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Abstract

This is the first paper of a series of three papers under the same title. It presents an improved
version of Ritt–Wu’s decomposition algorithm which is the basis of our methods of mechanical
theorem proving and mechanical formula derivation in differential geometry and elementary me-
chanics. We improve the original algorithm in two aspects. First, by using the weak ascending
chain and W–prem, the sizes of the differential polynomials occurring in the decomposition can
be reduced. Second, by using a special reduction procedure, the number of branches in the de-
composition can be controlled effectively. The improved version enhances the efficiency of the
original algorithm significantly.

Keywords Differential polynomial, weak ascending chain, W–prem, Ritt–Wu’s principle, quasi
zero set, Ritt–Wu’s decomposition algorithm.

1. Introduction

In the past decade, highly successful algebraic methods for mechanically proving theorems in
elementary geometries have been developed. Notably, the method introduced by Wu Wen-Tsün in
[13] has been used to prove hundreds of hard theorems in Euclidean geometry and non-Euclidean
geometries [2, 12]. Inspired by Wu’s work, methods of mechanical theorem proving in elementary
geometries using the Gröbner basis method have been also introduced [6, 7, 8].

Wu’s method is based on the characteristic set (CS) method, an idea due to van der Waerden
in algebraic case [11], and has been developed by J. F. Ritt to a systematical method in algebraic
geometry and differential algebra [9, 10]. In [14, 15], Wu proposed a method for proving theorems in
differential geometry using Ritt’s CS method. The present three papers are a further development
of Wu’s work. The papers are a refinement of our two technical reports [3, 4]. Several new results
obtained later are also included. The main contributions of the papers can be summarized as follows:

• (1) In the first paper, we present an improved version of Ritt–Wu’s decomposition algorithm
which enhances the efficiency of the original version significantly. The algorithm is the basis
of our methods and implementation.

• (2) In the second paper, we clarify the formulation problem of mechanical theorem proving
in differential geometry and mechanics and propose two formulations. The complete method
of mechanical theorem proving for each formulation is introduced. We also present a method
of eliminating existential quantifiers in certain cases and a language to translate geometry

1The work reported here was supported in part by the NSF Grant CCR-8702108.
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statements into differential polynomials equations. A program based on our method has proved
more than 100 nontrivial theorems in differential geometry and mechanics, including Bertrand’s
theorem, Mannheim’s theorem, Newton’s gravitational laws, etc.

• (3) In the third paper, methods for mechanical derivation of formulas from a set of differential
polynomial equations and a set of differential polynomial inequations have been presented.
The methods have been used successfully to solve many problems in space curve theory and
mechanics. In particular, an automated derivation of Newton’s gravitational law from Kepler’s
laws has been given without knowing Newton’s laws in advance. We also give a partial method
to derive polynomial relations from a set of differential polynomial equations.

1.1. Introduction to Ritt–Wu’s Decomposition Algorithm

The basis of the methods of mechanical theorem proving and mechanical formula deriving in
the case of differential polynomials is Ritt–Wu’s zero decomposition algorithm which takes two
differential polynomial sets as input and decomposes the quasi algebraic set defined by the two
differential polynomial sets into a union of irreducible quasi algebraic sets. The algorithm was
introduced by Ritt in his classic book Differential Algebra [10] as an effective method to construct
the irreducible components of a differential manifold. Recently, Wu made several modifications to
Ritt’s algorithm such as using the quasi algebraic set instead of the algebraic set and proposed a
method of mechanical theorem proving in differential geometry based on the modified algorithm
[16].

In our experience, we find Wu’s version of the decomposition algorithm is still time and space
consuming, and in many cases makes the CS method beyond the computer time and space limits
available. The main problems in the algorithm are: (1) The size growth of the differential polyno-
mials occurring in the decomposition; (2) The large number of branches. In this paper, we present
an improved version of Ritt–Wu’s decomposition algorithm which can overcome the above two dif-
ficulties. A program based on this improved version of the decomposition algorithm is efficient and
has mechanically proved more than 100 nontrivial theorems in differential geometry and elementary
mechanics.

