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Abstract

We present a zero structure theorem for a differential parametric sys-
tem:

p1 = 0, · · · , pr = 0, d1 6= 0, · · · , ds 6= 0

where pi and di are differential polynomials in K{u1, · · · , um, x1, · · · , xn}
and the u are parameters. According to this theorem we can identify all
parametric values for which the parametric system has solutions for the xi

and at the same time giving the solutions for the xi in an explicit way, i.e.,
the solutions are given by differential polynomial sets in triangular form.
In the algebraic case, i.e. when pi and di are polynomials, we present
a refined algorithm with higher efficiency. As an application of the zero
structure theorem presented in this paper, we give a new algorithm of
quantifier elimination over differential algebraic closed fields. The algo-
rithm has been implemented and several examples reported in this paper
show that the algorithm is of practical value.

1 Introduction

Let K be a differential field and K{u1, · · · , um, x1, · · · , xn} or K{U,X} be the
differential polynomial ring of parameters u1, · · · , um and variables x1, · · · , xn.
By a parametric system, we mean

p1 = 0, · · · , pr = 0, d1 6= 0, · · · , ds 6= 0 (1.1)
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where pi and dj , i = 1, · · · , r, j = 1, · · · , s, are differential polynomials in
K{U,X}. In this paper, we present a method for identifying all parametric
values for which the system has solutions for the xi over a differentially closed
field E containing K, and at the same time giving the solutions for the xi in
an explicit way, i.e., the solutions are given by differential polynomial sets in
triangular form. More precisely, we give a zero structure theorem for (1.1) of
the form (S1, TS1), · · · , (St, TSt) where Si are some unmixed quasi-varieties in
Em and TSi are triangular sets of the variables xi such that for each η ∈ Si,
when replacing the u by η, the TSi become

A1(η, x1, · · · , xd), A2(η, x1, · · · , xd+1), · · · , Al(η, x1, · · · , xn)

and the equation system A1 = 0, A2 = 0, · · · , Al = 0 has solutions which are
also solutions of system (1.1). Furthermore, all solutions of (1.1) can be given
in this way. This method is a generalization and combination of two well known
algorithms: the quantifier elimination algorithm (Seidenberg, 1956) and Ritt-
Wu’s zero decomposition algorithm (Ritt, 1950, Wu, 1986).

In the algebraic case, i.e. when pi and di are polynomials, we present a
refined algorithm of higher efficiency. This refined form uses the concept of the
regular ascending chain which has been studied by many researchers (Kalkbren-
ner, 1990, Lazard, 1991, Zhang, 1992).

Related work in the case of algebraic systems can be found in (Sit, 1991,
Weispfenning, 1992, Gao, Chou, 1992, Kapur, 1992, Wang, 1993).

An application of the structure theorem is the solving of polynomial para-
metric equation systems. Consider the following algebraic equation system from
(Buchberger, 1985). We need to solve x1, x2, x3, x4 in terms of the parameters
a1, a2, a3, a4.

x4 − a4 + a2 = 0
x4 + x3 + x2 + x1 − a4 − a3 − a1 = 0 (1.2)
x3x4 + x1x4 + x2x3 + x1x3 + (−a3 − a1)a4 − a1a3 = 0
x1x3x4 − a1a3a4 = 0

In the literature of solving polynomial equations (Buchberger, 1985, Lazard,
1981, Wu, 1986), parametric systems as (1.2) are solved in A = B[x1, x2, x3,
x4] where B = Q(a1, a2, a3, a4) is the field of rational functions of ai. The
solutions of (1.2) in A are given by the following equations (Buchberger, 1985)

x3
1 − c1x

2
1 + c2x1 − a2

1a2
3a2

4
(a4−a2)3

= 0
x2 + c3x

2
1 + c4x1 + a4 − a2 = 0 (1.3)

x3 + c5x
2
1 + c6x1 − a4 − a3 − a1 = 0

x4 − a4 + a2 = 0

where the ci are in Q(a1, · · · , a4). However, (1.3) only gives the general solutions
of (1.2) and some special solutions of (1.2) are missing, e.g. { a1 = 0, x1 = 0,
x2 = a2, x3 = a3, x4 = a4 − a2 } is a set of solutions for (1.2) which is not in
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(1.3). Using our zero structure theorem, complete information for the solutions
of algebraic or differential parametric systems can be given. The complete
solution of (1.2) is given in Example 4.4.

