
March 24, 2006 11:52 WSPC/Guidelines p18

International Journal of Computational Geometry & Applications
c© World Scientific Publishing Company

Well-constrained Completion and Decomposition for
Under-constrained Geometric Constraint Problems

Gui-Fang Zhang

School of Sciences, Beijing Forestry University, Beijing 100083, China

Xiao-Shan Gao

KLMM, Institute of Systems Science, AMSS, Academia Sinica, Beijing 100080, China

Received (received date)
Revised (revised date)

Communicated by (Name)

In this paper, we consider the optimal well-constrained completion problem, that is, for

an under-constrained geometric constraint problem, add automatically new constraints
in such a way that the new constraint problem G is well-constrained and the set of

equations to be solved simultaneously in order to solve G has the smallest size. We

propose a polynomial time algorithm which gives a partial solution to the above problem.

Keywords: Geometric constraint solving, under-constrained completion, decomposition.

1. Introduction

Geometric constraint solving (abbr. GCS) is one of the key techniques in intelligent
and parametric CAD, which allows the user to make modifications to existing de-
signs by changing parametric values. GCS methods may also be used in other fields
like computer vision, molecular modelling, robotics, and feature-based design. There
are four major approaches to GCS: the numerical approach, the symbolic approach,
the rule-based approach, and the graph-based approach.

Most existing GCS methods assume that the problems are well-constrained.
This paper will focus on using graph-based algorithms to solve under-constrained
problems. The reason behind this research is that a natural way to draw a design
figure is to do it incrementally, that is, to add geometric primitives and geometric
constraints one by one. After a new primitive or a new constraint is added, it would
be better for the constraint solving system to generate the design diagrams. But,
before all the necessary constraints are added, the constraint problem is under-
constrained.

Joan-Arinyo et al suggested that the main problems for solving under-
constrained problems are well-constrained completion and completion.1

Problem 1.1. [Well-constrained Completion] Given the geometric constraint

1

March 24, 2006 11:52 WSPC/Guidelines p18

2 G.F. Zhang and X.S. Gao

graph associated to an under-constrained geometric constraint problem, add au-
tomatically new constraints to the graph in such a way that the corresponding
geometric constraint problem is well-constrained.

Problem 1.2. [Completion] Given the geometric constraint graph associated to an
under-constrained geometric constraint problem, add automatically new constraints
to the graph in such a way that the corresponding geometric constraint problem is
solvable, that is, the corresponding geometric constraint problem can be solved by
geometric constructions, like ruler and compass constructions.

Since not all under-constrained problems have solvable completions, we propose
the following more general problem.

Problem 1.3. [Optimal Well-constrained Completion] Given the geometric
constraint graph associated to an under-constrained geometric constraint problem,
add automatically new constraints to the graph in such a way that the correspond-
ing geometric constraint problem G is well-constrained and the set of equations to
be solved simultaneously in order to solve G has the smallest size.

Latham and Middleditch gave a method to detect whether the constraint graph
in 2D or 3D is over- or under-constrained and decide how to delete or add constraints
to make it well-constrained.2 Therefore, Latham and Middleditch solved Problem
1.1. But the part on how to add new constraints is not studied in detail. So their
method does not address Problems 1.2 and 1.3. Fudos and Hoffmann proposed a
method which could handle those problems that can be solved with the so-called
cluster formation method.3 Yuan et al proposed an algorithm based on local prop-
agation. Their algorithm can be used to find the available solutions according to
the design intention in certain sense, but cannot deal with constraint problems with
so-called cyclic constraints.4 Lee et al gave a method to deal with under-constrained
problems in 2D by classifying the under-constrained subgraphs into simplified cases
and by applying some classification rules.5 Joan-Arinyo et al proposed algorithms
to solve the well-constrained completion problem and the completion problem in
2D with the technique of s-tree decomposition.1,6 This method can handle those
problems that can be solved with the s-tree decomposition method. In this vol-
ume, Trombettoni et al used a degree-freedom-analysis to solve under-constrained
problems.7 Their method is polynomial in time but seems cannot generate optimal
completions for problems like the one in Figure 10.

In this paper, we will give an improved solution to Problem 1.1 and a partial
solution to Problem 1.3. The main ideas of the algorithms will be explained below.

First, we observe that fixing the position of several geometric primitives called
base primitives could lead to better well-constrained completions. So our algorithm
will try to solve the problem starting with a set of base primitives and if we cannot
find a decomposition with these base primitives, we will repeat the process with
a new set of base primitives. Since the number of base primitives is less than the
number of constraints, this idea leads to a systematical and effective search of

March 24, 2006 11:52 WSPC/Guidelines p18

Well-constrained Completion for Under-constrained Geometric Constraint Problems 3

optimal well-constrained completions. After a set of base primitives is fixed, we
will generate a general construction sequence (GC) (definition in Section 2) for the
problem, which gives a solving order for the primitives. So, a natural way to add a
new constraint from o1 to o2 is that o1 is before o2 in the sequence. In this way, we
will not destroy the solving order. Another idea is that whenever possible, we will
construct the primitives one by one. We show that in the 2D case, all the newly
added constraints can be used for this purpose. Based on the above ideas, we give an
improved algorithm for Problem 1.1 in Section 3. The complexity of the algorithm
is O(n2) where n is the number of the primitives in the problem.

The well-constrained completion algorithm in Section 3 is not optimal, that is,
it does not solve Problem 1.3. In order to improve the output of the algorithm, a
D-tree decomposition algorithm for under-constrained problem is proposed. During
the well-constrained completion, we will check whether the constraint problem can
be split into two smaller problems, and if not, we will select a set of new base
primitives and repeat the well-constrained completion again. This part is presented
in Section 4 and is an extension of the C-tree decomposition algorithm.8 The final
D-tree decomposition method provides an effective way to decompose well- and
under-constrained problems. The complexity of the algorithm is O(n4) where n is
the number of the primitives in the constraint problem.

