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Abstract. For a parametric polynomial system:p1 = 0, · · · , pr = 0, d1 6=
0, · · · , ds 6= 0 wherepi and di are in K[u1, · · · , um, x1, · · · , xn] and theu are
parameters, we present a method for identifying all parametric values for which
the system has solutions for thexi and at the same time giving the solutions (for
the xi) of the system in an explicit way, i.e., the solutions are given by polyno-
mial sets in triangular form. The algorithm has been implemented and several
examples reported in this paper show the algorithm is of practical value.

1. Introduction
Consider the following algebraic equation system from [BU1]. We need to

solvex1, x2, x3, x4 in terms of the parametersa1, a2, a3, a4.
x4 − a4 + a2 = 0
x4 + x3 + x2 + x1 − a4 − a3 − a1 = 0 (1.1)
x3x4 + x1x4 + x2x3 + x1x3 + (−a3 − a1)a4 − a1a3 = 0
x1x3x4 − a1a3a4 = 0,
In the literature of solving polynomial equations, e.g., [BU1,LA1,WU3], para-

metric systems as (1.1) are solved inA = B[x1, x2, x3, x4] whereB = Q(a1, a2, a3, a4)
is the field of rational functions ofai. The solutions of (1.1) inA are given by the
equations (1.2) below [BU1].

x3
1 − c1x

2
1 + c2x1 − a2

1a2
3a2

4

(a4−a2)3
= 0

x2 + c3x
2
1 + c4x1 + a4 − a2 = 0 (1.2)

x3 + c5x
2
1 + c6x1 − a4 − a3 − a1 = 0

x4 − a4 + a2 = 0

1



where theci are inQ(a1, · · · , a4). (1.2) only gives the general solutions of (1.1)
and some special solutions of (1.1) are missing, e.g.a1 = 0, x1 = 0, x2 = a2,
x3 = a3, x4 = a4 − a2 provide a solution of (1.1), but are not in (1.2).

In this paper, we present a method of solving parametric systems like (1.1).
Our method works as follows: for a parametric polynomial system:

p1 = 0, · · · , pr = 0, d1 6= 0, · · · , ds 6= 0

wherepi anddi are inK[u1, · · · , um, x1, · · · , xn] and theu are parameters, we can
construct some unmixed quasi algebraic sets, saySi, i = 1, · · · , s, in the para-
metric space. For eachSi there is a polynomial setASCi ⊂ K[U,X] −K[U ] in
triangular form such that for a parametric valueu′ ∈ Si, if x′ is a solution ofASCi

correspondingu′ which do not make the leading coefficients of the polynomials
in ASCi zero (all such solutions consist of an unmixed quasi algebraic set) then
(u′, x′) is a solution of the parametric system. Furthermore all the solutions of the
system can be obtained in this way. SinceASCi are in triangular form, we can
solve thexi successively in an explicit way.

In [SI1], similar problems for linear parametric systems are studied carefully
by W. Sit. In [WE1], Weispfenning studied parametric systems through the con-
cept of comprehensive Gröbner bases. His work, though also deals with para-
metric systems, is with different emphasis and uses different methods with our
algorithm. An advantage of our approach is that it can be extended to deal with
algebraic differential equations, details of which will be given in another paper.

We present our method in two forms. The coarse form (Section 3.2) is a di-
rect application of Wu’s projection algorithm [WU2]. The difference is that Wu’s
projection algorithm eliminates the variables one by one while our algorithm here
can eliminate all the variables for a triangular polynomial set directly. Another
improvement is that by using our extended affine dimension theorem (see The-
orem (4.4), [CG1]), we may insure that each non-empty set in the projection is
an unmixed quasi algebraic set. The refined form (Section 3.3) uses the concept
of regular chain which has been studied by many researchers [CY1, KA1, LA1,
ZY1]. For the refined form, we not only know the dimension but also the degree
of the unmixed solution sets obtained by our algorithm. We also give a method to
reduce solving of certain one dimensional systems to solving of zero dimensional
systems.

