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Abstract. A set of parametric equations of an algebraic curve or surface is called normal, if all
the points of the curve or the surface can be given by the parametric equations. In this paper,
we present a method to decide whether a set of parametric equations is normal. In addition,
we give some simple criteria for a set of parametric equations to be normal. As an application,
we present a method to find normal parametric equations for conics. We also present a new
method to find parametric equations for conicoids, and if the parametric equations found are
not normal, the missing points can also be given.
Keyword. Parametric equations, normal parametric equations, inversion map, conics, coni-
coids, computer modeling.

1. Introduction
It is known that in the parametric representation for algebraic curves and surfaces, certain

points on the curves or the surfaces may not be given by parametric equations. Two such
examples are the following parametric equations for the circle x2 + y2 = 1

(1.1) x =
t2 − 1
t2 + 1

, y =
2t

t2 + 1

and the following parametric equations for the surface x2 − y2z = 0

(1.2) x = u2v2, y = uv2, z = u2.

The point (1, 0) of the circle cannot be given by (1.1). The line (0, c, 0) with c 6= 0 is on the
surface x2 − y2z = 0, but cannot be given by (1.2).

In the work of finding the parametric equations for curves and surfaces, e.g., in [AB1, AB2,
CG1, SS1], the problems of missing points are not considered. These missing points may be the
critical points of the described figure and cause problem when we try to display the figure by
a computer. In [LI1], a method to find these missing points is given based on an algorithm of
quantifier elimination for the theory of algebraically closed fields which is presented in [WU2].
Finding the missing points is a solution to the problem. A better solution is to find normal
parametric equations if possible. This is the purpose of the present paper.

∗The work reported here was supported in part by the NSF Grant CCR-8702108.
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Parametric equations of a curve or a surface are called normal, if all the points of the curve
or the surface can be given by the parametric equations. For example, (1.1) and (1.2) are not
normal. We now ask the question whether we can find normal parametric equations for them.
For (1.2), this is easy: the following parametric equations for x2 − y2z = 0

(1.3) x = uv, y = v, z = u2

are normal (because u and v can be independently determined by y and z). But for (1.1), it is
not easy. For the simplest normal parametric equations for the circle, see Section 3.

In this paper, we give a method to decide whether parametric equations for a curve or a
surface are normal. Also some simple criteria for parametric equations to be normal are given.
These criteria are very easy to use. Based on these criteria, we prove that polynomial parametric
equations for a curve are always normal. As a consequence, most of the rational curves used in
CAD, such as the cubic Hermite curves, the Bezier curves, and the cubic B-spline curves [PR1],
are all normal curves.

Methods for parameterization of conics and conicoids have been given by S. Abhyankar and
C. Bajaj in [AB1]. But in general, the parametric equations obtained by their method are
not normal. In this paper, we propose a new method for parameterization of conics and coni-
coids. The idea is that by the known methods in analytical geometry, we can transform general
forms of conics or conicoids to the standard forms. Thus if (normal) parametric equations for
these standard forms are given, then (normal) parametric equations for the general forms can
be obtained using the coordinate transformations. In this way, we can find normal parametric
equations for all conics. It is easy to find normal parametric equations for parabolas and hy-
perbolas. To find normal parametric equations with real coefficients for ellipses is not trivial.
We have proved that an ellipse cannot have parametric equations of odd degrees. We have also
proved that quadratic parametric equations for an ellipse are not normal. As a consequence,
all the parametric equations with real coefficients for ellipses found using the method in [AB1]
are not normal. The simplest normal parametric equations for an ellipse are at least of degree
four and we find such one. For conicoids, we give quadratic parametric equations for all kinds of
standard forms. Some of them are normal. For those which are not normal, the missing points
are given. Also, for all the parametric equations of conics and conicoids, we give their inversion
maps, i.e., functions which give the parametric values corresponding to the points on the curves
or surfaces.

The algorithms presented in this paper have been implemented on a Symbolics-3600 using
Common Lisp.