The main idea of the algorithms presented in this paper could be extended to
cover all types of constraints since we use bipartite graphs. The algorithms could
also be extended to the 3D case. We will explore these extensions in our future
work. In this paper, we consider 2D problems with distance and angle constraints.

The rest of the paper is organized as follows. In Section 2, we introduce the basic
concepts of constraint graph and the method to compute a maximum weighting of
a constraint graph. In Section 3, we give a well-constrained completion algorithm of
quadratic complexity. In Section 4, we propose the D-tree decomposition algorithm
for under- and well-constrained problems. In Section 5, we present the conclusions.

2. Preliminary Notions and Algorithms

2.1. Basic Concepts about Constraint Graphs

In a geometric constraint problem, we consider two types of geometric primitives:
points and lines in two dimensional Euclidean plane and two types of geometric
constraints: the distance constraint between point/point, point/line and the angular
constraint between line/line. In our algorithm, positional constraints will be added.
These include to assign a coordinate to a point and the direction to a line. We will
use pi and li to represent points and lines respectively. The angular and distance
constraints between two primitives o1 and o2 are denoted by ANG(o1, o2) = α and
DIS(o1, o2) = δ respectively.

We use a bipartite graph G = (V, C,E, ω) or G = (V(G),C(G),E(G), ω) to
represent a geometric constraint problem, where V and C are the vertex sets of G,
E is the edge set, ω defines a weight for each edge. The details are explained below.

March 24, 2006 11:52 WSPC/Guidelines p18

4 G.F. Zhang and X.S. Gao

(1) The vertices in V represent the geometric primitives, called primitive vertices.
For every primitive vertex v in V , DOF(v) is the degree of freedom (abbr. DOF)
of v, and DOF(V) = Σv∈V DOF(v).

(2) The vertices in C represent the constraints, called constraint vertices. For c ∈ C,
DOF(c) represents the DOF of c, that is, the number of scalar equations to
represent the constraint, and DOF(C) = Σc∈CDOF(c). Let H be a subgraph of
G. A constraint vertex in H between two primitives in H is called an internal
constraint of H. Otherwise, it is called an external constraint of H. We use
IDOF(H) to denote the sum of the DOFs of the internal constraints of H.

(3) The edge set E is defined as: E = {(c, v))|v ∈ V, c ∈ C, and c is a constraint
involving v}.

(4) For each edge e ∈ E, the weight ω(e) is a non-negative integer such that the
sum of weights of all edges incident to a vertex o, denoted as ω(o), is no more
than DOF(o). The initial weight of each edge is zero. A vertex o is said to be
saturated or unsaturated if DOF(o) = ω(o) or DOF(o) > ω(o) holds respectively.
A weighting of a graph is called a maximal weighting if the sum of all the weights
of its edges is not less than the sum for any other weighting of that graph.

(5) From a weighting, we assign the edge directions. For an edge e between a
primitive p and a constraint c, e is always directed from p to c. If ω(e) 6= 0, e

is also directed from c to p.

The bipartite graph G is called the constraint graph of the geometric constraint
problem. Let U be a subset of V(G). The subgraph induced by U is the subgraph
of G whose constraints are those constraints among primitives in U .

In this paper, the DOF of every geometric primitive is two. The DOF of the
constraint DIS(p1, p2) is one if the distance is not zero; otherwise it is two. The DOF
of constraint DIS(p, l) is one. The DOF of constraint ANG(l1, l2) is one. Figure 1
is a constraint problem and Figure 2 is its bipartite graph.

P 2 P 3

P 4

P 1

l 4

l 1

l 3

l 2

Fig. 1. A constraint problem: Lengths of four
edges and ANG(l2, l4) are given

p1

2

c3

1

p4

2

l2

2

l3

2

l4

2

c2

1

l1

2

c1

1

p2

2

c9

1

p3

2

c4

1

c7

1

c11

1

c5

1

c10

1

c8

1

c6

1

c13

1

c12

1

Fig. 2. Graph representation for the problem in

Figure 1

A constraint graph G is called (structurally) over-constrained if there is a sub-
graph H of G such that H contains at least two primitive vertices and satis-

March 24, 2006 11:52 WSPC/Guidelines p18

Well-constrained Completion for Under-constrained Geometric Constraint Problems 5

fies IDOF(H) > DOF(V(H)) − 3. A constraint graph G is called (structurally)
well-constrained if it is not over-constrained and DOF(C(G)) = IDOF(G) =
DOF(V(G)) − 3. A constraint graph G is called (structurally) under-constrained
if G is not over-constrained and DOF(C(G)) = IDOF(G) < DOF(V(G))− 3.

A constraint system is called geometrically well-constrained if its shape has only
a finite number of cases. In most cases, a structurally well-constrained problem is
also geometrically well-constrained and hence defines a rigid body. But, in some
special cases, a structurally well-constrained problem may have no solutions or an
infinite number of solutions. To decide whether a constraint problem is geomet-
rically well-constrained, we need to use techniques from symbolic computation.9

In this paper, we will focus on the structure analysis of constrained problems and
assume that a structurally well-constrained problem defines a rigid body.