The basis of our algorithm is the coarse form of Ritt-Wu’s decomposition al-
gorithm (see Theorem 3.2) which only uses the operations+,−, ∗, and pseudo re-
mainder of polynomials. In essence the decomposition algorithm is to decompose
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a quasi algebraic set into the union of quasi algebraic sets in triangular form using
generalized polynomial remainder sequences. In the implementation, we actually
use many techniques, e.g., the Collin’s reduced prs, reduced prs for several poly-
nomials [LI1], polynomial factorization, affine dimension theorem, techniques
from Gröbner bases, etc., to enhance the efficiency [CG2]. For partial analysis of
the complexity of the algorithm, see [GM1]. We implemented our algorithm and
the examples reported in this paper show that our algorithm is quite efficient.

It is easy to see that Algorithm 3.5 itself provides a new quantifier elimination
method over algebraic closed fields. As a direct application, we may give the
dimensions of all the components of the parametric systems. Other applications
may be seen from the solution of various parametric systems from various fields.

In Section 2, we present our main result. In Section 3, several methods are
provided. Section 4 is a collection of several examples.

2. Statement of the Problem
Let K be a computable field of characteristic zero andA = B[x1, ..., xn] or

B[X] whereB = K[u1, · · · , um]. A polynomial (ab. pol) inB is called au-
pol. For P ∈ B[X] − B, we can writeP = cdx

d
p + ... + c1xp + c0, where

ci ∈ B[x1, ..., xp−1], p > 0, andcd 6= 0. We callp theclass, cd the initial , xp the
leading variable, andd the leading degreeof P respectively, orclass(P ) = p,
init(P ) = cd, lv(P ) = xp, ld(P ) = d.

A sequence of polsASC = A1, ..., Ap in B[X] is said to be aquasi as-
cending (ab. asc) chainor in triangular form, if either p = 1 andA1 6= 0 or
0 < class(Ai) < class(Aj) for 1 ≤ i < j. The variable set{x1, · · · , xn} −
{lv(A1), · · · , lv(Ap)} is called theparameter setof ASC. We define the dimen-
sion ofASC to beDIM(ASC) = n − p, i.e. the number of the parameters of
ASC.

Let PS be a pol set inK[U,X]. For an algebraic closed fieldE containingK,
let Zero(PS) = {a ∈ Em+n | ∀P ∈ PS, P (a) = 0}
For two pol setsPS andDS in K[U,X], we define

Zero(PS/DS) = Zero(PS)− ∪d∈DSZero(d).
Following [WU2], a quasi varietyis defined to beD = ∪t

i=1Zero(PSi/DSi)
wherePSi andDSi are pol sets inK[U,X]. D is calledunmixedif the PSi are
prime ideals with the same dimension.

For pol setsPS andDS in K[U,X], we define the projection with thexi as
follows

Projx1,···,xnZero(PS/DS) =
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{e ∈ Em | ∃a ∈ Ens.t.(e, a) ∈ Zero(PS/DS)

If m = 0, we defineProjx1,···,xnZero(PS/DS) = Truth if Zero(PS/DS) 6=
∅, andFalse otherwise. It is well known that the projection of a quasi variety is
also a quasi variety [JA1].

For two pol sets

PS = {p1, · · · , pt} andDS = {d1, · · · , dr}

in K[U,X], consider the following parametric equation system

(2.1) p1 = 0 ∧ · · · ∧ pt = 0 ∧ d1 6= 0 ∧ · · · ∧ dr 6= 0

or equivalentlyZero(PS/DS). Following [SI1], we have the following defini-
tion.
Definition 2.2. A solution functionof (2.1) is a pair(S, ASC) whereS is an
unmixed quasi variety inEm and ASC is a triangular set inB[X] − B such
that (a) for eachu′ ∈ S, let ASC ′ be obtained by replacing theu by u′, then
Zero(ASC ′/J ′) (whereJ ′ is the production of the initials of the pols inASC with
theu replaced byu′) is an unmixed quasi variety of dimensionDIM(ASC) =
n − |ASC| in En; (b) for eachx′ ∈ Zero(ASC ′/J ′), (u′, x′) ∈ Zero(PS/DS).
We call(u′, x′) a solution of(S, ASC). We call the dimension ofZero(ASC ′/J ′)
the dimension of the solution function(S, ASC).
Definition 2.3. A coverof (2.1) is a set of solution functions of (2.1){(S1, ASC1),
· · · , (Ss, ASCs)} such that each(u′, x′) ∈ Zero(PS/DS) is a solution of some
(Si, ASCi).
Theorem 2.4. We have an algorithm to find a cover for the parametric system
(2.1).