The paper is organized as follows. In section 2, we give a method for deciding whether
parametric equations are normal and give some simple criteria for a set of parametric equations
to be normal. In section 3, we present a method to give normal parametric equations of conics.
In section 4, we present a method to give parametric equations of conicoids.
2. Parametric Equations and Normal Parametric Equations

Let K be a field of characteristic zero. We use K[y1, ..., yn] or K[y] to denote the ring of poly-
nomials in the indeterminates y1, ..., yn. Unless explicitly mentioned otherwise, all polynomials
in this paper are in K[y]. Let E be a universal extension of K, i.e., an algebraically closed ex-
tension of K which contains sufficiently many independent indeterminates over K (Vol2, [HP1]).
For a polynomial set PS, let

Zero(PS) = {x = (x1, ..., xn) ∈ En | ∀P ∈ PS, P (x) = 0}.

For two polynomial sets PS and DS, we define a quasi zero set QZero(PS, DS) to be Zero(PS)−
Zero(DS).
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Various methods of parameterization for curves and surfaces have been given. But it seems
that the exact definition of a set of parametric equations to be the parametric representation
for a surface has not been given yet. The following example suggests that this definition is not
obvious. At first sight, one may think that the parametric equations

x = u + v, y = u2 + v2 + 2uv − 1, z = u3 + v3 + 3u2v + 3v2u + 1

represent a space surface. Actually, it represents a space curve, because let t = u + v, then the
above parametric equations become

x = t, y = t2 − 1, z = t3 + 1.

In the following, we shall give a precise definition of a set of parametric equations representing
an irreducible variety.

Let t1, ..., tm be indeterminates in E. For nonzero polynomials P1, ..., Pn, Q1, ..., Qn in
K[t1, ..., tm], we call

(2.1) y1 =
P1

Q1
, ..., yn =

Pn

Qn

a set of (rational) parametric equations. We assume that gcd(Pi, Qi) = 1. The maximum of the
degrees of Pi and Qj is called the degree of (2.1). The image of (2.1) in En is

IM(P1, ..., Pn, Q1, ..., Qn) = {(y1, ..., yn) | ∃t ∈ Em(yi = Pi(t)/Qi(t))}.

Generally speaking, IM(P, Q) is not an algebraic set. By [LI1], we know that IM(P, Q) is a
quasi variety, i.e., we can find polynomial sets PSi and polynomials di such that

(2.2) IM(P, Q) = ∪t
i=1QZero(PSi, {di}).

Definition 2.3. Let V be an irreducible variety of dimension d > 0 in En. Parametric equations
of the form (2.1) are called parameter equations of V if

(1) IM(P, Q) ⊂ V ; and
(2) V − IM(P, Q) is contained in an algebraic set with the dimension less than d.

Theorem 2.4. Parametric equations of the form (2.1) are the parametric equations of an
irreducible variety whose dimension equals to the transendental degree of K(P1/Q1, ..., Pn/Qn)
over K.
Proof. Let I = {F ∈ K[y] | F (P1/Q1, ..., Pn/Qn) = 0}, then I is a prime ideal with a generic
point η = (P1/Q1, ..., Pn/Qn) and it is clear that IM(P, Q) ⊂ Zero(I). We need to prove
Zero(I) − IM(P, Q) is contained in an algebraic set of dimension lower than the dimension of
I. By (2.2), IM(P, Q) is a quasi variety, i.e., IM(P, Q) = ∪l

i=1QZero(PSi, DSi) where PSi

and DSi are polynomial sets. Further more we can assume that each PSi is a prime ideal
and DSi is not contained in PSi by the decomposition theorem in algebraic geometry. Since
η ∈ IM(P, Q), η must be in some components, say in QZero(PS1, DS1). Note that η is a
generic point for I and Zero(PS1) ⊂ Zero(I), then PS1 = I. Therefore Zero(I)− IM(P, Q) =
Zero(I ∪DS1)−∪l