2.2. Computation of A Maximal Weighting

A maximal weighting of a bipartite graph can be computed by incrementally im-
proving augmenting paths which are paths directed from an unsaturated primitive
to an unsaturated constraint.2,10 Such paths are augmented by adding one to and
subtracting one from the weights of alternate edges. The augmentation does not
change the sum of weights of edges incident to any interior vertex of the path. It
does change the sum of weights for end vertices but the weighting remains valid
because the end vertices are unsaturated. For example, diagram (a) in Figure 3 is
an augmenting path from p1 to c3 and diagram (b) is the augmented path.

p1

2

C1

1

p2

2

C2

1
0 1 1

C3

1

0

p1

2

C1

1

p2

2

C2

1
1 0 1

C3

1

1

(a) (b)

Fig. 3. Path augmentation

A weighting is maximal when there are no augmenting paths. Since each aug-
mentation increases the sum of path weights by one, repeated augmentation con-
verts an arbitrary weighting to a maximal weighting. After a constraint is added (or
deleted), the augmentation efficiently computes the new maximal weighting from
the old maximal weighting. In this case, augmenting paths are easier to find because
they include the new constraint.2

There often exist more than one maximal weightings for a constraint graph.
For example, in Figure 4, diagrams (a), (b) and (c) are three different maximal
weightings for the constraint graph in Figure 1. Diagram (a) has unsaturated prim-

March 24, 2006 11:52 WSPC/Guidelines p18

6 G.F. Zhang and X.S. Gao

p1

2

c3

1

p4

2

l2

2

l3

2

l4

2

c2

1

l1

2

c1

1

p2

2

c9

1

p3

2

c4

1

c7

1

c11

1

c5

1

c10

1

c8

1

c6

1

c13

1

c12

1

p1

2

c3

1

p4

2

l2

2

l3

2

l4

2

c2

1

l1

2

c1

1

p2

2

c9

1

p3

2

c4

1

c7

1

c11

1

c5

1

c10

1

c8

1

c6

1

c13

1

c12

1

p1

2

c3

1

p4

2

l2

2

l3

2

l4

2

c2

1

l1

2

c1

1

p2

2

c9

1

p3

2

c4

1

c7

1

c11

1

c5

1

c10

1

c8

1

c6

1

c13

1

c12

1

(a) (b) (c)

Fig. 4. Maximal weightings of the problem in Figure 1

itives p4 and l1. Diagram (b) has unsaturated primitives p4 and l4. Diagram (c) has
unsaturated primitives p4 and l3. In Figure 4, the weight of each edge with single
arrowhead is zero, and the weight of each edge with double arrowhead is one.

In a well-constrained or under-constrained graph with a maximal weighting,
there exist no unsaturated constraints, but there might exist unsaturated primitives.

2.3. Partition of a Constraint Graph

After a maximal weighting of a graph is obtained, the constraint graph will be
partitioned into disjoint subgraphs called residual sets. A set of vertices is strongly
connected if there is a directed path from any vertex to any vertex in that set. A
residual set is a set consisting of only one vertex or a strongly connected set which
is not a proper subgraph of another strongly connected set. Residual sets could be
computed with graph algorithms.10

For example, the constraint graph in Figure 4 (a) is partitioned into three resid-
ual sets: {p4}, {p1, c1, c3, l1, c9, p2, c6, c13, p3, c8, c11, l2, c7, c10, l4, c2, c4}, {l3, c5, c12}.
The constraint graph in Figure 4 (b) is partitioned into six residual sets: {l4},
{p4, c4}, {p1, c2, c3}, {p2, c6, c10, p3, c13, c8, l2, c7, c11}, {l3, c5, c12}, {l1, c1, c9}. The
constraint graph in Figure 4 (c) is partitioned into five residual sets: {p4}, {l3, c5},
{p3, c8, c12}, {p1, c2, c3, p2, c6, c13, l2, c10, c11, l4, c4, c7}, {l1, c1, c9}.

3. Well-constrained Completion for Under-constrained Problems

In this section, we give an algorithm of quadratic complexity to solve Problem 1.1.
The algorithms presented in this section will also be used by the D-tree decompo-
sition algorithm in Section 4.

3.1. Find Base Primitives and General Construction Sequences

For a well-constrained or an under-constrained problem, we need to fix the position
of some geometric primitives by adding some new constraints in order to determine
the position of the diagram. For instance, to determine the position for a trian-
gle whose three sides have known lengths, we need to fix the position of one of

March 24, 2006 11:52 WSPC/Guidelines p18

Well-constrained Completion for Under-constrained Geometric Constraint Problems 7

its vertices and the direction of one of its sides. These primitives are called base
primitives and the newly added positional constraints are called base constraints.
For a well-constrained problem G, after the base constraints are added, we have
DOF(C(G)) = DOF(V(G)), and the new problem with these external constraints
is called strictly well-constrained.

For well-constrained problems, we may find simpler solutions by selecting spe-
cific based primitives.8 For under-constrained problems, the selection of base prim-
itives is more complicated and more important than the well-constrained case as
shown in the rest of this section.

We will try to find a minimal rigid body as shown in Figure 5. This constraint
graph represents three types of constraints: DIS(p1, p2) = d (d 6= 0), DIS(p, l) = d,
and ANG(l1, l2) = a (a 6= 0). If such a minimal rigid body does not exist in the
constraint problem, we will construct one by adding new primitives. Of course, the
construction must not render the problem over-constrained.

2 1 2

pcx

cy

l

ca

c

Fig. 5. Minimal rigid bodies Fig. 6. Base primitives and constraints

Algorithm 3.1. The input is a graph G. The output is a set of base primitives and
base constraints.

(1) If there is a distance constraint between a line l and a point p, we fix the
position of p and the direction of l. The base primitives are p and l and the
base constraints are assigning values to the coordinates of p and direction of l.

(2) If there is a nonzero distance constraint between two points p1 and p2, we fix
the position of p1 and the direction of the line passing through the two points.

(3) If there is a non zero angular constraint between two lines l1 and l2, we add
the intersection p of l1 and l2 and fix the position of p and the direction of l1.