For a proof of Theorem 2.4, see Section 3. We first state some consequences.
Let

C = {(S1, ASC1), · · · , (Ss, ASCs)}
be a cover of (2.1). Then we have

(1) DIM(ASCi) = n− |ASCi|, i = 1, · · · , s are all the possible dimensions
of the parametric system (2.1).

(2). LetM ⊂ C be the set of those(Si, ASCi) such thatSi is of dimensionm,
then inK(U)[X] we haveZero(PS/DS) = ∪(Sj ,ASCj)∈MZero(ASCj/Jj∪DS).

(3) Those(Si, ASCi) with dimension zero provide all the isolated solutions of
(2.1).
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3. Methods of Solving Parametric Systems
3.1. Preliminaries

For polsP andG with P 6∈ K, let prem(G; P ) be thepseudo remainderof
G with P in variablelv(P ). For a quasi asc chainASC = A1, ..., Ap such that
A1 6∈ K, we define the pseudo remainder of a polG with ASC inductively as

prem(G; ASC) = prem(prem(G; Ap); A1, ..., Ap−1).

Lemma 3.1.LetASC be a quasi asc chain inK[X]−K andJ =
∏

P∈ASC init(P ).
If Zero(ASC/J) 6= ∅ thenZero(ASC/J) is an unmixed quasi variety of dimen-
sionDIM(ASC).
See Theorem (4.4) [CG1] or Lemma (4.5) in the TR version of [CG1].

We have the following coarse form of Ritt-Wu’s decomposition algorithm.
Theorem 3.2.For two finite pol setsPS andDS in K[X], we may either prove
Zero(PS/DS) = ∅ or find quasi asc chainsASCi, i = 1, ..., l, such that

(3.2.1) Zero(PS/DS) = ∪l
i=1Zero(ASCi/{Ji} ∪DS)

whereJi is the production of the initials of the pols inASCi.
Proof. See [WU1]. For our implementation of the algorithm, see [CG2].
3.2. A Coarse form
Lemma 3.3.Let B =

∑t
i=0 Bix

i
1 ∈ K[U, x1] whereBi are u-pols, then

(3.3.1) Projx1Zero(∅/B) = ∪t
i=0Zero(∅/Bi)

It is easy to check.
Lemma 3.4. Let P,Q be pols inK[U, x1] such thatd = degree(P, x1) > 0 and
degree(Q, x1) > 0, thenProjx1Zero(P/QI) = Projx1Zero(∅/RI) whereI is
the initial ofP andR = prem(Qd, P ).
See p. 306 [JA1] or p.44 [WU2].

The following algorithm provides a proof of Theorem 2.4.
Algorithm 3.5.
INPUT: Two pol setsPS andDS = {d1, · · · , dr} in K[U,X].
OUTPUT: A cover ofZero(PS/DS).
S1. LetD =

∏r
i=1 di. By Theorem 3.2, inK[U,X] under the variable order

u1 < · · · < um < x1 < · · · < xn, we have

(3.5.1) Zero(PS/D) = ∪l
i=1Zero(ASCi/DJi)

For i = 1, · · · , l, do S2 – S8.
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S2. Without loss of generality, we writeASCi asB1, · · · , Bri
, A1, · · · , Asi

where
Bj are u-pols andlv(Aj) = xn+j−si

, j = 1, · · · , si.
S3. Let Z = Zero(ASCi/JiD). If degree(D, xn) = 0, then ProjxnZ =
Zero(ASC ′/JiD) whereASC ′ = {B1, · · · , Bri

, A1, · · · , Asi−1}; goto S6. Oth-
erwise, goto S4.
S4. Nowdegree(D, xn) 6= 0. By Lemma 3.4,

ProjxnZ = ProjxnZero(ASC ′/JiR)

whereR = prem(Dld(Asi ), Asi
).

S5. LetR =
∑d

k=0 Ekx
k
n, by (3.3.1),

ProjxnZero(ASC ′/JiR) = ∪d
k=0Zero(ASC ′/JiEk).