To overcome the size growth difficulty, we extend the concepts of weak ascending chain and
W–prem for ordinary polynomials presented in [5] to the case of differential polynomials. The idea
here is to reduce the number of pseudo divisions carried out in the procedure. Our branch control
method is based on a special use of quasi algebraic sets and certain special reduction procedure. A
new version of Ritt–Wu’s decomposition algorithm with these improvements is presented in detail.

The completeness of Wu’s original method of mechanical theorem proving is based on the con-
struction of some extension of the base field, which is different for different geometry statements to
be proved. [2] instead uses the concept of algebraic closed field and the concept of universally true.
A geometry statement is universally true iff it is true on any extension field of the base field and the
decision of the universally true only depends on the existence of an algebraic closed extension of the
base field. In this paper, we along the line of [2] to present the completeness of the method, since the
existence of the similar concept of algebraic closed field – differential closed field – has been proved
in [1].

The main contribution of the paper is the introduction of the weak asc chain in section 3 and
a branch control technique in section 4. We use these new techniques to the well known Ritt-Wu’s
decomposition algorithm to give an improved version of the algorithm. Our implementation of the
decomposition algorithm based on the improved version is the first complete implementation.

The paper is organized as follows. In section 2, we give a brief review of some known notions
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and notations. In section 3, we introduce the new concept of weak ascending chains and W-prem.
In section 4, we present the improved decomposition algorithm. In section 5, we discuss differential
closed extensions of differential fields.

2. Preliminaries

All the concepts in this section come from [10] or [16].

A differential field is a field together with a third (unary) differential operation ′ satisfying:

(a + b)′ = a′ + b′ (ab)′ = a′b + ab′.

Generally, we can work with a computable differential field K of characteristic zero. But for our
purpose of theorem proving, in what follows, we assume that K is the rational function field Q(t)
in the variable t and all the derivations are with respect to (ab. wrpt) t, i.e., ′ = d/dt. A differential
field E is called an extension field of K if E is an extension field of K in the usual sense and the
restriction of the differentiation of E on K is the same as the differentiation of K.

Let x1, ..., xn be indeterminates. The j-th (j ≥ 0) derivative of a variable xi is denoted by xi,j .
Thus xi = xi,0, (xi)′ = xi,1, etc. An ordinary polynomial P in variables xi,j and with coefficients in
K is called a differential polynomial (ab. d-pol) in x1, ..., xn. We denote the set of all the d-pols in
x1, ..., xn by K{x1, ..., xn} = K{X}.

A non-empty subset D of K{X} is called an ideal if for any g ∈ D, we have (i) f ∈ D ⇒ f+g ∈ D;
(ii) f ∈ K{X} ⇒ fg ∈ D; and (iii) g′ ∈ D. An ideal D is called a prime ideal if fg ∈ D ⇒ f ∈
D or g ∈ D for any f and g in K{X}. An ideal D is called a radical ideal if fn ∈ D ⇒ f ∈ D for
any f ∈ K{X} and a positive integer n. Let S be a non-empty set in K{X}, the minimal ideal D
containing S is called the ideal generated by S and denoted by Ideal(S). Obviously, Ideal(S) is the
set of all linear combinations of the d-pols in S and their derivatives.

Definition 2.1. Class and Order. Let P be a d-pol. The class of P , denoted by class(P ),
is the least p such that P ∈ K{x1, ..., xp}. If P ∈ K, class(P ) = 0. The order of P wrpt xi,
denoted by ord(P, xi), is the largest j such that xi,j appears in P . If P does not involve xi, we put
ord(P, xi) = −1. Let a d-pol P be of class p > 0 and q = ord(P, xp), then xp and xp,q are called the
leading variable and the lead of P .