(4) If there exists a line l, we add a new point p on line l and fix the position of p

and the direction of l.
(5) If the conditions in 1-4 are not satisfied, all the geometric primitives must be

free points. Let p1 and p2 be free points. We fix the position of p1 and the
direction of the line p1p2.

The output of Algorithm 3.1 is a constraint problem shown in Figure 6, where
cx, cy, ca are the newly added constraints meaning to fix the coordinates of a point
and the direction of a line respectively. They are new types of constraints and are
only used as base constraints. It is clear that {p, cx, cy}, {l, c, ca} are two residual
sets. Similar ideas of pinning the problem were also used in Ref. 11.

March 24, 2006 11:52 WSPC/Guidelines p18

8 G.F. Zhang and X.S. Gao

Since each directed cycle of the constraint graph must lie entirely within a single
residual set, and every edge incident to a residual set has a direction, we can impose
a partial order among the residual sets.

Algorithm 3.2. The input is a set of base primitives Sb. The output is a sequence
of residual sets with a partial order where the constraint subgraph induced by Sb

is at the beginning of the sequence.

(1) Add the base primitives and constraints to the problem if they are not parts
of the problem. Find the residual sets from a maximal weighting of the new
constraint graph with methods in Section 2.

(2) Let Sb be the problem in Figure 6. Since cx, cy always direct to p and ca always
directs to l, we cannot change Figure 6 with a path augmentation. Therefore,
{p, cx, cy} and {l, c, ca} are two residual sets in the maximal weighting. We
select {p, cx, cy} as the first one and {l, c, ca} as the second one in the sequence.
Delete all the edges whose tails are in Sb.

(3) Delete a residual set S which has no edges incident to it. This residual set is
not connected with other parts of the graph. Repeat this step until no such
residual set exists.

(4) If all the edges incident with S are directed from S to other residual sets, delete
S and the edges whose tails are in S. Repeat this step until no residual sets
exist.

Steps 3 and 4 could be improved with the incremental topological sort.12

The order of the deletion is the partial order among the residual sets. We thus
obtain a sequence of residual sets

G : S1, S2, . . . , Sn,

such that Si ≤ Sj for i < j. G is called a general construction sequence (abbr. GC)
of the constraint problem. Geometrically, Si(i = 2, . . . , n) will be determined by
S1, . . . , Si−1. Therefore, the largest DOF(V(Si)) for i = 1, . . . , n is the maximal
number of simultaneous equations to be solved in order to solve the GC. This
number is called the controlling DOF of G and is denoted by MDOF(G).

For the problem in Figure 1, there are three essentially different GCs shown in
Figure 4 before adding the base primitives:

G1 : {p4}, {p1, c1, c3, l1, c9, p2, c6, c13, p3, c8, c11, l2, c7, c10, l4, c2, c4}, {l3, c5, c12} (1)

G2 : {l4}, {p4, c4}, {p1, c2, c3}, {p2, c6, c10, p3, c13, c8, l2, c7, c11}, {l3, c5, c12}, {l1, c1, c9}
G3 : {p4}, {l3, c5}, {p3, c8, c12}, {p1, c2, c3, p2, c6, c13, l2, c10, c11, l4, c4, c7}, {l1, c1, c9}.

If using G1, G2, and G3 to solve the problem, we have MDOF(G1) =
DOF({p1, l1, p2, p3, l2, l4}) = 12, MDOF(G2) = DOF({p2, p3, l2}) = 6,
MDOF(G3) = DOF({p1, p2, l2, l4}) = 8. It is clear that G2 is the best one and
G1 is the worst one. If using Algorithm 3.1 to select base primitives, only G2 and G3

March 24, 2006 11:52 WSPC/Guidelines p18

Well-constrained Completion for Under-constrained Geometric Constraint Problems 9

in (1) could be generated. In order to find better completions, we could find rigid
bodies consisting of three geometric primitives and treat them as base primitives.8

If using this heuristic, we will only generate G2 in Figure 4.

3.2. Well-constrained Completion

Let

S1, S2, . . . , Sn (2)

be a GC generated with Algorithm 3.2. Let Bk = ∪k
i=1Si and Uk = Sk+1. We will

call the problem of determining Uk based on Bk a general basic merge pattern (abbr.
GBMP). If both Bk and Bk ∪ Uk are strictly well-constrained problems, then the
GBMP is a basic merge pattern (BMP) introduced in Ref. 8.

The sum of DOFs for constraints between primitives in Bk and Uk, denoted by
CN(Bk,Uk), is called the connection number.

Let Uk = (V(Uk),C(Uk),E(Uk), ω). Since DOF(V(Uk)) constraints are needed
to determine Uk, we must have

CN(Bk,Uk) + IDOF(Uk) ≤ DOF(V(Uk)). (3)

Algorithm 3.3. The input is an under-constrained constraint graph G and the out-
put is a well-constrained graph G′ which contains G as a subgraph.

(1) Find a set of base primitives and add the base constraints with Algorithm 3.1.
(2) Find a GC (2) with Algorithm 3.2. Since the base primitives are always like

Figure 6, we have S1 = {p, cx, cy}, S2 = {l, c, ca}, and S1 ∪ S2 is a strictly
well-constrained problem.

(3) Let k = 1.
(4) If k ≥ n, the algorithm terminates. Otherwise, Let Bk = ∪k

i=1Si and Uk = Sk+1,
dk = DOF(V(Uk))−CN(Bk,Uk)− IDOF(Uk). Then by (3), dk ≥ 0. Also Bk is
a strictly well-constrained problem.

(5) If dk = 0, then Bk ∪ Uk is a strictly well constrained problem. Let k := k + 1
and goto Step 4.