S6. By now, we have obtainedProjxnZ. Repeating S3-S5, we may eliminate
xn−1, xn−2, · · ·, xn+1−si

similarly (note that nowJi may involvexn−1, etc). At
last, we have

Projxn+1−si
,···,xnZ = ∪s

k=1Zero({B1, · · · , Bri
}/Gk)

whereGk is the product of the initials of theBj and a polHk ∈ K[U, x1, · · · , xn−si
].

S7. If Hk involvesx1, · · · , xn−si
, we use (3.3.1) repeatedly to eliminate them. We

have

(3.5.2) Si = Projx1,···,xnZ = ∪r
k=1Zero({B1, · · · , Bri

}/Fk)

whereFk is the product of the initials of theBj and a u-pol. We may write (3.5.2)
as

(3.5.3) Si = Zero({B1, · · · , Bri
}/Ii)− Zero({F1

Ii

, · · · , Fr

Ii

})

whereIi =
∏ri

j=1 init(Bj).
S8. Note that in (3.5.2),{B1, · · · , Bri

} is in triangular form andFk is the product
of the initials of theBj and a u-pol. Then we may computeDi = Proju1,···,umSi

by repeating S3-S7. IfDi = Truth (Si 6= ∅), by Lemma 3.1(Si, ASCi) is a
solution function ofZero(PS/DS). If Di = False, Zero(ASCi/JiD) = ∅. We
discard it. From (3.5.1), all solution functions thus obtained furnish a cover for
Zero(PS/DS).
Example 3.6. Consider an example from [WU3]. LetPS = {y2 − zxy + x2 +
z−1, xy +z2−1, y2 +x2 +z2− r2} wherer is the parameter. Under the variable
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orderr < z < x < y, we have:Zero(PS) = Zero(ASC1/x) ∪ Zero(ASC2)
where

ASC1 = {z3 − z2 + r2 − 1,
x4 + (z2 − r2)x2 + z4 − 2z2 + 1,
xy + z2 − 1};

ASC2 = {r4 − 4r2 + 3, z + r2 − 2, x, y2 − r2 + 1}.
ForASC1, following S2-S7 in Algorithm 3.5, we haveProjx,z,yZero(ASC1/x) =

E. ForASC2, it is clear thatProjx,z,yZero(ASC2) = Zero(r4−4r2+3). There-
fore a cover ofZero(PS) is {(E, ASC1), (Zero(r4 − 4r2 + 3), ASC ′

2)} where
ASC ′

2 = {z+r2−2, x, y2−r2+1}. Sincer4−4r2+3 = (r2−1)(r2−3), we obtain
another cover:{(E, ASC1), ({±1}, {z−1, x, y2}), ({±√3}, {z+1, x, y2−2})}.
3.3. A Refined Form

For two polsP,Q ∈ B[X] such thatP 6∈ B, we define the resultant ofQ
andP in the following way: if degree(Q, lv(P )) = 0 defineresl(Q; P ) = Q;
otherwiseresl(Q; P ) is the resultant ofP andQ in the variablelv(P ). For a
quasi asc chainASC = A1, ..., Ap such thatA1 6∈ B, we define the resultant of a
pol G andASC inductively as

R = resl(G; ASC) = resl(resl(G; Ap); A1, ..., Ap−1).

ThenR ∈ B[X] and there exist polsC andCi such thatR = CG + C1A1 + · · ·+
CpAp.

A quasi asc chainASC = A1, ..., Ap is calledregular if resl(init(Ai); A1, · · · , Ai−1) 6=
0, i = 2, · · · , p. We need the following properties of regular asc chains.
Lemma 3.7. Let ASC = A1, · · · , Ap be a regular asc chain inK[x1, · · · , xn],
thenZero(ASC/J) is an unmixed quasi-variety of dimensionDIM(ASC) and
degreeD =

∏p
i=1 ld(Ai).