Definition 2.2. Rank. Let P1 and P2 be two d-pols, we say P2 is of higher rank than P1 in xi,
if either ord(P2, xi) > ord(P1, xi) or q = ord(P2, xi) = ord(P1, xi) and P2 is of higher degree in xi,q

than P1. P2 is said to be of higher rank than P1, denote by P2 > P1, if either class(P2) > class(P1)
or p = class(P2) = class(P1) and P2 is of higher rank than P1 in xp. Two d-pols for which no
difference in rank is established by the foregoing criterion are said to be of the same rank.

Definition 2.3. Initial and Separant. If the lead of P is xp,m with p > 0, P can be written as

P = adx
d
p,m + ad−1x

d−1
p,m + · · ·+ a0

where the ai are d-pols of lower rank than xp,m. Then ad 6= 0 is called the initial of P and denoted
by int(P ). The derivation of P is

P ′ = Sxp,m+1 + a′dx
d
p,m + a′d−1x

d−1
p,m + · · ·+ a′0

where S = ∂P
∂xp,m

= dadx
d−1
p,m + ... + a1 is called the separant of P and denoted by sep(P ). Note that

P ′ is linear in xp,m+1 with S as initial.

Definition 2.4. Pseudo remainder. Let xp,m (p > 0), I, and S be the lead, initial, and separant
of a d-pol P respectively. For any d-pol G, we shall define the pseudo remainder of G wrpt P :
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prem(G,P ) as below. Let h = ord(G, xp) and k1 = h−m. If k1 > 0 then P (k1), the k1-th derivative
of P , will be linear in xp,h with S as initial. Treating G and P (k1) as ordinary polynomials of xp,h

and using the algorithm of pseudo division for ordinary polynomials (see, [10]) for G and P (k1), we
can find the smallest nonnegative integer v1 and d-pols C1 and D1 such that:

Sv1G = C1P
(k1) + D1

where ord(D1, xp) < h as P (k1) is linear in xp,h. If ord(D1, xp) > m, we repeat the above process for
D1 and P , and so on. Finally we can find a nonnegative integer v and d-pols Qi such that:

SvG = Q1P
(k1) + · · ·+ QsP

(ks) + D

where ord(D, xp) ≤ m. If ord(D, xp) < m, we define prem(G,P ) = D. Otherwise, both D and P
can be viewed as ordinary polynomials of xp,m. Using the algorithm of pseudo division of ordinary
polynomials (see [10]) for D and P , we have

(2.4.1) SvIuG = Q′
1P

(k1) + · · ·+ Q′
sP

(ks) + QP + R

where R is a d-pol with lower rank than P in xp. We define R = prem(G,P ).

As an example, let us show how to calculate prem(q2, q1) for q2 = x′3 + x3 and q1 = x2
3 + x2

2− x2
1.

q′1 = 2x3x
′
3 + 2x2x

′
2 − 2x1x

′
1 The differentiation of q1.

q3 = 2x3q2 − q′1 = 2x2
3 − 2x2x

′
2 + 2x1x

′
1 Pseudo division of q2 by q′1.

q4 = q3 − 2q1 = 2x1x
′
1 − 2x2x

′
2 + 2x2

1 − 2x2
2 Pseudo division of q3 by q1.

Then q4 = prem(q2, q1). We have Sq2 = q′1 + 2q1 + q4, where S = 2x3 is the separant of q1.

Definition 2.5. Quasi ascending chain. A sequence of d-pols ASC = A1, ..., Ap is said to be
a quasi ascending (ab. asc) chain, if either p = 1 and A1 6= 0 or 0 < class(Ai) < class(Aj) for
1 ≤ i < j. ASC is called nontrivial if class(A1) > 0.