Our zero structure theorem is based on a projection algorithm for triangu-
lar sets which is an extension of Wu’s projection algorithm (Wu, 1990) to the
differential polynomial case. Wu’s projection algorithm eliminates the variables
one by one, while our algorithm can eliminate all the variables for a triangular
polynomial set directly. Another improvement is that we prove that a nonempty
algebraic set of a triangular set is unmixed.

In Section 2, we present our main result. In Section 3, we prove the zero
structure theorem. In Section 4, we present a refined version of the zero structure
theorem for the algebraic case.

2 Statement of the Problem

Before presenting the problem, we first introduce some notions necessary to this
paper. Readers who are not familiar with differential algebra may consult (Ritt,
1950, Wu, 1987).

Let K be a differential field of characteristic zero and K{x1, ..., xn} or K{X}
be the ring of differential polynomials (abbr. d-pols) in the variables x1, ..., xn.
Let P be a d-pol in K{X}. The class of P , denoted by class(P ), is the largest
p such that xp or some of its derivatives actually occurs in P . If P ∈ K,
class(P ) = 0. The j-th (j ≥ 0) derivative of a variable xi is denoted by xi,j .
The order of P in xi, denoted by ord(P, xi), is the largest j such that xi,j

appears in P . If P does not involve xi, ord(P, xi) = −1. Let a d-pol P be of
class p > 0 and q = ord(P, xp). Then xp and xp,q are called the leading variable
(denoted by lv(P )) and the lead of P respectively.

Let P1 and P2 be two d-pols. We say P2 is of higher rank than P1 in xi,
if either ord(P2, xi) > ord(P1, xi) or q = ord(P2, xi) = ord(P1, xi) and P2 is of
higher degree in xi,q than P1. P2 is said to be of higher rank than P1, denoted
by P2 > P1, if either class(P2) > class(P1) or p = class(P2) = class(P1) and
P2 is of higher rank than P1 in xp.

If the lead of P is xp,m with p > 0, P can be written as

P = adx
d
p,m + ad−1x

d−1
p,m + · · ·+ a0

where the ai are d-pols of lower rank than xp,m and ad 6= 0. Then d is called
the leading degree of P and is denoted by ld(P ); ad is called the initial of P
and denoted by init(P ). The derivation of P is

P ′ = Sxp,m+1 + a′dx
d
p,m + a′d−1x

d−1
p,m + · · ·+ a′0
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where S = ∂P
∂xp,m

= dadx
d−1
p,m + ... + a1 is called the separant of P and denoted

by sep(P ). Note that P ′ is linear in xp,m+1 with S as its initial.

A sequence of d-pols ASC = A1, ..., Ap is said to be a quasi ascending (ab.
q-asc) chain or a triangular set, if either p = 1 and A1 6= 0 or 0 < class(Ai) <
class(Aj) for 1 ≤ i < j. ASC is called nontrivial if class(A1) > 0. A quasi
ascending chain A1, ..., Ap is said to be an ascending chain if Aj is of lower rank
than Ai in lv(Ai) for i < j.

For a quasi ascending chain ASC = A1, ..., Ap, let Ai be of class mi. Then
we call {x1, ..., xn}−{xm1 , ..., xmp

} the parameter set of ASC. The dimension of
a quasi ascending chain ASC = A1, ..., Ap is defined to be DIM(ASC) = n−p.
Thus DIM(ASC) is equal to the number of parameters of ASC.

Let PS and DS be d-pol sets. For a differential algebraic closed extension
field E of K, let

Zero(PS) = {x = (x1, ..., xn) ∈ En | ∀P ∈ PS, P (x) = 0}
and Zero(PS/DS) = Zero(PS)− ∪g∈DSZero(g).

A quasi variety is defined to be D = ∪t
i=1Zero(PSi/DSi) where PSi and DSi

are d-pol sets in K{X}. D is called unmixed if all PSi are prime ideals with
the same dimension.

Consider a set of parameters: u1, · · · , um and a set of dependent variables:
x1, · · · , xn. Let A = B{x1, ..., xn} or B{X} be the d-pol ring over B =
K{u1, · · · , um}. A d-pol in B is called a u-pol.