i=2Zero(PSi/DSi). Thus Zero(I)− IM(P, Q) is contained in Zero(I ∪DS1)
the dimension of which is less than the dimension of I as DS1 is not contained in I = PS1. The
dimension of I is obviously equal to the transendental degree of K(P1/Q1, ..., Pn/Qn) over K.
The proof is completed.
Remark. If we use Ritt-Wu’s decomposition algorithm [WU1] to realize the decomposition
theorem, the above proof is actually a constructive one, i.e., for parametric equations of the form
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(2.1), we can find a finite polynomial set PS such that the ideal generated by PS is a prime
ideal and a quasi variety W = ∪l

i=1QZero(PSi, DSi) such that IM(P, Q) = Zero(PS)−W .
Definition 2.5. (2.1) is called a set of normal parametric equations if IM(P, Q) is an irreducible
variety.
Theorem 2.6. We can decide in a finite number of steps whether parametric equations of the
form (2.1) are normal parametric equations.
Proof. As mentioned in the above remark, we can find a finite polynomial set PS such that
the ideal generated by PS is a prime ideal and a quasi variety W = ∪l

i=1QZero(PSi, DSi) such
that IM(P, Q) = Zero(PS) −W . Then (1.2) is normal if and only if IM(P, Q) = Zero(PS),
or equivalently Zero(PS) and W have no common points. Without loss of generality, we only
need to show how to decide whether W ′ = Zero(PS) ∩ QZero(PS1, DS1) is empty. Note
that W ′ = QZero(PS ∩ PS1, DS1), then we can decide whether W ′ is empty using Ritt-Wu’s
decomposition algorithm [WU1].

The method in theorem 2.6, though complete, usually needs expensive computations. In what
follows, we give some simple criteria for normal parameterization which can be used without
any computational costs.
Lemma 2.7. If the image IM(P, Q) of (2.1) is an algebraic set, (2.1) are normal parametric
equations.
Proof. Let IM(P, Q) = Zero(PS), and let (2.1) be parameter equations of the irreducible
variety V . By (2) of Definition 2.3, a generic point of V is in Zero(PS). Thus V ⊂ Zero(PS).
By (1) of Definition 2.3, we have Zero(PS) ⊂ V , and hence Zero(PS) = V .
Theorem 2.8. Let y1 = u1(t)/v1(t), ..., yn = un(t)/vn(t) be parametric equations of an algebraic
curve. If degree(ui) > degree(vi) for some i, they are normal parametric equations.
Proof. Let RS = {r1, ..., rh} (ri ∈ K[y]) be the resultant system of h1(t) = u1(t)−v1(t)y1, ..., hn(t) =
un(t)−vn(t)yn for variable t (see p158 Vol1, [HP1]). Then we have that for any y0 = (y0,1, ..., y0,n) ∈
En, ri(y0) = 0, i = 1, ..., h if and only if h′1 = u1 − v1y0,1 = 0, ..., h′n = un − vny0,n = 0 have
common solutions for t or the leading coefficients of h′1(t), ..., h′n(t) all vanish. The later case is
impossible, because there is an i0 such that degree(ui0(t)) > degree(vi0(t)), hence the leading
coefficient of h′i0(t) is a nonzero number in K. Therefore, ri(y0) = 0, i = 1, ..., h if and only if
h′1(t) = 0, ..., h′n(t) = 0 have a common solution t0. We have that vi(t0) 6= 0 for all i, for otherwise
ui(t0) = vi(t0)y0,i = 0. Therefore ui(t) and vi(t) have common solutions which contradicts the
fact gcd(ui, vi) = 1. Thus y0 = (u0(t0)/v0(t0), ..., un(t0)/vn(t0)) is in the image IM(u, v) of the
parametric equations, i.e., Zero(RS) ⊂ IM(u, v). It is easy to show that IM(u, v) ⊂ Zero(RS).
We have proved that IM(u, v) = Zero(RS). By Lemma 2.7, the theorem has been proved.
Corollary 2.9. A set of polynomial parametric equations of a curve is normal.