We renamelv(Ai) asyi and the parameters ofASC asv1, · · · , vq whereq = n−p.
LetRi = resl(init(Ai); A1, · · · , Ai−1), i = 2, · · · , p. ThenR = init(A1)

∏p
i=2 Ri 6=

0 involves thev alone. For eachv′ ∈ Eq such thatR(v′) 6= 0, we replace thev
by v′ in A1 and get a polA′

1 ∈ E[x1] such thatdegree(A′
1, x1) = ld(A1) since

R(v′) 6= 0. ThusA′
1 hasld(A1) solutions:x1,1, · · · , x1,ld(A1). For each solution

of A′
1, sayx1,1, replacingv, x1 by v′, x11 in A2 we get a polA′

2 ∈ E[x2]. Since
R(v′) 6= 0, we haveinit(A2)(u

′, x11) 6= 0 or degree(A′
2, x2) = ld(A2). Thus

A′
2 hasld(A2) solutions. Continuing in this way, at last we obtainD zeros of

Zero(ASC/J) and it is clear that they are all the zeros ofZero(ASC/J) corre-
sponding to the parameter valuev′. The unmixity comes from Lemma 3.1.

A quasi asc chainASC is called ap-chainif the initial of every pol inASC
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involves the parameters ofASC alone. It is clear that a p-chain is a regular asc
chain.
Lemma 3.8.Let ASC = A1, · · · , Ap be a regular asc chain inK[X], then we can
find a p-chainASC ′ such that

Zero(ASC/J) = Zero(ASC ′/J ′) ∪ Zero(ASC ∪ {J ′}/J)
whereJ and J ′ are the product of the initials of the pols inASC and ASC ′

respectively.
As in the proof of Lemma 3.7, we renamelv(Ai) asyi. Let Ai = Iiy

di
i − Ui

whereIi is the initial of Ai. We putA′
1 = A1. For i = 2, · · · , p, let Ri(u) =

resl(Ii; A1, · · · , Ai−1) 6= 0, then there existQi, Bi,j ∈ A such that
(3.8.1) Ri(u) = QiIi +

∑i−1
j=1 Bi,jAj

Let
(3.8.2)A′

i = AiQi + (
∑i−1

j=1 Bi,jAj)y
di
i = Riy

di
i + QiUi.

LetQ =
∏p

i=2 Qi andR =
∏p

i=2 Ri. It is clear thatZero(ASC/J) = Zero(ASC/JQ)∪
Zero(ASC, {Q}/J). From (3.8.1),Zero(ASC∪{Q}/J) = Zero(ASC∪{I1

∏p
i=2 QiIi}/J)

= Zero(ASC ∪ {R}/J). By (3.8.1) and (3.8.2),

Zero(ASC/JQ) = Zero({A1, A2Q2, · · · , ApQp}/JQ)
= Zero(ASC ′/J ′)

(consider inductively fromp to 1). We have completed the proof.
Remark. The usefulness of regular chains lays to the facts that we may obtain a
decomposition of the form (3.2.1) such that eachASCi is a regular chain without
using pol factorization [ZY1, KA1]. Now we have the refined form of solving
parametric algebraic systems.
Algorithm 3.9.
INPUT: PS is a pol set inK[U,X].
OUTPUT: A cover ofZero(PS). Furthermore, for each solution function(Si, ASCi)
in the cover,ASCi is a p-chain.
S1. By Theorem 3.2, inK[U,X] we haveZero(PS) = ∪l

i=1Zero(ASCi/{Ji}).
By the Remark after Lemma 3.8, we may assumeASCi are regular asc chains.
By Lemma 3.8, we may further assumeASCi are p-chains. Fori = 1, · · · , l, do
S2 -S4.
S2. Without loss of generality,ASCi can be written asB1, · · · , Bri

, A1, · · · , Asi

whereBj are u-pols andlv(Aj) = xn+j−si
, j = 1, · · · , si.