(6) Now dk > 0 and Bk ∪ Uk is under-constrained. Add a new constraint between
Bk and Uk with Algorithm 3.4. In Algorithm 3.4, Uk = Sk+1 is changed to
a sequence of residual sets. Replace Sk+1 in (2) with this sequence, and still
denote the new sequence as (2). Goto Step 4.

In order to minimize the controlling DOF of the generated GCs, we adopt the
following strategies when adding new constraints. Let (B,U) be a GBMP such that
B ∪ U is under-constrained.

• Whenever possible, we will construct primitives in U one by one.
• We will add more angular constraints if possible, because constraint problems

with more angular constraints are more likely to be solved explicitly.8,13

March 24, 2006 11:52 WSPC/Guidelines p18

10 G.F. Zhang and X.S. Gao

According to the above strategies, we design the following method for adding
new constraints to an under-constrained problem.

Algorithm 3.4. The input is an under-constrained GBMP (B,U). The algorithm
will add a new constraint to U and output a new GC: B, D1, . . . , Ds such that
U = ∪s

i=1Di.

(1) For a primitive u in U , let EDOF(u) be the number of constraint vertices
directed from B to u and IDOF(u) the number of constraint vertices directed
from U to u. Since EDOF(u)+IDOF(u) ≤ DOF(u) = 2, EDOF(u) and IDOF(u)
could be 0, 1 or 2. Search all the vertices in U to find a u with maximal
EDOF(u). Note that 0 ≤ d ≤ 2.

(2) The case EDOF(u) = 2 cannot happen. Because, in this case, u can be deter-
mined by B alone and u should be the only primitive in U . This contradicts the
condition that (B,U) is under-constrained.

(3) If EDOF(u) = 1, there exists an external constraint b1 from B to u. We will
add a new constraint from B to u to determine u.

• Since IDOF(u) + EDOF(u) ≤ 2, we have IDOF(u) ≤ 1. If IDOF(u) =
1, there is a constraint c directed from U to u. Since (B,U) is under-
constrained, there exist unsaturated primitives in U . Set the weight of the
edge between u and c to zero. Constraint c becomes unsaturated. Do an
augmentation for the augmenting path from an unsaturated primitive u1

in U to c. We obtain a new maximal weighting U ′. The number of the
constraints directed to u from U ′ will be 0.

• Now IDOF(u) = 0 and EDOF(u) = 1. We use Algorithm 3.5 to add one
new constraint b2 from B directed to u. Now there are two constraints
directed from B to u, which are denoted by Cu = {u1, u2}. This means
that u can be determined by B. With the terminology of constraint graphs,
u and the constraint vertices directed from B to u consist of a strongly
connected subgraph. So, we can let D = {u,Cu}. Partition U ′ into a
sequence of residual sets H1 ≤ · · · ≤ Hl with Algorithm 3.2 with D as the
base primitives. Then H1 = D, because there is no edge directed from U ′
to u. Return B,H1,H2, . . . , Hl.

(4) If EDOF(u) = 0, there exist no constraints between B and U . Since U is under-
constrained, there is an unsaturated primitive u in U . Thus IDOF(u) ≤ 1. We
could add one new constraint from B to u similar to Step 3 and return B,U .

Algorithm 3.5. The input is a GBMP (B,U) and an unsaturated primitive u ∈ U .
The output is a primitive b ∈ B and a constraint between u and b.

(1) If there exists a constraint between u and a primitive vertex in B, denote this
vertex as a. We need to consider two cases.

(2) If u is a point, we will select a point or a line b ∈ B such that b 6= a and add a
constraint DIS(b, u).

March 24, 2006 11:52 WSPC/Guidelines p18

Well-constrained Completion for Under-constrained Geometric Constraint Problems 11

(3) Let u be a line. If there exist no angular constraints between B to U , select a
line b ∈ B such that b 6= a and add a constraint ANG(b, u). In all other cases,
select a point b ∈ B and add a constraint DIS(b, u). The motivation behind the
selection of b is that we will try to add more angular constraints. But, if there
exists an angular constraint between u and a primitive in B, then we cannot
add an angular constraint in order to avoid angular conflict.

Algorithm 3.3 solves the well-constrained completion problem. This algorithm
improves the algorithm proposed in Ref. 2 in several aspects. First, by selecting base
primitives carefully, we may generate better well-constrained completions. Second,
as shown by the algorithm, all the newly added constraints are used to construct
geometric primitives one by one. Third, we will try to add more angular constraints
if possible. These strategies make the constraint completion easier.

Let n and e be the numbers of primitive and constraint vertices in G in Algo-
rithm 3.3. Step 1 has complexity O(e). In step 2, we need to find a GC, which
has complexity O(n(n + e)).8 Steps 3, 4 and 5 are either a constant or linear
in terms of n and e. In Step 6, we need to call Algorithm 3.4. The complex-
ity of Algorithm 3.4 is O(m2) (m = |U|) which is the cost to construct the
residual sequence in the second part of Step 3. Let the GBMPs considered in
Step 6 of Algorithm 3.3 be (Bi,Ui) and mi the number of primitive vertices
in Ui. Then

∑
i mi ≤ n. Therefore, the total complexity of the algorithm is

O((n + e)e) + O(
∑

i m2
i) ≤ O((n + e)e) + O(n2) = O(ne + e2 + n2). In a well-

or under-constrained problem, we have e ≤ 2n − 3. Therefore, the complexity of
the algorithm is O(n2).