A quasi asc chain ASC = A1, ..., Ap is said to be of higher rank than another quasi asc chain
ASC ′ = B1, ..., Bs, denoted by ASC > ASC ′, if either (i) there is a j, exceeding neither p nor s,
such that Ai and Bi are of the same rank for i < j and that Aj is of higher rank than Bj ; or (ii)
s > p and Ai and Bi are of the same rank for i ≤ p. Two quasi asc chains for which no difference in
rank is established by the foregoing criterion are said to be of the same rank.

Lemma 2.6. (P. 4 [10]) Let
ASC1, ASC2, ..., ASCi, ...

be an infinite sequence of quasi asc chains the ranks of which do not increase. Then there is an index
i0 such that for any i > i0, ASCi and ASCi0 have the same rank.

For a nontrivial quasi asc chain ASC = A1, ..., Ap, we define the pseudo remainder of G wrpt
ASC inductively as prem(G,ASC) = prem(prem(G,Ap), A1, ..., Ap−1). Let R = prem(G,ASC),
then by (2.4.1) there is a product J of powers of the initials and separants of d-pols in ASC such
that

(2.7) JG−R ∈ Ideal(A1, ..., Ap).

(2.7) is called the remainder formula of prem(G,ASC). For a quasi asc chain ASC, we introduce
the following important notation

PD(ASC) = {G | G ∈ K{X} and prem(G,ASC) = 0}.
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Definition 2.8. Quasi zero set. For a set of d-pols HS and an extension field E of K, we define

E-Zero(HS) = {z ∈ En : ∀P ∈ HS,P (z) = 0, }

Let DS be another set of d-pols, the quasi zero set defined by HS and DS is

E-Zero(HS/DS) = E-Zero(HS)− ∪r∈DSE-Zero(r).

Definition 2.9. Asc chain and irreducible asc chain. Let ASC = A1, ..., Ap be a quasi asc
chain. ASC is called an asc chain if for each 1 < i ≤ p, Ai is of lower rank than Aj in the leading
variable of Aj (j = 1, ..., i− 1). An asc chain ASC is said to be irreducible if ASC is irreducible as
a polynomial asc chain (p107 [10]).

Theorem 2.10. (p.107 [10]) If ASC is an irreducible asc chain then PD(ASC) is a prime ideal.

Theorem 2.11. (p.97 and p.107, [10]) If the asc chain ASC ′ = A1, ..., Ap−1 is irreducible and the
asc chain ASC = A1, ..., Ap−1, Ap is reducible, then we can find nonzero d-pols G and F with the
same lead as Ap but with lower rank than Ai in the leading variable of Ai, i = 1, ..., p, such that
GF ∈ Ideal(A1, ..., Ap).

Definition 2.12. Dimension and order of an asc chain. For a quasi asc chain ASC = A1, ..., Ap,
we always make a renaming of the variables. If Ai is of class mi, we rename xmi as yi, other variables
among xi are renamed as u1, ..., uq, where q = n−p. The variables u1, ..., uq are called the parameter
set of ASC. If ASC is irreducible, DIM(ASC) = q = n− p is defined to be the dimension of ASC
and ORD(ASC) =

∑p
i=1 ord(Ai, yi) is defined to be the order of ASC wrpt to the given parameter

set. DIM(ASC) and ORD(ASC) are actually the dimension and order of the prime ideal PD(ASC)
respectively [10].

3. The Weak Ascending Chains and W–prem

In this section, we introduce the notions of weak ascending chain and W–prem which are the key
concepts in our improved algorithm.

Definition 3.1. Weak asc chain. Let ASC = A1, ..., Ap be a quasi asc chain. It is called a weak
asc chain, if for each i (1 < i ≤ p) the pseudo remainders of the initial and separant of Ai wrpt
A1, ..., Ai−1 are not zero.

Definition 3.2. W–prem. For a d-pol P and a nontrivial quasi ascending chain ASC = A1, ..., Ap,
W-prem(P, ASC) can be defined inductively as follows. We assume W-prem(P, ∅) = P .