S3. SinceASCi is a p-chain,

Projxn+1−si
,···,xnZero(ASCi/Ji)

= Zero({B1, · · · , Bri
}/Ji).
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S4. SinceBj are free ofxi, we may use (3.3.1) repeatedly to obtain the

Si = Projx1,···,xnZero(ASCi/Ji)
= ∪r

k=1Zero({B1, · · · , Bri
}/Fk)

where eachFi is the product of the initials of theBi and a u-pol. SinceASCi is
a p-chain,Fk are pols of the parameters ofASCi alone. ThereforeSi 6= ∅ and
(Si, ASCi) is a solution function forZero(PS).
Example 3.10.Let PS be the same as in Example 3.6. The decomposition in S1
of Algorithm 3.9 isZero(PS) = ∪5

i=1Zero(ASCi/Ji) where
ASC1 = {z3 − z2 + r2 − 1,

x4 + (z2 − r2)x2 + z4 − 2z2 + 1,
(r4 − 4r2 + 3)y + (−z2 + (r2 − 1)z − r2 + 1)x3

+((r2 − 1)z2 + (−r4 + 2r2 − 1)z + 2r2 − 2)x, };
ASC2 = {r4 − 4r2 + 3, z + r2 − 2, x, y2 − r2 + 1};
ASC3 = {r2 − 1, z, x4 − x2 + 1, y + x3 − x};
ASC4 = {r2 − 3, z + 1, x2 − 2, y};
ASC5 = {r2 − 3, z2 − 2z + 2, x4 + (2z − 5)x2 − 4z + 1,

5y + (2z − 1)x3 + (−4z − 3)x}.
ASCi, i = 1, · · · , 5 are p-chains. The other steps are trivial.

3.4. A Fast Method for Special Systems
For a polynomial setPS = {p1, · · · , pn}wherepi ∈K[u1, · · · , um, x1, · · · , xn],

consider the following system

(3.11) p1 = 0 ∧ · · · ∧ pn = 0

We further assume that for each special valueu′ of the u, (3.11) only has finite
number of solutions for thexi. It is clear that for such a systemZero(PS) is of
zero dimension inK(u)[X]. Therefore, inK(u)[X] we have

(3.12) Zero(PS) = ∪t
i=1Zero(ASCi/Ji)

whereDIM(ASCi) = 0, i = 1, · · · , t. By Lemma 3.9, we may assume that each
ASCi is a p-chain. Furthermore, we assumeASCi ⊂ K[u,X].
Theorem 3.13.Assume the conditions in the above paragraph. Then inK[u,X]
we have

(3.13.1) Zero(PS) = ∪t
i=1Zero(ASCi/Ji) ∪ Zero(PS ∪ {J})
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whereJ =
∏t

i=1 Ji ∈ K[u].
Since for anyu′, (3.11) only has finite number of solutions, the dimension of

Zero(PS) must be≤ m. On the other hand, by the affine dimension theorem (ref.
e.g., Theorem (4.4) [CG1]), each irredundant component ofZero(PS) is of di-
mension≥ m. ThereforeZero(PS) is an unmixed variety of dimensionm. Thus,
in K[u, x], Zero(PS) = ∪t

i=1Zero(PD(ASCi)) SinceZero(PD(ASCi)) =
Zero(ASCi/Ji) ∪Zero(PD(ASCi) ∪ {Ji}), (3.13.1) is true.

If m = 1, the above results have the following simple form. When decom-
posing (3.11) inK[u1, x], Let Z ′ = Zero(ASC ′/J ′) be a zero dimensional com-
ponent ofZero(PS) whereASC ′ = A0(u1), A1, · · · , An. If A0 is not a factor
of J (in Theorem 3.13) thenZ ′ must be redundant and can be removed. Further-
more, to solve (3.11), we may first solve the zero dimensional systemZero(PS)
in K(u1)[X] and the remaining zeros areZero(PS ∪ {J}) which is of zero di-
mension inK[u1, X]. Therefore we need solving two zero dimensional systems.
Solving of zero dimensional systems is relatively easy. Once the decomposition
of Zero(PS) is given, we may obtain a cover ofZero(PS) easily.
Example 3.14.Let PS be the same as in Example 3.6. From the decomposition
in Example 3.6, we know that this system satisfies the conditions of this section.
In Q(r)[z, x, y], we haveZero(PS) = Zero(ASC1) whereASC1 is the same as
in Example 3.10. Then by Theorem 3.14, inQ[r, z, x, y] we have

Zero(PS) = Zero(ASC1/J1) ∪ Zero(PS ∪ {J1})
whereJ1 = r4 − 4r2 + 3.

