* — 2,2, 9> —r? + 1}
For ASC, following S2-S7 in Algorithm 3.5, we haveroj, . ,Zero(ASC, /z) =
E. ForASC,, itis clear thatProj, ., Zero(ASCy) = Zero(r*—4r?+3). There-
fore a cover ofZero(PS) is {(E, ASC)), (Zero(r* — 4r? + 3), ASC%)} where
ASCY = {z+12—2,x,y*—r?+1}. Sincer*—4r2+3 = (r>—1)(r?—3), we obtain
another cover{(E, ASC,), ({£1},{z—1,z,9*}), {£V3}, {z+1,2,5> —2})}.
3.3. ARefined Form
For two polsP,Q € B[X] such thatP ¢ B, we define the resultant @
and P in the following way: if degree(Q,lv(P)) = 0 defineresl(Q; P) = Q;
otherwiseresl(Q; P) is the resultant of” and ) in the variablelv(P). For a
quasi asc chaidlSC' = A, ..., A, such that4, ¢ B, we define the resultant of a
pol G and ASC inductively as

R =resl(G; ASC) = resl(resl(G; A,); Ar, ..., Ap_).

ThenR € B[X] and there exist pol§' andC; such thatR = CG+ C1A; +- -+
CpA,.

AquasiascchaidlSC = A, ..., A, is calledregularif resi(init(A;); Ay, -+, Ai—1) #

0,7=2,---,p. We need the following properties of regular asc chains.
Lemma 3.7. Let ASC' = A;,---, A, be aregular asc chain iR [z, - -, z,],
thenZero(ASC/J) is an unmixed quasi-variety of dimensiaw M (ASC) and
degreeD = [[}_, ld(A;).
We renamév(A;) asy; and the parameters giSC asv, - - - , v, Whereg = n—p.
LetR;, = resl(zmt(Al), Al, s 7Ai—1)’ 1= 2, L. ThenR = th(Al) H?:Q R; 7&
0 involves thev alone. For each’ € E9 such thatR(v") # 0, we replace the
by v in A; and get a pol} € E[z;] such thatdegree( A}, z,) = ld(A;) since
R(v") # 0. Thus A’ hasld(A,) solutions:zy 1, - -, 1404,). FOr each solution
of A}, sayx;,, replacingv, z; by v', z;;, in A, we get a pold), € E[z,]. Since
R(v") # 0, we haveinit(As)(u',z11) # 0 or degree(Al, x2) = ld(Ay). Thus
A, hasld(A,) solutions. Continuing in this way, at last we obtdinzeros of
Zero(ASC/J) and it is clear that they are all the zeros&fro(ASC/J) corre-
sponding to the parameter valuife The unmixity comes from Lemma 3.1.

A quasi asc chaillSC' is called ap-chainif the initial of every pol inASC



involves the parameters ofSC alone. It is clear that a p-chain is a regular asc
chain.
Lemma 3.8.Let ASC = Ay, ---, A, be aregular asc chain i[X], then we can
find a p-chainASC” such that

Zero(ASC/J) = Zero(ASC'/J")U Zero(ASC U{J'}/J)
where J and J’ are the product of the initials of the pols SC and ASC’
respectively.
As in the proof of Lemma 3.7, we rename(A;) asy;. Let A, = Lyf - U;
where; is the initial of A;. We putA] = A;. Fori = 2,--- p, let R;(u) =
resl(l; Ay, -+, A 0, then there exisf);, B; ; € A such that
(3 t8(13 ' Rl(U/) :1&% 1 Bz]A] ’
(382)A’ AQi + (X B A)yz—R 4 Q,U;.
LetQ = [T}, Q; an ndizZ H ltis clear thalZero(ASC/J) Zero(ASC/JQ)U
Zero(ASC,{Q}/J). From (3 8. 1),Zer0(ASC’U{Q}/J) Zero(ASCU{L [TV, QiL;}/J)
= Zero(ASC U{R}/J). By (3.8.1) and (3.8.2),

Zero(ASC/JQ) = Zero({Ay, AsQa, -+, AQp}/JQ)
= Zero(ASC'/J")

ili j=1

(consider inductively fromp to 1). We have completed the proof. I

Remark. The usefulness of regular chains lays to the facts that we may obtain a
decomposition of the form (3.2.1) such that eac$iC;; is a regular chain without
using pol factorization [ZY1, KA1]. Now we have the refined form of solving
parametric algebraic systems.

Algorithm 3.9.

INPUT: PS'is a pol set ink [U, X].