For d-pol sets PS and DS in K{U,X}, we define the projection with the xi

as follows

Projx1,···,xn
Zero(PS/DS) = {e ∈ Em | ∃a ∈ Ens.t.(e, a) ∈ Zero(PS/DS)}

If m = 0, we define Projx1,···,xnZero(PS/DS) = True if Zero(PS/DS) 6= ∅,
and False otherwise. It is well known that the projection of a quasi variety is
also a quasi variety. Consider a parametric system

p1 = 0, · · · , pr = 0, d1 6= 0, · · · , ds 6= 0 (2.1)

where pi, dj are in K{U,X}. Let PS = {p1, · · · , pr};DS = {d1, · · · , ds}. Fol-
lowing (Sit, 1991), we have

Definition 1 A solution function of (2.1) is a pair (S,ASC) where S is an
unmixed quasi variety in Em and ASC is a triangular set in B{X} − B such
that

(a) for each u′ ∈ S, let ASC ′, DS′ be obtained from ASC, DS by replacing
the u by u′. Then Zero(ASC ′/{J ′}∪DS′) (where J ′ is the product of the
initials and separants of the d-pols in ASC with the u replaced by u′) is
an unmixed quasi variety of dimension DIM(ASC) in En;
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(b) for each x′ ∈ Zero(ASC ′/{J ′} ∪DS′), (u′, x′) ∈ Zero(PS/DS). We call
(u′, x′) a solution of (S,ASC). We call the dimension of Zero(ASC ′/{J ′}∪
DS′) the dimension of the solution function (S,ASC).

Definition 2 A cover of (2.1) is a set of solution functions of (2.1) {(S1, ASC1),
· · · , (Ss, ASCs)} such that each (u′, x′) ∈ Zero(PS/DS) is a solution of some
(Si, ASCi).

Theorem 3 We have an algorithm to find a cover for the parametric system
(2.1).

For the proof of Theorem 3, see Section 3. We first state some consequences.
Let

C = {(S1, ASC1), · · · , (Ss, ASCs)}
be a cover of (2.1). Then we have

(1) DIM(ASCi), i = 1, · · · , s are all the possible dimensions of the para-
metric system (2.1).

(2) Projx1,···,xnZero(PS/DS) = ∪s
i=1Si.

(3) Since by (2) an existential quantifier can be eliminated, we have a method
of eliminating all quantifiers for differential equation systems.

3 A Zero Structure Theorem for Differential Sys-
tems

3.1 A Dimension Theorem

For d-pols P and G with P 6∈ K, let R = prem(G;P ) be the pseudo remainder
of G with P in variable lv(P ) (see Ritt, 1950). Then we have the following
remainder formula:

JG =
∑

i

BiP
(i) + R (3.1.1)

where J is a product of the initial and separant of P ; Bi are d-pols; and P (i) is
the i-the derivative of P .

For a triangular set ASC, we define

QD(ASC) = {g | ∃J, Jg ∈ Ideal(ASC)}

where J is a product of the initials and separants of the d-pols in ASC.
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Theorem 4 Let ASC = {A1, ..., Ap} be a non-trivial triangular set in K{x1, · · · , xn},
J the set of the initials and separants of all Ai. Then Zero(ASC/J) is either
empty or an unmixed quasi variety of dimension DIM(ASC). More precisely

Zero(ASC/J) = ∪1≤i≤lZero(QD(ASCi)/J)

where each ASCi is irreducible and with the same parameter set as ASC. (For
the concept of irreducible ascending chain, see Ritt, 1950).

Proof. First, we show that this theorem is true in the algebraic case. Since
the dimension of an irreducible variety is equal to the transcendental degree of
its generic zero over K, the dimension of Zero(ASC/J) is equal to the largest
transcendental degrees of the elements of Zero(ASC/J) in a universal extension
field of K. Thus Dim(Zero(ASC/J)) ≤ n−p. By the affine dimension theorem,
if Zero(ASC/J) 6= ∅ then its dimension is ≥ n − p. Thus Zero(ASC/J) is an
unmixed variety. Since the initials of the Ai is in J , each ASCi must have the
same parameter set as ASC.