3. Normal Parameterization for Conics
In this section, we present a method to find normal parametric equations for conics. To do

this, we first transform general forms of conics to the standard forms by the known methods in
analytical geometry, then normal parametric equations for the general forms can be obtained
using the coordinate transformations if normal parametric equations for these standard forms
are given. Thus we only need to find normal parametric equations for the standard forms of
conics.

Inversion maps for (2.1) are functions

t1 = f1(y1, ..., yn), ..., tm = fm(y1, ..., yn)

such that yi = Pi(f1, ..., fm)/Qi(f1, ..., fm) on IM(P, Q) i.e., functions which give the parameter
values corresponding to points on the curves or surfaces. We shall give the inversion maps for
the parametric equations of conics and conicoids found by the method in this paper. To do this,
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we only need to give inversion maps for the parametric equations of the standard forms of conics
and conicoids.

In this section, we assume that K is the real number field R. We consider a conics with real
coefficients (not all a, b and c are zero)

C(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0.

Let δ = b2 − 4ac and

∆ =

∣∣∣∣∣∣

2a b d
b 2c e
d e 2f

∣∣∣∣∣∣
.

We have the following method to find normal parametric equations for C = 0.
Case 1. If ∆ = 0, then generally speaking C represents two straight lines whose parameter
equations can be easily found.
Case 2. If ∆ 6= 0, C = 0 is a nontrivial conics. We consider the following four cases.
Case 2.1. Parabola. A nontrivial conics C = 0 is a parabola if and only if δ = 0. In this case,
a or c, say a, must not be zero. Let t = x + b

2ay, we have the following parametric equations for
C = 0 (it can be checked directly by computation)

x = (abt2 + 2aet + bf)/(2ae− bd)
y = −(2a2t2 + 2adt + 2af)/(2ae− bd).

It is easy to prove that 2ae− bd = 0 implies ∆ = 0 or a = 0 which is impossible. By Corollary
2.9, this is a normal parameterization. The inversion map is t = x + b

2ay.
Case 2.2. Hyperbola. If δ > 0, by an appropriate coordinate transformation, C = 0 can be
transformed to the following standard form

y2/b2 − x2/a2 = 1.

A set of parameter equations is

x =
a(t2 − 1)

2t
, y =

b(t2 + 1)
2t

which is normal by Theorem 2.8. The inversion map is t = ab
ay−bx .

Case 2.3. Ellipse. If δ < 0 and (a + c)∆ < 0, by an appropriate coordinate transformation,
C = 0 can be transformed to the following standard form

(2.3.1) y2/b2 + x2/a2 = 1.

If we allow complex coefficients in the parameter equations, then we have the following normal
parameter equations for (2.3.1).

x =
a(t2 − 1)

2it
, y =

b(t2 + 1)
2t

where i =
√−1. The following commonly used parametric equations for an ellipse are not

normal.

x =
a(t2 − 1)
t2 + 1

, y =
2bt

t2 + 1
By the method in Theorem 2.4, the missing point is (a, 0). The inversion map is t = ay

b(a−x) . To
obtain normal parametric equations for (2.3.1), we first give two general results.
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Theorem 3.2. If x = v(t)/w(t), y = u(t)/w(t) are real coefficients parametric equations of
(2.3.1) with gcd(u(t), v(t), w(t)) = 1, then we have

(1) the degree of w equals to the maximum of the degree of u and the degree of v; and
(2) w = 0 has no real root.

Proof. Let v = a(vkt
k + ... + v0), u = b(ukt

k + ... + u0), and w = wkt
k + ... + w0, then we have

v2/a2 + u2/b2 = w2. Comparing coefficients of t, we have v2
k + u2

k = w2
k. Since uk, vk, and wk

are real numbers, then wk = 0 implies uk = vk = 0, i.e., the degree of w must be the same as
the maximum of the degree of u and the degree of v. For (2), let us assume that w = 0 has
a real root t0. By the assumption gcd(u(t), v(t), w(t)) = 1, t0 cannot be a root for both u and
v. We assume that t0 is not a root of u. Then when t is near t0 the value of u/w will become
infinitely large. But on the other hand, we have u2/w2 = 1− v2/w2, i.e., −1 ≤ u/w ≤ 1. This
is a contradiction.