OUTPUT: A cover ofZero( PS). Furthermore, for each solution functiosi;, ASC;)
in the cover,ASC; is a p-chain.

S1. By Theorem 3.2, ik [U, X] we haveZero(PS) = U._, Zero(ASC;/{J:}).

By the Remark after Lemma 3.8, we may assufte’; are regular asc chains.

By Lemma 3.8, we may further assum&C; are p-chains. For=1,--- [, do
S2 -S4,

S2. Without loss of generalitylSC; can be written a$3,,---, B,,, A1, -+, As,
whereB; are u-pols andv(A;) = Tpij_s;, j = 1, -+, 8.

S3. SinceASC; is a p-chain,

Proje, ., ,, e, Zero(ASC;i/ J;)
= Zero({Bi, -, By, }/Ji).
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S4. SinceB; are free ofr;, we may use (3.3.1) repeatedly to obtain the

Si = Projg, .., Zero(ASC;/J;)
= U;_Zero({By, -, By, }/F)

where eaclt; is the product of the initials of th&; and a u-pol. SincelSC; is
a p-chain,F;, are pols of the parameters dfSC; alone. ThereforeS; # () and
(S;, ASC;) is a solution function foZero(PS). [
Example 3.10.Let PS be the same as in Example 3.6. The decomposition in S1
of Algorithm 3.9 isZero(PS) = U2_, Zero(ASC;/ J;) where
ASCy = {23 — 22 +r2 -1,
ot 4 (22 —r?)a? 4+ 2t — 222 4+ 1,
(rt—4r* +3)y+ (=22 + (r* = 1)z —r* + 1)2*
+((r* =122+ (=r* +2r? = 1)z 4+ 2r* — 2)a, };
ASCy={rt —4r* + 3,z +r* = 2,m, 9> — r? + 1};
ASCs ={r* —1,z,2* — 2> + 1,y + 2 — 2};
ASCy={r* =3,z +1,2% — 2,y};

ASCy = {r* — 3, 22— 2242, ot + (22 = 5)a? — 42 + 1,
5y + (22 — 1)a® + (=42 — 3)z}.
ASC;,i =1,---,5 are p-chains. The other steps are trivial.

3.4. A Fast Method for Special Systems
For a polynomial sePS = {p1,-- -, p,} wherep; € K[uy, -+, U, T1,- -, T,],
consider the following system

(3.11) pr=0A---Ap,=0

We further assume that for each special valtef the u, (3.11) only has finite
number of solutions for the;. It is clear that for such a systeffero(PS) is of
zero dimension ik (u)[X]. Therefore, ink (u)[X] we have

(3.12) Zero(PS) = U._, Zero(ASC;/J;)

whereDIM(ASC;) = 0,i =1,---,t. By Lemma 3.9, we may assume that each
ASC; is a p-chain. Furthermore, we assum&C; C K|[u, X|.

Theorem 3.13.Assume the conditions in the above paragraph. Theii[in X|

we have

(3.13.1) Zero(PS) = U'_, Zero(ASC;/J;) U Zero(PS U {J})
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whereJ = [T'_, J; € K[u.

Since for anyu’, (3.11) only has finite number of solutions, the dimension of
Zero(PS) must be< m. On the other hand, by the affine dimension theorem (ref.
e.g., Theorem (4.4) [CG1]), each irredundant componerffeob(PS) is of di-
mension> m. ThereforeZero(PS) is an unmixed variety of dimension. Thus,
in Ku,z], Zero(PS) = U._,Zero(PD(ASC;)) Since Zero(PD(ASC;)) =
Zero(ASC;/J;) UZero(PD(ASC;) U{J;}), (3.13.1) is true. I

If m = 1, the above results have the following simple form. When decom-
posing (3.11) inK [uy, z], Let Z' = Zero(ASC’/.J’) be a zero dimensional com-
ponent of Zero(PS) where ASC' = Ay(u1), As,- -+, A,. If Ay is not a factor
of J (in Theorem 3.13) the&’ must be redundant and can be removed. Further-
more, to solve (3.11), we may first solve the zero dimensional sy&tem( P.S)
in K (uy)[X] and the remaining zeros a#&ro(PS U {J}) which is of zero di-
mension inK[u;, X]. Therefore we need solving two zero dimensional systems.
Solving of zero dimensional systems is relatively easy. Once the decomposition
of Zero(PS) is given, we may obtain a cover dfero(P.S) easily.