• Case a. We put W–prem(P, ASC) = W–prem(prem(P, Ap), A1, ..., Ap−1) if class(P ) = class(Ap).
Otherwise do Case b.

• Case b. W–prem(P, ASC) = W–prem(P, A1, ..., Ap−1) if class(P ) < class(Ap). Otherwise do
Case c.

• Case c. W–prem(P, ASC) = prem(P, ASC), if the pseudo remainder of the separant or the
initial of P wrpt ASC is zero. Otherwise do Case d.

• Case d. W–prem(P, ASC) = P .

If W–prem(P, ASC) = P , we say P is W–reduced wrpt ASC. It is easy to see that W–prem(P, ASC)
is always W–reduced wrpt ASC and a quasi asc chain ASC = A1, ..., Ap is a weak asc chain if each
Ai is W–reduced wrpt A1, ..., Ai−1.

5



Lemma 3.3. For a differential polynomial P and a weak ascending chain ASC = A1, ..., Ap, if
W–prem(P, ASC) = 0 then prem(P, ASC) = 0.

Proof. Use induction on p. It is obvious when p = 1. Suppose p > 1. There are four cases a–
d. For case a, if prem(P, Ap) = 0 then the lemma is true; otherwise the lemma comes from the
induction hypothesis. Case b is trivial. For case c, the lemma is also true because W–prem(P, ASC)
= prem(P, ASC). In case d, W–prem(P, ASC) 6= 0. Then the lemma is obviously true in this case.

Lemma 3.4. Let ASC1 be a quasi asc set and ASC2 be an irreducible asc chain. If the pseudo
remainders of the d-pols in ASC1 wrpt ASC2 are zero and the pseudo remainders of the initials and
separants of the d-pols in ASC1 wrpt ASC2 are not zero, then PD(ASC1) ⊂ PD(ASC2).

Proof. By Theorem 2.10, PD(ASC2) is a prime ideal. We have ASC1 ⊂ PD(ASC2) and J 6∈
PD(ASC2) where J is any product of the separants and initials of the d-pols in ASC1. Let P ∈
PD(ASC1), then there exists a product J1 of the separants and initials of the d-pols in ASC1 such
that J1P ∈ Ideal(ASC1). Therefore, we have J1P ∈ PD(ASC2). Then P ∈ PD(ASC2) as J1 is
not in PD(ASC2).

Theorem 3.5. For a nontrivial weak asc chain ASC = A1, ..., Ap, let ASC ′ = A′1, ..., A′p where
A′1 = A1 and A′i = prem(Ai, A1, ..., Ai−1) (i = 2, ..., p). Then either (a) we can find two nonzero
d-pols G and H which are W–reduced wrpt ASC such that HG ∈ Ideal(ASC), or (b) ASC ′ is an
irreducible asc chain and PD(ASC) = PD(ASC ′).

Proof. Induction on p. If p = 1, the result is obviously true. Assuming the result is true for
p = k − 1, we want to prove the result is true for p = k. By the induction hypothesis, either (a)
or (b) is true for ASCk−1 = {A1, ..., Ak−1}. If (a) is true for ASCk−1, then (a) is also true for
ASCk. Now we suppose (b) is true for ASCk−1, i.e., ASC ′

k−1 = {A′1, ..., A′k−1} is irreducible and
PD(ASCk−1) = PD(ASC ′

k−1) is a prime ideal. Note that A′k = prem(Ak, A1, ..., Ak−1), then by
(2.7), we have