B

p1

2

c4

1

p4

2

p2

2

c1

1

p3

2

c2

1

c3

1

c5

1

c6

1

B

p1

2

c4

1

p4

2

p2

2

c1

1

p3

2

c2

1

c3

1

c5

1

c6

1

c8

1

c7

1 B

p1

2

c4

1

p4

2

p2

2

c1

1

p3

2

c2

1

c3

1

c5

1

c6

1

c8

1

c7

1

(a) (b) (c)

Fig. 7. An example of adding a new constraint

Diagram (a) in Figure 7 is a GBMP, where U consists of four points and six
nonzero distance constraints. If we add new constraints c7 and c8 as shown in
diagram (b), we need to solve a problem consisting in assembling two rigid bodies,
which can be reduced to solve three linear equations and one equation of degree
six.8 But we can get an explicit construction sequence {p1}, {p2}, {p4}, {p3} if we
add new constraints c7 and c8 as shown in diagram (c) according to Algorithm 3.5.
Let us explain Algorithm 3.4 with this example.

(1) Let U = {p1, c4, c6, p2, c1 p3, c2, p4, c3, c5}. In Step 1, we find only one u with

March 24, 2006 11:52 WSPC/Guidelines p18

12 G.F. Zhang and X.S. Gao

largest EDOF(u), which is p1. We have IDOF(u) = 1.
(2) In Step 3, since p3 is an unsaturated primitive, let the weight of the edge

between p1 and c4 be zero. Thus c4 is an unsaturate constraint vertex, and
there is an augmenting path from p3 to c4. After the augmenting path is
augmented, we obtain a new maximal weighting. Add a new external con-
straint c7 between B and p1 to obtain a new graph U ′. Let B′ = B ∪
{p1, c6, c7}. Find a new maximal weighting for U ′, which leads to a new GC:
{p1, c6, c7}, {p2, c1}, {p4, c4, c5}, {p3, c2, c3}. In the next step, p2 will be con-
structed in a similar way.

Note that the well-constrained completion needs not to be unique. The addition
of new constraints depend on the selection of base primitives in Algorithm 3.3, the
selection of u in Step 1 of Algorithm 3.4, and the selection of b in Algorithm 3.5.

4. Decomposition for Under- and Well-constrained Problem

In this section, we give an algorithm which can be used to find a well-constrained
completion for an under-constrained graph and to decompose the well-constrained
completion into smaller parts which are represented by a tree, called D-tree. This
D-tree decomposition algorithm will use the algorithms introduced in Section 3 on
finding base primitives (3.1), finding GCs (3.2), and adding new constraints (3.4).

4.1. A Decomposition Tree

Let G be a well- or under-constrained graph and H a well-constrained subgraph of
G. Let I be the subgraph of G induced by the set of u ∈ V(H) such that there exists
at least one constraint between u and a vertex in V(G) \V(H). If V(I) 6= V(H),
H is called a faithful subgraph of G and I is called the border14 of H.

The border I could be under-constrained. We use Algorithm 3.4 to generate
a well-constrained completion for it and still denote it as I. This I is called a cut
subgraph of G with respect to H. V(I) is a subset of V(H), where H is a rigid body.
Suppose that H is already solved. Hence the values of the newly added constraints
in I could be computed using the coordinates of the primitives in H.

The importance of faithful and cut subgraphs is that we can use them to reduce
the original problem into two smaller ones.

Let H be a faithful subgraph of a graph G and I the corresponding cut subgraph.
We construct a split subgraph S of G with respect to H as follows. Let V(S) =
(V(G) \V(H))∪V(I). The subgraph induced by V(S) is called the split subgraph
of G with respect to H.

Figure 8(a) is a constraint problem. Figure 8(b) is a faithful subgraph. The sub-
graph induced by {p4, p5, p6} is the cut subgraph. Figure 8(c) is the split subgraph.
A new constraint c16 is added to make the split graph well-constrained.

A decomposition tree (abbr. D-tree) for a strictly well-constrained constraint
graph G is a ternary tree. The root of the tree is G. For each node N in the tree,

March 24, 2006 11:52 WSPC/Guidelines p18

Well-constrained Completion for Under-constrained Geometric Constraint Problems 13

p1

2

C1

1

p3

2

C2

1

C3

1

p2

2

0

1

1

0 1

0

p4

2

C6

1

p6

2

C8

1

C9

1

p5

2

1

C4

1

C5

1
1

1 0C7

1

0 1

0

p7

2

C13

1

p9

2

C14

1

C15

1

p8

2

0

0

C10

1

C11

1
1

0 1C12

1

0

1 0 1

1

0

1

1

(a)

p1

2

C1

1

p3

2

C2

1

C3

1

p2

2

0

1

1

0 1

0

p4

2

C6

1

p6

2

C8

1

C9

1

p5

2

1

C4

1

C5

1
1

1 0C7

1

0

1 0

0

1

1

C16

1

0

p4

2

p6

2

C8

1

C9

1

p5

2

0 1

0

p7

2

C13

1

p9

2

C14

1

C15

1

p8

2

0

0

C10

1

C11

1
1

0 1C12

1

0

0 1

1

1

1

1

(b) (c)

Fig. 8. An example to show the relation between the faithful and split subgraphs.

its left child L, middle child M and right child R are as follows.

(1) L is a faithful subgraph of N , M is the cut subgraph of N with respect to L,
and R is the split subgraph of N with respect to L; or

(2) N is a strictly well-constrained problem and L is a GC for N , M = ∅ and
R = ∅.

A D-tree for a constraint graph is defined to be a D-tree for a strictly well-
constrained completion of the graph.

After a D-tree is obtained, we can use it to solve the problem as follows.

Algorithm 4.1. The input is a D-tree T . The outputs are the coordinates of the
geometric primitives.

(1) We do a left to right depth-first search of the D-tree and consider three cases:
(2) The current node N is a GC G for a strictly well-constrained problem. The

problem is reduced to the computation of G which is discussed in Ref. 8 and
Ref. 13.