Let ci = class(Ai), oi = ord(Ai, xci). We rename xci,oi as yi, i = 1, · · · , p,
and rename other variables and their derivatives occurring in Ai as u1, · · · , um.
Now ASC becomes an ascending chain ASC ′ = B1, · · · , Bp in the ordinary
polynomial ring K[U, y1, · · · , yp]. By the result we just proved,

Zero(ASC ′/J) = ∪1≤i≤lZero(QD(ASCi)/J) (1)

where each ASCi is an irreducible ascending chain with the same parameters
as ASC ′. Then, in the differential case, each ASCi is also an irreducible as-
cending chain and QD(ASCi) a prime ideal (Ritt,1950). We want to show
that (1) is also valid when the zero sets and QD(ASCi) are considered in
the differential case. Let η ∈ Zero(ASC/J) be a zero such that the coordi-
nates of η corresponding to the parameters of ASC are independent indetermi-
nates. Then η is a generic zero of some ASCi, and hence of QD(ASCi). Note
that every zero of Zero(ASC/J) is a specialization of a zero like η. Therefore
Zero(ASC/J) ⊂ ∪1≤i≤lZero(QD(ASCi)/J). The other direction is easy.

Our algorithm needs the following coarse form of Ritt-Wu’s decomposition
algorithm in the differential case which only uses the operations +,−, ∗, differ-
entiation, and pseudo remainder of polynomials. In essence the decomposition
algorithm is to decompose a quasi algebraic set into the union of quasi algebraic
sets in triangular form using generalized polynomial remainder sequences.

Theorem 5 For two finite d-pol sets PS and DS in K{X}, we may either test
Zero(PS/DS) = ∅ or find q-asc chains ASCi, i = 1, ..., l, such that

Zero(PS/DS) = ∪l
i=1Zero(ASCi/{Ji} ∪DS) (3.2.1)

where Ji is a product of the initials and separants of the d-pols in ASCi.

6



Proof. See (Wu, 1987). In our implementation, we actually use many techniques
to enhance the efficiency (Chou, Gao, 1990 and 1993).

3.2 A Zero Structure Theorem

Lemma 6 Let P be a d-pol in K{U, x1}. Then

Projx1Zero(∅/P ) = ∪t
i=0Zero(∅/Pi) (3.3.1)

where Pi are the coefficients of P as a d-pol in B{x1} where B = K{U}.

Proof. It is obvious.

Lemma 7 Let P and Q be d-pols in K{U, x1} such that o = ord(P, x1) =
ord(Q, x1) ≥ 0, and d = degree(P, x1,o) > 0. Then

Projx1Zero(P/QI) = Projx1Zero(∅/RI)

where I is the initial of P and R = prem(Qd, P ).

Proof. It is clear that Projx1Zero(P/QI) ⊂ Projx1Zero(∅/RI). If R = 0, then

Projx1Zero(∅/RI) ⊂ Projx1Zero(P/QI);

if R 6= 0,
Projx1Zero(∅/RI) ⊂ Projx1Zero(P/QI)

is still true. Otherwise, for e ∈ Projx1Zero(∅/RI), each zero of P not vanishing
I vanishes Q. When P and Q are considered as polynomials in K(U, x1, x1,1, · · · , x1,o−1)[x1,o],
P must have a factor occurring in Q and hence R = 0. This contradiction proves
the Lemma. For more details see (Seidenberg, 1956).

Lemma 8 Let P and Q be d-pols in K{U, x1} such that o = ord(P, x1) >
ord(Q, x1). Then Projx1Zero(P/QSI) = Projx1Zero(∅/QSI) where I and S
are the initial and separant of P respectively.

Proof. It is clear that Projx1Zero(P/QSI) ⊂ Projx1Zero(∅/QSI). Let G be
an irreducible factor of P which involves x1,o effectively. Then a generic zero of
the prime ideal determined by G is not a zero of Q. Thus Projx1Zero(∅/QSI) ⊂
Projx1Zero(P/QSI). For more details see (Seidenberg, 1956).

We first give a projection algorithm for a triangular set.