(3.6) A′k − JAk ∈ Ideal(ASCk−1) ⊂ PD(ASCk−1)

where J is a product of the initials and separants of A1, ..., Ak−1. Since ASC is a weak asc chain, A′k
and Ak have the same lead and the same degree wrpt the lead. Thus ASC ′ is an asc chain. If ASC ′

is reducible, then by theorem 2.11, we can find non-zero d-pols H and G which are W–reduced wrpt
ASC ′ (hence also to ASC) such that HG ∈ Ideal(ASC ′). By (3.6), we have HG ∈ Ideal(ASC). In
this case, (a) is true. Now we assume ASC ′ is irreducible. As ASC is a weak asc chain, the pseudo
remainders of the initial and separant of Ak wrpt ASCk−1, hence wrpt ASC ′

k−1, are not zero. By
(3.6), the pseudo remainder of Ak wrpt ASC ′ is zero. Thus PD(ASC) ⊂ PD(ASC ′) follows from
Lemma 3.4 and the induction hypothesis. The reverse direction also comes from Lemma 3.4 since
A′i ∈ PD(ASC) and the initials and separants of A′i are W-reduced wrpt ASCi.

In case (b) of Theorem 3.5, we say that the weak asc chain ASC is irreducible. Notice that it is
incorrect to say that a weak asc chain is irreducible if it is irreducible as a polynomial asc chain.

4. An Improved Ritt–Wu’s Zero Decomposition Algorithm

In what follows, whenever we talk about a finite set of d-pols, we always assume it is non-empty
and does not contain 0.

Lemma 4.1. For a finite d-pol set HS, we can find a weak asc chain ASC in HS which is not
higher than other weak asc chains in HS. Such a weak asc chain is called a weak basic set of HS.

Proof. Let B1 be a d-pol which has the lowest rank in P0 = HS. If B1 is in K then the asc chain
B1 satisfies the condition of the lemma. Otherwise, the class of B1 is positive. Let P1 be the set of
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the d-pols in P0 which are W–reduced wrpt B1. If P1 is empty, then B1 satisfies the condition of
the lemma. Otherwise, let B2 be a d-pol of the lowest rank in P1. Then B2 must be of higher class
than B1. Repeat the above process, at last we get a weak asc chain B1, B2, ..., Bk with the desired
property.

Lemma 4.2. If a nonzero d-pol P is W–reduced wrpt a weak basic set of HS, then a weak basic
set of HS ∪ {P} is of lower rank than a weak basic set of HS.

Proof. Let BS = B1, ..., Bp be a weak basic set of HS and k be the largest index such that
class(Bk) < class(P ). If class(Bk+1) > class(P ) then B1, ..., Bk, P will be a weak asc chain con-
tained in HS ∪ {P} which has lower rank than BS. Otherwise, class(Bk+1) = class(P ). As P
is W–reduced to BS then P must be of lower rank than Bk+1 by (a) of Definition 3.2. Then
B1, ..., Bk, P is a weak asc chain contained in HS ∪ {P} which is of lower rank than BS.

Lemma 4.3. (A modified Ritt–Wu’s Principle) For a finite set HS of d-pols, we can find either a
nonzero d-pol P ∈ K ∩ Ideal(HS) or a nontrivial weak asc chain ASC and an enlarged d-pol set
HS′ of HS such that:

(a) ASC is a weak basic set of HS′.
(b) E-Zero(HS) = E-Zero(HS′).
(c) E-Zero(HS) = E-Zero(ASC/J)

⋃∪1≤i≤tE-Zero(HS′ ∪ {hi}/{h1, ..., hi−1}).
(d) E-Zero(HS) = E-Zero(PD(ASC))

⋃∪1≤i≤tE-Zero(HS′ ∪ {hi}/{h1, ..., hi−1}).
where J = {h1, ..., ht} is the set of the initials and separants of the d-pols in ASC.