4. Examples
We have implemented the algorithm in a SUN-3/50 using Common Lisp. The

following are some examples sovled by our program based on Algorithm 3.9.
Example 4.1.System (1.1) is to find theEquilibrium Points of Chemical Systems
[BG1,BU1,WE1]. InQ[a1, · · · , x4], Zero((1.1)) = ∪9

i=1Zero(ASCi/Ji) where
ASC1 = {(a4 − a2)x1 − a1a3,

(a4 − a2)x2 + a2
4 + (−a3 − 2a2 − a1)a4

+(a2 + a1)a3 + a2
2 + a1a2;

x3 − a4,
x4 − a4 + a2};

ASC2 = {(a4 − a2)x1 − a1a4,
(a4 − a2)x2 − a2a4 + a2

2 + a1a2,
x3 − a3,
x4 − a4 + a2};
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ASC3 = {(a4 − a2)x1 − a3a4,
(a4 − a2)x2 − a2a4 + a2a3 + a2

2,
x3 − a1,
x4 − a4 + a2};

ASC4 = {a3, a4 − a2, x2 + x1 − a2, x3 − a1, x4};
ASC5 = {a3, a4 − a2, x2 + x1 − a1, x3 − a2, x4};
ASC6 = {a1, a4 − a2, x2 + x1 − a2, x3 − a3, x4};
ASC7 = {a1, a4 − a2, x2 + x1 − a3, x3 − a2, x4};
ASC8 = {a2, a4, x2 + x1 − a1, x3 − a3, x4};
ASC9 = {a2, a4, x2 + x1 − a3, x3 − a1, x4}.
Since theASCi are p-chains, we may obtain a cover of (1.1) trivially.

Example 4.2.In [GC1], we gave a method of findingInversion Maps of Rational
Parametric Equations. But some special solutions with lower dimensions are not
considered in the method. Using the method in this paper, we may find a complete
inversion map. Considering the following parametric equations:

x = t4−4t2+1
t4+1

, y = 2
√

2(−t3+t)
t4+1

.
The problem of finding inversion maps is actually to solvet in terms ofx andy.
Using Algorithm 3.5, a cover is:{(Zero(x2 +y2−1/x−1),

√
2(x−1)t2−2yt+√

2(−x + 1)); (Zero(x− 1, y), t)}.
Example 4.3. To find the equilibrium points of the following Lorentz system
[LU1].

x′1 = x2(x3 − x4)− x1 + c
x′2 = x3(x4 − x1)− x2 + c
x′3 = x4(x1 − x2)− x3 + c
x′4 = x1(x2 − x3)− x4 + c

Let PS = {x2(x3−x4)−x1+c, x3(x4−x1)−x2+c, x4(x1−x2)−x3+c, x1(x2−
x3) − x4 + c}. We haveZero(PS) = ∪10

i=1Zero(ASCi/Ji) where allASCi are
p-chains. The asc chains are too long (two pages) to print here. They can be found
in [GC2]. It is easy to find a cover of the system from the decomposition. Four
of the ten asc chains are already given in [LU1]. This example need the special
techniques of Section 3.4.
Example 4.4. Consider a system comes from the analysis ofNeural Network
[KA1]. Let PS = {zx2+zy2−cz+1, yx2+(z2−c)y+1, (y2+z2−c)x+1}where
c is the parameter. We haveZero(PS) = ∪5

i=1Zero(ASCi/Ji) in Q[c, z, y, x]
where
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ASC1 = {
2cz4 − 2z3 − c2z2 − 2cz − 1,

2y − 2c2z3 + 4cz2 + (c3 − 2)z + c2, 2x− 2c2z3 + 4cz2 +
(c3 − 2)z + c2};

ASC2 = {2z4− 3cz2 + z + c2, cy− 2z3 +2cz− 1, x− z};
ASC3 = {2z4− 3cz2 + z + c2, y− z, cx− 2z3 +2cz− 1}.
ASC4 = {2z3 − cz + 1, y − z, x− z};
ASC5 = {z3 − cz − 1, y2 + zy + z2 − c, x + y + z};
Since theASCi are p-chains, it is easy to find a cover of the system. Compare

with the solutions of the system inQ(c)[z, y, x] given in [KA1]. This example
uses the special techniques of section 3.4.
Acknowledgement. The authors want to thank a refree for valuable comments
on results of section 3.4 of the paper.
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