Algorithm 9

INPUT: ASC = A1, · · · , Ap is a triangular set in K{U, x1, · · · , xn} where lv(Aj) =
xn+j−p, j = 1, · · · , p. D is a d-pol in K{U,X}.
OUTPUT: Projx1,···,xnZero(ASC/JnD) where Jn is the product of the initials
and separants of the d-pols A1, · · · , An.
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S1. Let Z = Zero(ASC/JnD). We distinguish three cases:

(a) If order(JnD, xn) < order(Ap), then by Lemma 8 and Lemma 6

Projxn
Z = Projxn

Zero(ASC ′/Jn−1InD) = ∪kZero(ASC ′/Jn−1Dk)

where ASC ′ = {A1, · · · , Ap−1}; In = Jn/Jn−1; Dk are d-pols in K{U, x1, · · · , xn−1}.
(b) If order(JnD, xn) = order(Ap), by Lemma 7 and Lemma 6

Projxn
Z = Projxn

Zero(ASC ′/Jn−1InR) = ∪kZero(ASC ′/Jn−1Rk)

where R = prem(Dld(Ap), Ap); and Rk are d-pols in K{U, x1, · · · , xn−1}.
(c) If order(D, xn) > order(Ap), let R = prem(D, Ap). By the remainder

formula (3.1.1), we have Z = Zero(ASC/JnR) and the projection of Z can be
reduced to case (a) or (b).

S2. By now, we have obtained ProjxnZ. Note that the components in ProjxnZ
are still in triangular form. Then we can repeat S1 to eliminate xn−1, xn−2, · · ·,
xn+1−p similarly. At last, we have

Z1 = Projxn+1−p,···,xn
Z = ∪s

k=1Zero(∅/Gk)

where each Gk is a d-pol K{U, x1, · · · , xn−p}.
S3 By repeated use of Lemma 6, we may assume that the Gk are free of xi, i.e.,
each Gk is a u-pol and Projx1,···,xn

Zero(ASC/JD) = ∪s
k=1Zero(∅/Gk).

The following algorithm provides a constructive proof for Theorem 3.

Algorithm 10

INPUT: Two d-pol sets PS and DS = {d1, · · · , dr} in K{U,X}.
OUTPUT: A cover for Zero(PS/DS).

S1. Let D =
∏r

i=1 di. By Theorem 5, in K{U,X} under the variable order
u1 < · · · < um < x1 < · · · < xn, we have

Zero(PS/D) = ∪l
i=1Zero(ASCi/DJi) (3.7.1)

For i = 1, · · · , l, do S2 – S5.

S2. Without loss of generality, we write ASCi as

B1, · · · , Bri , A1, · · · , Asi

where Bj are u-pols and lv(Aj) = xn+j−si
, j = 1, · · · , si.

S3. By Algorithm 9,

Si = Projx1,···,xnZero(ASCi/DJi) = ∪s
k=1Zero({B1, · · · , Bri}/Gk) (3.7.2)
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where each Gk is the product of the initials and separants of the Bj and a u-pol.

S4. Note that in (3.7.2), each {B1, · · · , Bri} is in triangular form and Gk is
the product of the initials and separants of the Bj and a u-pol. Then we may
compute Di = Proju1,···,um

Si using Algorithm 9.

S5. If Di = Truth (Si 6= ∅), by Theorem 4 (Si, ASCi) is a solution function of
Zero(PS/DS). If Di = False, then Zero(ASCi/JiD) = ∅. We discard it. From
(3.7.1), all solution functions thus obtained furnish a cover for Zero(PS/DS).

In (Diop, 1991), elimination theories are used to obtain the input-output
equations for nonlinear control systems. Using our structure theorem, we can
give not only the input-output equations but also the dependent equations be-
tween the “state” variables and the input, output variables. The following is an
illustrative example from (Diop, 1991).

Example 11 Consider the following control system with control or input vari-
able u, state variable x and output variable y

x′ = ux2 + u2x; y = x2. (3.8.1)

We need to eliminate x. Using Theorem 5, Zero(3.8.1) = Zero({y′2− 4u2yy′−
4u2y3 + 4u4y2, 2uyx − y′ + 2u2y}/u(y′ − 2u2y)) ∪ Zero({u, y′, x2 − y}/x) ∪
Zero({y, x}). A cover of 3.8.1 is

(Zero({y′2 − 4u2yy′ − 4u2y3 + 4u4y2}/u(y′ − 2u2y)); 2uyx− y′ + 2u2y),
(Zero({u, y′}/y);x2 − y),
(Zero({y});x).

Then we have three input-output relations. Furthermore, we give the value of
the state variable x at each input-output relation set.

4 A Refined Form for the Algebraic Case

In the algebraic case, we may obtain stronger results. First due to the work of
Gallo and Mishra, 1992, we may obtain an upper bound for the degrees of the
polynomials in the triangular sets. Another improvement is the use of ascending
chains of more restricted form.