Proof. Let BS0 be a weak basic set of HS. If BS0 = {B1} and B1 ∈ K then B1 ∈ K ∩ Ideal(HS).
We have proved the lemma. Otherwise, let RS be the nonzero W–prem(g, BS0) for all g ∈ HS−BS0.
If RS is empty, let ASC = BS0 and HS′ = HS. (a) and (b) are obviously true. (c) comes from the
remainder formula (2.7) (for details see [3]). (d) comes from (c) and (2.7). If RS is not empty, we
set HS1 = HS ∪ RS. Since RS ⊂ Ideal(HS), HS and HS1 have the same zeros. By Lemma 4.2,
HS1 has a weak basic set BS1 with lower rank than BS0. Repeating the above process for HS1 and
so on, we either get a d-pol P ∈ K ∩ Ideal(HS) or get a sequence of d-pol sets which have the same
zeros

HS ⊂ HS1 ⊂ · · ·
and a sequence of nontrivial, strictly decreasing weak asc chains:

BS0 > BS1 > · · ·
By Lemma 2.6, the above iteration must terminate in finite steps, i.e., there is an i0 such that
W–prem(G,BSi0) = 0 for all G ∈ HSi0 . Then Let ASC = BSi0 and HS′ = HSi0 . (a) and (b) are
obviously true. (c) and (d) come from the remainder formula (2.7).

Remark. Note that by changing the original version of Ritt–Wu’s principle to the above form, each
two of the zero sets in the right side of (c) have no common zeros. This is our major technique in
branch control.

Theorem 4.4. (Ritt–Wu’s Zero Decomposition Algorithm: the Coarse Form) Let HS and DS be
two finite sets of d-pols, then in a finite number of steps, we can either detect the emptiness of
E-Zero(HS/DS) or furnish a decomposition of the following forms:

E-Zero(HS/DS) = ∪l
i=1E-Zero(ASCi/DS ∪ Ji) ∗ (4.4.1)

E-Zero(HS/DS) = ∪l
i=1E-Zero(PD(ASCi)/DS) (4.4.2)

where for each i ≤ l, ASCi is a weak asc chain such that prem(P, ASCi) 6= 0 for ∀P ∈ DS and Ji is
the set of initials and separants of the d-pols in ASCi.
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Proof. Let ASC1 and HS1 be the weak asc chain and the enlarged d-pol set obtained from HS
as in Lemma 4.3. If ASC1 is trivial, E-Zero(HS/DS) is empty. Otherwise, compute the pseudo
remainders of the d-pols in DS wrpt to ASC1. If one of them is zero, E-Zero(ASC1/DS ∪ J1) is
empty, where J1 = {h1, ..., ht} is the initial and separant set of ASC1. Thus, by (c) of Lemma 4.3,
we have

E-Zero(HS/DS) = ∪1≤i≤tE-Zero(HS′ ∪ {hi}/DS ∪ {h1, ..., hi−1}).
Otherwise, we have

E-Zero(HS/DS) = E-Zero(ASC1/DS ∪ J1)⋃∪1≤i≤tE-Zero(HS′ ∪ {hi}/DS ∪ {h1, ..., hi−1})
For each hi ∈ J1, let h′i = W–prem(hi, ASC1). We have

E-Zero(HS1 ∪ {hi, h
′
i}) = E-Zero(HS1 ∪ {hi}).

Repeating the above process for HS1 ∪ {hi, h
′
i}, we get another weak asc chain ASC2. Since

prem(hi, ASC1) 6= 0, h′i is not zero by lemma 3.3. Hence ASC2 must be of lower rank than ASC1

by lemma 4.2. By Lemma 2.6, the above process must terminate within a finite number of steps
and we will get a decomposition like

E-Zero(HS/DS) = ∪l
i=1E-Zero(ASCi/DS ∪ Ji ∪DSi)

Since W–prem(g, ASCi) = 0 for all g ∈ HS, DSi can be dropped and we get a decomposition as
(4.4.1). (4.4.2) can be obtained similarly.

Theorem 4.5. (Ritt–Wu’s Zero Decomposition Algorithm: the Refined Form) The same as Theo-
rem 4.4, except the ASCi in (4.4.1) and (4.4.2) are irreducible.