As an obvious consequence of Theorem 3.2, we have
Corollary 3.2.1 We assume the same notations and conditions as Theorem 3.2. Then the
degree of w cannot be an odd integer.

By [AB1], there exist quadratic parametric equations for (2.3.1). But the following result
shows that all of such parametric equations are not normal.
Theorem 3.3. Parameter equations x = v(t)/w(t), y = u(t)/w(t) with degree two for (2.3.1)
are not normal.
Proof. Let v(t) = a(a1t

2 + b1t + c1), u(t) = b(a2t
2 + b2t + c2), and w(t) = a3t

2 + b3t + c3, then
we have v2/a2 + u2/b2 = w2. Comparing coefficients of t, we have

a2
3 − a2

2 − a2
1 = 0

a3b3 − a2b2 − a1b1 = 0
2a3c3 + b2

3 − 2a2c2 − b2
2 − 2a1c1 − b2

1 = 0(3.3.1)
b3c3 − b2c2 − b1c1 = 0

c2
3 − c2

2 − c2
1 = 0

Since a1, a2, and a3 are real numbers, the first equation in (3.3.1) implies −1 ≤ a1/a3 ≤ 1 and
−1 ≤ a2/a3 ≤ 1. If a1a2 6= 0, we shall find a point which is on the ellipse but cannot represented
by the parameter equations. Note that (aa1/a3,±ba2/a3) are two distinct points on the ellipse.
To get the value of t for which v(t)/w(t) = aa1/a3, we find a linear equation of t. So there is only
one value for y corresponding to x = aa1/a3. Thus one of (aa1/a3,±ba2/a3) cannot be given by
the parametric equations. If one of a1 or a2, say a2, is zero, we have a3 = ±a1. Without loss of
generality, we assume a1 = a3. The second equation of (3.3.1) is a3b3−a2b2−a1b1 = 0 from which
we get b3 = b1. Now we know that x = v(t)/w(t) = a(a1t

2 + b1t + c1)/(a1t
2 + b1t + c3) = a has

no solution for t, then the point (a, 0) which is on the ellipse cannot be given by the parameter
equations.

According to Theorem 3.2 and 3.3, the simplest normal parametric equations for an ellipse
are of at least degree 4. There actually exist such normal parametric equations. One example is

(3.4) x =
a(t4 − 4t2 + 1)

t4 + 1
, y =

2
√

2b(−t3 + t)
t4 + 1

.

Using the algorithm based on Theorem 2.6, we can prove the above parametric equations are
normal. The inversion maps are determined by the following equation when x 6= a

(3.5)
√

2b(x− a)t2 − 2ayt +
√

2b(−x + a) = 0.

The value of t corresponding to point (a, 0) is zero.
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Case 2.4. Imaginary Ellipse. If δ < 0 and (a+c)∆ > 0, the standard form is x2/a2+y2/b2 =
−1 which is meaningless in the real number case.

Note that the concept of normal parametric equations is actually in an algebraically closed
extension of K. But in computer graphics only real points can be displayed. We shall show that
the parametric equations of conics found by our method are actually normal in the real number
field.
Definition 3.6. A set of parametric equations of the form (2.1) is called normal in the
real number field if there is an irreducible variety V in Rn such that (1) for any t ∈ Rm, if
Q1(t) · · ·Qn(t) 6= 0, (P1(t)/Q1(t), ..., Pn(t)/Qn(t)) ∈ V ; and (2) for any p ∈ V there is a t ∈ Rm

such that p = (P1(t)/Q1(t), ..., Pn(t)/Qn(t)).
Theorem 3.7. We have a method to find normal parametric equations for conics in the real
number field.
Proof. We shall prove the parametric equations found by the method in this section for conics are
normal in the real number field. We only need to show the parametric equations for the standard
forms are normal in the real number field. For Case 1 it is trivially true. Case 2.1 is also true,
because the inversion map t = x + b

2ay gives real value of t for a real point of the parabola. For
Case 2.2, note that ay − bx cannot be zero on the hyperbola, then the inversion map t = ab

ay−bx
gives real values for all real points in the hyperbola. For Case 2.3, we need to show that (3.5)
gives real value of t for all real points of the ellipse. For any real coordinate point (x0, y0) which
is not (a, 0) on the ellipse, the discriminate of (3.5) is ∆ = 4(a2y2 + 2b2(x − a)2) > 0. Then
(3.5) always has real root for t. We have proved that the parametric equations obtained by the
method in this section are normal in the real number field.