For two polynomials P, Q ∈ B[X] such that P 6∈ B, we define the resultant
of Q and P in the following way: if degree(Q, lv(P )) = 0 define resl(Q;P ) = Q;
otherwise resl(Q;P ) is the resultant of P and Q in the variable lv(P ). For a
q-asc chain ASC = A1, ..., Ap such that A1 6∈ B, we define the resultant of a
polynomial G and ASC inductively as

R = resl(G;ASC) = resl(resl(G;Ap);A1, ..., Ap−1).

Then R ∈ B[X] and there exist polynomials C and Ci such that R = CG +
C1A1 + · · ·+ CpAp.
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A q-asc chain A1, ..., Ap is called regular if resl(init(Ai);A1, · · · , Ai−1) 6= 0,
i = 2, · · · , p. Note that this definition of the regular q-asc chain is equivalent to
the definition of regular chain in (Kalkbrenner, 1990). We need the following
properties of regular asc chains.

Lemma 12 Let ASC = A1, · · · , Ap be a regular asc chain in K[x1, · · · , xn].
Then Zero(ASC/J) is an unmixed quasi-variety of dimension DIM(ASC) and
of degree

∏p
i=1 ld(Ai).

Proof. We rename lv(Ai) as yi and the parameters of ASC as v1, · · · , vq where
q = n − p. Let Ri = resl(init(Ai);A1, · · · , Ai−1), i = 2, · · · , p. Then R =
init(A1)

∏p
i=2 Ri 6= 0 involves the v alone. For each v′ ∈ Eq such that R(v′) 6= 0,

we replace the v by v′ in A1 and get a polynomial A′1 ∈ E[x1] such that
degree(A′1, x1) = ld(A1) since R(v′) 6= 0. Thus A′1 has ld(A1) solutions: x1,1, · · · , x1,ld(A1).
For each solution of A′1, say x1,1, by replacing v, x1 by v′, x11 in A2 we get a
polynomial A′2 ∈ E[x2]. Since R(v′) 6= 0, we have init(A2)(u′, x11) 6= 0 or
degree(A′2, x2) = ld(A2). Thus A′2 has ld(A2) solutions. Continuing in this
way, at last we obtain D =

∏p
i=1 ld(Ai) zeros of Zero(ASC/J) and it is clear

that they are all the zeros of Zero(ASC/J) corresponding to the parameter
value v′. Since Zero(ASC/J) is not empty, it is an unmixed quasi variety by
Theorem 4.

A q-asc chain ASC is called a p-chain if the initial of every polynomial in
ASC involves the parameters of ASC alone. A p-chain is a regular asc chain.

Lemma 13 Let ASC = A1, · · · , Ap be a regular asc chain in K[X]. Then we
can find a p-chain ASC ′ such that

Zero(ASC/J) = Zero(ASC ′/J ′) ∪ Zero(ASC ∪ {J ′}/J)

where J and J ′ are the product of the initials of the polynomials in ASC and
ASC ′ respectively.

Proof. We rename the variables as in the proof of Lemma 12. Let Ai = Iiy
di
i +Ui

where Ii is the initial of Ai. We put A′1 = A1. For i = 2, · · · , p, let Ri(u) =
resl(Ii;A1, · · · , Ai−1) 6= 0. Then there exist Qi, Bi,j ∈ A such that

Ri(u) = QiIi +
∑i−1

j=1 Bi,jAj (4.2.1)

Let

A′i = AiQi + (
∑i−1

j=1 Bi,jAj)ydi
i = Riy

di
i + QiUi. (4.2.2)

Let ASC ′ = A′1, · · · , A′p and Q =
∏p

i=2 Qi. The J ′ = I1

∏p
i=2 Ri. It is clear

that Zero(ASC/J) = Zero(ASC/JQ) ∪ Zero(ASC, {Q}/J). From (4.2.1),
Zero(ASC∪{Q}/J) = Zero(ASC∪{I1

∏p
i=2 QiIi}/J) = Zero(ASC∪{J ′}/J).

By (4.2.1) and (4.2.2), Zero(ASC/JQ) = Zero({A1, A2Q2, · · · , ApQp}/JQ) =
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Zero(ASC ′/J ′) (consider inductively from p to 1). We have completed the
proof.