(3) The current node N has only a left child L. In this case, L is evaluated in Step
2 and N is solved.

March 24, 2006 11:52 WSPC/Guidelines p18

14 G.F. Zhang and X.S. Gao

(4) The current node N has three children. Due to the depth-first search procedure,
we already solved the left child L. From L, we can compute the numerical
values for the new constraints in M . With these new constraints, R is also a
well-constrained problem. We can solve the right child recursively with this
algorithm and merge the left and right children together to compute N . To
merge L and R, we will consider the following cases.

(a) First, since N is well-constrained, M cannot be the set of one primitive.
Otherwise, the subgraph M ∪R would be over-constrained.

(b) If M consists of two parallel lines, the relative position of L and R cannot
be fixed because there is a translational DOF between L and R. In this
case, the problem is not a rigid body. Such an example is shown in Figure
9, where the constraints are DIS(p1, l2),DIS(p2, l1),DIS(p3, l1). Since l1 ‖ l2,
the triangle p1p2p3 can still move alone the direction of l1.

l 2

B

l 1

p 1

p 2

p 3

Fig. 9. I consists of two parallel lines

(c) Otherwise, the relative position of L and R can be fixed and L∪R is a rigid
body.

It is clear that the computation of a D-tree is reduced to the computation of
GCs. We define the controlling DOF of a D-tree T , MDOF(T), to be the maximal
MDOF(C) for all GCs C of T . A D-tree T for constraint graph G is called minimal
if MDOF(T) is the smallest for all possible D-trees of G.

4.2. An Algorithm to Find a D-tree

Algorithm 4.2. The input is a well- or under-constrained graph G. The output is a
D-tree for G.

Set N = G as the initial value.

(1) Find a set of base primitives of N with Algorithm 3.1 and still denote the new
graph with the base primitives and the base constraints as N .

(2) Find a GC for N :

G = S1, . . . , Sn

March 24, 2006 11:52 WSPC/Guidelines p18

Well-constrained Completion for Under-constrained Geometric Constraint Problems 15

such that the base primitives appear as the first residual set. Merge those
adjacent Si containing only one saturated primitive into one set to obtain a
reduced GC:

G′ = S′1, . . . , S
′
m, (m ≤ n.)

(3) If m = 1, goto step 7. Otherwise, for 0 < k < m, let B′k = ∪k
i=1S

′
i and

U ′k = S′k+1.
(4) If the problem is under constrained, that is, there is a k such that CN(Bk,Uk)+

IDOF(Uk) < DOF(V(Uk)), then add one constraint with Algorithm 3.4 be-
tween Bk and Uk. Still use the notations G, Si,Bi,Ui for the new problem.

(5) Find a minimal k such that B′k ∪ U ′k is a strictly well-constrained problem and
there exists at least one primitive o ∈ B′k such that there is no constraint
between o and primitives in U ′k. If such a k does not exist, goto the next step;
otherwise goto step 8.

(6) There does not exist a faithful subgraph in G.

• If the problem is still under-constrained, goto Step 4.
• Otherwise, select a new set of base primitives and goto Step 2 until there

exist no new base primitives.

(7) We will solve N with G. A D-tree for N is generated as follows: the left child
of N is G and the middle and right children are empty sets. The algorithm
terminates.

(8) B′k induces a faithful subgraph F = B′k, a cut subgraph I and a split subgraph
S. We build the D-tree as follows. The left child L of N is F ; the middle child
M of N is I; the right child R of N is S. Set N := S, remove the newly added
constraints from N , and goto Step 1.

Let n and e be the numbers of primitive and edge vertices in G. Algorithm 4.2
has two main loops: loop one starting from Step 1 for each new N , loop two starting
from Step 2 for each set of base primitives. After each loop one is executed, at least
one primitive is constructed. So, the number of executions for loop one is at most
n. The number of base primitives is O(e). Therefore, the number of executions for
loop two is at most O(e). Similar to the complexity analysis for Algorithm 3.3, we
can show that the complexity for each execution of loop two is O(e2 + n2 + ne).
Therefore, the total complexity of the algorithm is O(ne(e2 + n2 + ne)). In a well-
or under-constrained problem, we have e ≤ 2n − 3. Therefore, the complexity of
the algorithm is O(n4).

Let G be the graph in Figure 10(a), which is also the root of the D-tree.

• In Step 1 we select {p13, p14} as the base primitives.
• In Step 2, we generate a GC:

G0: {p13, p14}, {p1, p2, p3, p4, p15, p5, p6, p7, p8, p9, p10, p11, p12, p16, p17, p18}
where the constraints are omitted.

• In Step 4, we add a constraint d = DIS(p14, p1) and generate a reduced GC:
G1: {p13, p14, p1, p2, p3, p4, p15}, {p5, p6, p7, p8, p9, p10, p11, p12, p16, p17, p18}

March 24, 2006 11:52 WSPC/Guidelines p18

16 G.F. Zhang and X.S. Gao

P16

P14 P18

P13

P17P15

P12P1

P8P5

P2 P11

P4

P3

P9

P10

P6 P7

P16

P18

P13

P17P15

P12

P8P5

P11

P9

P10

P6 P7

P16

P13

P17P15

P8P5

P6 P7

(a) (b) (c)

Fig. 10. Well-constrained completion for an under-constraint problem

• In Step 5, we find a k = 1. In Step 8, we generate a left child G2:
G2 : {p13, p14, p1, p2, p3, p4, p15}.
The cut subgraph is {p13, p15}. A new constraint DIS(p13, p15) is added

to make the cut subgraph a well-constrained one. The split subgraph is the
problem in Figure 10 (b). Let N be the split subgraph. Go back to Step 1.