Proof. Similar to the proof of Theorem 4.4, let ASC1 and HS1 be the weak asc chain and the
enlarged d-pol set obtained from HS as in Lemma 4.3. If ASC1 is irreducible or trivial, then do the
same decomposition as Theorem 4.4. Otherwise, by Theorem 3.5, we can find two non-zero d-pols
G and F which are W–reduced wrpt ASC1 such that GF ∈ Ideal(ASC1). We have:

E-Zero(HS/DS) = E-Zero(HS1 ∪ {F}/DS) ∪ E-Zero(HS1 ∪ {G}/DS)

We can repeat the above process for HS1 ∪ {F} and HS1 ∪ {G}. As F and G are W–reduced wrpt
ASC1, each weak basic set of HS1 ∪ {F} or HS1 ∪ {G} must be of lower rank than ASC1. Thus
the process will terminate at a finite number of steps.

In our implementation, the following facts are used to enhance the efficiency of the program.

(i). For a d-pol set HS and d-pols f and g, it is obvious that

E-Zero(HS ∪ {fg}) = E-Zero(HS ∪ {f}) ∪ E-Zero(HS ∪ {g}).

Since f and g have less degree and generally less size than fg, the decomposition of HS ∪ {f} and
HS ∪ {g} is generally easier to carry out than HS ∪ {fg}.

(ii). In Theorem 4.4, when each new weak asc chain ASC and an enlarged set HS′ of HS
are produced, we check whether there are some d-pols in DS which can be reduced to zero by
HS1 = {f, f ′ : f ∈ HS′} using the reduction procedure used in Gröbner bases method when all
the d-pols in DS and HS1 are treated as ordinary polynomials of xi,j . If such a d-pol exists then
E-Zero(HS/DS) is empty.

5. Some Properties of Differential Closed Field
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A differential field E is called differential closed if each nonunit ideal in E{x1, · · · , xn} has zeros
in En.

Lemma 5.1. For an extension field E of K, the following statements are equivalent:

(a) E is a differential closed extension of K.

(b) Let G,F1, ..., Fs be d-pols in K{X}. If G vanishes on the E-zeros of F1, ..., Fs, then a power of
G is in Ideal(F1, · · · , Fs).

(c) For a radical ideal D in K{X}, D equals the set of the d-pols vanishing on E-Zero(D).

Proof. (a) ⇒ (b). Let z be a new variable. As G vanishes on all E-zeros of F1, ..., Fs, the ideal
D = Ideal(F1, ..., Fs, zG − 1) has no E-zero. By (a), 1 is in D, i.e., 1 is a linear combination of
the F , zG − 1 and their derivatives, with d-pols in K{x1, ..., xn, z} as coefficients. Set z = 1/G
in this expression and clear the denominators. Note that z′ = −G′/G2, z′′ = (2G′2 − G′′G)/G3, ....
Therefore, some power of G can be expressed as linear combination of the F and their derivatives.
This proves (b). The proof of (b) ⇒ (c) and (c) ⇒ (a) is trivial.

From [1], we know that for a differential field K of characteristic zero, there always exists a
differential closed extension of K. The completeness of our methods of mechanical theorem proving
in the differential polynomial case is based on the following theorem.

Theorem 5.2. Let ASC be an irreducible weak asc chain and R be a d-pol with nonzero pseudo
remainder wrpt ASC. Then for a differential closed extension E of K, a nonzero d-pol G vanishes
on E-Zero(PD(ASC)/R) iff prem(G,ASC) = 0.

Proof. The if part is obvious. As ASC is irreducible, PD(ASC) is a prime ideal. Since G vanishes
on E-Zero(PD(ASC)/R), GR vanishes on E-Zero(PD(ASC)). Then GR ∈ PD(ASC) by lemma
5.1 (c), because a prime ideal is a radical ideal. Since R is not in PD(ASC), we have G ∈ PD(ASC),
i.e., prem(G,ASC) = 0.

Acknowledgement. We thank one of the refrees for informing us a better way of doing
pseudo divisions.
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