Remark. The usefulness of regular chains is due to the facts that we may
obtain a decomposition of the form (3.2.1) such that each ASCi is a regular
chain without using polynomial factorization (Zhang, et al, 1992, Kalkbrenner,
1990). Now we have the refined form of solving parametric algebraic systems.

Algorithm 14

INPUT: PS is a polynomial set in K[U,X].

OUTPUT: A cover of Zero(PS). Furthermore, for each solution function
(Si, ASCi) in the cover, ASCi is a p-chain.

S1. By Theorem 5, in K[U,X] we have Zero(PS) = ∪l
i=1Zero(ASCi/{Ji}).

By Lemma 13 and the remark after Lemma 13, we may assume that ASCi are
p-chains. For i = 1, · · · , l, do S2 -S4.

S2. Without loss of generality, ASCi can be written as B1, · · · , Bri , A1, · · · , Asi

where Bj are u-pols and lv(Aj) = xn+j−si
, j = 1, · · · , si.

S3. Since ASCi is a p-chain, Ji ∈ K[U, x1, · · · , xn−si
]. We have

Projxn+1−si
,···,xn

Zero(ASCi/Ji) = Zero({B1, · · · , Bri
}/Ji).

S4. Since Bj are free of xi, we use Lemma 6 repeatedly to eliminate other
variables

Si = Projx1,···,xn
Zero(ASCi/Ji) = ∪r

k=1Zero({B1, · · · , Bri
}/Fk)

where each Fi is the product of the initials of the Bi and a u-pol. Since ASCi

is a p-chain, by Lemma 12 Si 6= ∅. Therefore (Si, ASCi) is a solution function
for Zero(PS).

We have implemented the algorithm in a SUN-3/50 using Common Lisp.
The following are some examples solved by our program based on Algorithm
14.

Example 15 System (1.2) is to find the Equilibrium Points of a Chemical Sys-
tem (Boege, et al, 1986, Buchberger, 1985, Weispfenning, 1992). In Q[a1, · · · , x4],

Zero((1.2)) = ∪9
i=1Zero(ASCi/Ji)

where
ASC1 = {(a4 − a2)x1 − a1a3, (a4 − a2)x2 + a2

4 + (−a3 − 2a2 − a1)a4

+(a2 + a1)a3 + a2
2 + a1a2, x3 − a4, x4 − a4 + a2};

ASC2 = {(a4 − a2)x1 − a1a4, (a4 − a2)x2 − a2a4 + a2
2 + a1a2,

x3 − a3, x4 − a4 + a2};
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ASC3 = {(a4 − a2)x1 − a3a4, (a4 − a2)x2 − a2a4 + a2a3 + a2
2,

x3 − a1, x4 − a4 + a2};
ASC4 = {a3, a4 − a2, x2 + x1 − a2, x3 − a1, x4};
ASC5 = {a3, a4 − a2, x2 + x1 − a1, x3 − a2, x4};
ASC6 = {a1, a4 − a2, x2 + x1 − a2, x3 − a3, x4};
ASC7 = {a1, a4 − a2, x2 + x1 − a3, x3 − a2, x4};
ASC8 = {a2, a4, x2 + x1 − a1, x3 − a3, x4};
ASC9 = {a2, a4, x2 + x1 − a3, x3 − a1, x4}.

Since the ASCi are p-chains, we may obtain a cover of (1.2) trivially. The
following is a more difficult problem.

Example 16 To find the equilibrium points of the following Lorentz system
(Liu, 1990).

x′1 = x2(x3 − x4)− x1 + c
x′2 = x3(x4 − x1)− x2 + c
x′3 = x4(x1 − x2)− x3 + c
x′4 = x1(x2 − x3)− x4 + c

Let PS = {x2(x3−x4)−x1 +c, x3(x4−x1)−x2 +c, x4(x1−x2)−x3 +c, x1(x2−
x3) − x4 + c}. We have Zero(PS) = ∪10

i=1Zero(ASCi/Ji) where all ASCi are
p-chains. The asc chains are too long to print here. (They can be found on
p.28-29 of the technical report version of (Gao, Chou, 1992).) It is easy to find
a cover of the system from the decomposition. Only four of the ten asc chains
were found in (Liu, 1990).

Acknowledgment. The authors wish to thank the referees for valuable sug-
gestions.
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