Example 3.14.Let PS be the same as in Example 3.6. From the decomposition
in Example 3.6, we know that this system satisfies the conditions of this section.
In Q(r)[z, z,y|, we haveZero(PS) = Zero(ASC,) whereASCY is the same as

in Example 3.10. Then by Theorem 3.14 (v, z, z, y| we have

Zero(PS) = Zero(ASC,/J1) U Zero(PS U {J,})

whereJ; = r* — 4r2 + 3.

4. Examples
We have implemented the algorithm in a SUN-3/50 using Common Lisp. The
following are some examples sovled by our program based on Algorithm 3.9.
Example 4.1.System (1.1) is to find thEquilibrium Points of Chemical Systems
[BG1,BUL,WEL1]. InQ[ay, - - -, x4), Zero((1.1)) = UY_, Zero(ASC;/ J;) where
ASCy = {(ay — az)x1 — ajas,
(ag — as)xe + a3 + (—asz — 2as — ay)ay
+(ag + a1)as + a3 + ajaz;
T3 — Ay,
Ty —ay + aslk;
ASCy = {(ay — az)r1 — ajay,
(CL4 — CLQ)IQ — Q904 + CL% + a1as,
T3 — as,
T4 — Qg + CLQ};
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ASCg = {(CL4 - ag)l'l — agay,

(ay — as)Te — asay + asas + a3,
T3 — ay,
Ty —ay + as};

ASO4 = {ag, ay — A2,T9 —|— 1 — A2,T3 — CL1,ZL'4};

ASC5 = {ag, as — a2,T9 + 1 —a1,T3 — a2,$4};

ASCs = {a1, a4 — ag, 3 + 1 — a2, T3 — a3, Ty };

ASCqr = {a1, a4 — ag, Ty + 11 — a3, T3 — Ay, T4 };

ASCg = {CLQ, Qy,T9 —+ r1 —ap,r3 — as, 334},

ASOQ = {CLQ, Ay, T + r1 —as,rz — ay, I4}.

Since theASC; are p-chains, we may obtain a cover of (1.1) trivially.
Example 4.2.In [GC1], we gave a method of findingversion Maps of Rational
Parametric EquationsBut some special solutions with lower dimensions are not
considered in the method. Using the method in this paper, we may find a complete

inversion map. Considering the following parametric equations:
= Al 2v2(—t3+t)

T e AT .
The problem of finding inversion maps is actually to salve terms ofx andy.
Using Algorithm 3.5, a cover isf(Zero(z? 4+ 4> — 1/x — 1), v/2(x — 1)t? — 2yt +
V2(~x +1)); (Zero(z — 1,y),1)}.
Example 4.3. To find the equilibrium points of the following Lorentz system
[LU1].

Ty = xo(13 —x4) — 11 +
Ty = x3(xy — T1) — XTo + €
xy = x4(r —22) — 23+ C
¥y =x1(ry —13) — T4+ C

Let PS = {zy(x3—x4) — 21+, 23(0s —21) — 2o+ ¢, w4(x1 —29) — 3+, 21 (09—

x3) — x4 + c}. We haveZero(PS) = U2, Zero(ASC;/ J;) where allASC; are
p-chains. The asc chains are too long (two pages) to print here. They can be found
in [GC2]. Itis easy to find a cover of the system from the decomposition. Four
of the ten asc chains are already given in [LU1]. This example need the special
techniques of Section 3.4.

Example 4.4. Consider a system comes from the analysidNetiral Network
[KAL]. Let PS = {z2*+zy*—cz+1,yz? + (22 —c)y+1, (y*+2°—c)z+1} where

c is the parameter. We havéero(PS) = Ui_, Zero(ASC;/J;) in Qle, z,y, 7]

where

11



ASCy = {

ezt — 223 — 222 — 2c2 — 1,

2y — 2¢%23 + 4e2? + (B — 2)z + &, 20 — 2c22% + 4e2® +

(€ =2)z+
ASCy = {22 —3c2? + 2 + 2, cy — 223 +2cz—1, T —2};
ASCy = {22 —3c2% + 2+ 2, Y — 2, cr — 2234 2c2 — 1},

ASCy={223 —cz+ 1,y — z,0 — 2};

ASCs={} —cz— 1,  + 2y + 22 —c,o +y + 2};

Since theASC; are p-chains, it is easy to find a cover of the system. Compare
with the solutions of the system iQ(¢)[z, y, x| given in [KA1]. This example
uses the special techniques of section 3.4.

Acknowledgement. The authors want to thank a refree for valuable comments
on results of section 3.4 of the paper.
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