• Now N is the problem in Figure 10 (b). In Steps 1-4, select {p17, p18} as the
base primitives, add a new constraint d = DIS(p9, p18), and generate a new
reduced GC:

G3 : {p17, p18, p9, p10, p11, p12, p13}, {p5, p6, p7, p8, p15, p16, p17}.
• In Step 5, we find a k = 1. In Step 8, we generate a left child G4:

G4: {p17, p18, p9, p10, p11, p12, p13}.
A constraint {p13, p17} is added to make the cut subgraph well-constrained.

The split subgraph is the problem in Figure 10 (c). Go back to Step 1.
• Now N is the problem in Figure 10 (c). Select {p7, p16} as the base primitives.

We add a new constraint d = DIS(p16, p8) and generate a new GC:
G5: {p7, p16, p8, p6, p5, p15, p17, p13}

which is already an explicit construction sequence for problem N . Now the prob-
lem is reduced to the solving of three explicit construction sequences G2,G4,G5.
The D-tree is given in Figure 11.

Figure 12 is an under-constrained problem where each line represents a dis-
tance constraint. This problem cannot be handled with the methods in Ref.
3 and Ref. 6, because its constraint graph is tri-connected. Using Algorithm
4.2, we select p1 and p2 as the base primitives and add a new constraint
DIS(p1, p3). Then the problem becomes well-constrained and has the following GC:
{p1}, {p2}, {p3}, {p4}, {p5, p6, p7, p8} where the constraint vertices are omitted.

5. Conclusions

Handling under-constrained problems is a key and difficult issue in GCS. It is
also very useful, because it allows the CAD system to handle constraint problems
incrementally. The main difficulty in handling under-constrained problems is how

March 24, 2006 11:52 WSPC/Guidelines p18

Well-constrained Completion for Under-constrained Geometric Constraint Problems 17

to change it into a well-constrained problem which is easy to solve, that is, how to
find an optimal well-constrained completion.

{p
13
,p

14
,p

1
,p

2
,p

3
,p

4
,p

15
}{p

13
,p

15
}

{p
17
,p

18
,p

9
,p

10
,p

11
,p

12
,p

13
} {p

13
,p

17
}

{p
7
,p

16
,p

8
,p

6
,p

5
,p

15
,p

17
,p

13
} {} {}

Fig. 11. A D-tree for the problem in Figure 10.

p 7
p 8

p 1
p

2

p 6
p 5

p 4
p 3

Fig. 12. A tri-connected under-constraint problem

In this paper, we proposed several strategies and developed algorithms which
provide a partial solution to the optimal well-constrained completion problem. The
key idea is to use base primitives, GCs, constructing single primitives, and D-tree
decompositions. The final D-tree decomposition method provides an effective way
to decompose well- and under-constrained problems.

Acknowledgements

This paper is partially supported by a National Key Basic Research Project of
China. The authors want to thank the anonymous referees for valuable suggestions.

References

1. R. Joan-Arinyo, A. Soto-Riera and S. Vila-Marta, Tools to Deal with Under-
constrained Geometric Constraint Graphs, Workshop on Geometric Constraint Solv-
ing 2003, http://www.mmrc.iss.ac.cn/˜ ascm/ascm03/gcsweb/robert.pdf.

March 24, 2006 11:52 WSPC/Guidelines p18

18 G.F. Zhang and X.S. Gao

2. R.S. Latham and A.E. Middleditch, Connectivity Analysis: A Tool for Processing
Geometric Constraints, Comput. Aided Des. 28 (1996) 917-928.

3. I. Fudos and C.M. Hoffmann, A Graph-Constructive Approach to Solving Systems of
Geometric Constraints, ACM Trans. Graph. 16(2) (1997) 179-216.

4. B. Yuan, Y. Yuan, S.M. Hu and J.G. Sun, Strategy on Underconstrained Parametric
Design (in Chinese), Chinese J. of Adv. Soft. Res. 6(4) (1999) 305-310.

5. K.Y. Lee, O.H. Kwon, J.Y. Lee and T.W. Kim, A Hybrid Approach to Geometric
Constraint Solving with Graph Analysis and Reduction, Adv. Eng. Softw. 34 (2003)
103-113.

6. R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta and J. Vilaplana-Pastó, Transforming
an Under-constrained Geometric Constraint Problem into a Well-constrained One,
Proc. ACM SM03 (ACM Press, New York, 2003) pp. 33-44.

7. G. Trombettoni and M. Wilczkowiak, GPDOF: a Polynomial Algorithm to Decompose
Under Constrained Systems: Applications to 3D Model Construction, this volume.

8. X.S. Gao, Q. Lin and G.F. Zhang, A C-tree Decomposition Algorithm for 2D and 3D
Geometric Constraint Solving, Comput. Aided Des. 38 (2006) 1-13.

9. X.S. Gao and S.C. Chou, Solving Geometric Constraint Systems, II. A Symbolic
Computational Approach, Comput. Aided Des. 30 (1998) 115-122.

10. M. Gondran and M. Minoux, Graphs and Algorithms, translated by Steven Vajda.
(John Wiley & Sons, New York, 1984).

11. H. Lamure and D. Michelucci, Qualitative Study of Geometric Constraints, in Geo-
metric Constraint Solving and Applications (Springer, Berlin, 1998) 234-258.

12. R. Hoover, Increamental Graph Evaluation, thesis, Cornell University, Ithaca (1987).
13. X.S. Gao, D. Lei, Q. Liao and G. Zhang, Generalized Stewart-Gough Platforms and

their Direct Kinematics, IEEE Trans. Robot. 21(2) (2005) 141-151.
14. J.F. Dufourd, P. Mathis and P. Schreck, Geometric Construction by Assembling

Solved Subfigures, Artif. Intell. 99 (1998) 73-119.