4. Parameterization for Conicoids
Let us now consider the parameterization of a conicoid with real coefficients, i.e., a surface

of degree two whose equation is

(4.1) F = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2lx + 2my + 2nz + d = 0

It is a known result [SV1] that for an irreducible conicoid (4.1), we can find a real coefficients
coordinate transformation to transform (4.1) to one of the following standard forms. Thus, we
only need to find parametric equations for these special conicoids.
Case 4.1. Elliptic paraboloid: x2/a2 + y2/b2 = 2z.

Taking x and y as parameters, we have normal parameter equations.
Case 4.2. Hyperbolic paraboloid: x2/a2 − y2/b2 = 2z.

Taking x and y as parameters, we have normal parameter equations.
Case 4.3. Cone: x2/a2 + y2/b2 = z2/c2.

We have the following parametric equations

x = a(u2 − v2), y = 2buv, z = c(u2 + v2)

which have been proved to be normal by a program based on Theorem 2.6. The inversion maps
are

u = ±
√

acy2

2ab2z − 2b2cx
, v =

y

abu

Case 4.4. Ellipsoid: x2/a2 + y2/b2 + z2/c2 = 1.
Using the sterographic projection, we can obtain the following quadratic parametric equa-

tions for the ellipsoid

x =
2au

u2 + v2 + 1
, y =

2bv

u2 + v2 + 1
, z =

c(u2 + v2 − 1)
u2 + v2 + 1

.
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The missing point is (0, 0, c) by our computer program based on Theorem 2.4. The inversion
maps are

u =
cx

a(c− z)
, v =

cy

b(c− z)
.

Case 4.5. Hyperboloid with one sheet: x2/a2 + y2/b2 − z2/c2 = 1.
we find the following quadratic parametric equations

x =
a(u2 − v2 + 1)
u2 + v2 − 1

, y =
2bvu

u2 + v2 − 1
, z =

2cu

u2 + v2 − 1
.

The missing points are Zero(z, x2/a2 +y2/b2−1)−Zero(x+a) by our computer program based
on Theorem 2.4. The inversion maps are

u =
cx + ac

az
, v =

cy

bz
.

Case 4.6. Hyperboloid with two sheets: x2/a2 + y2/b2 − z2/c2 = −1.
We find the following quadratic parametric equations

x =
2au

u2 + v2 − 1
, y =

2bv

u2 + v2 − 1
, z =

c(u2 + v2 + 1)
u2 + v2 − 1

.

The missing point is (0, 0, c), by our computer program based on Theorem 2.4. The inversion
maps are

u =
cx

az − ac
, v =

cy

bz − bc
.

Case 4.7. Cylinders: A conicoid is a cylinder if after an appropriate coordinate transforma-
tion, the equation of the conicoid only involves two variables.

We simply assume that F is in two variables x and y. Then F can be looked as a conics in
the xy plane. We can get parametric equations for the cylinder as follows: first use the method
in section 3 to obtain parametric equations x = u(t)/w(t), y = v(t)/w(t) for F (x, y) = 0, then
obtain a set of parametric equations x = u(t)/w(t), y = v(t)/w(t), z = s for the cylinder. The
parametric equations for the cylinder are normal if and only if x = u(t)/w(t), y = v(t)/w(t) are
normal. Thus, By section 3 we can always find normal parametric equations for cylinders.
Case 4.7. Imaginary conicoids: There are other conicoids which are meaningless in the real
number case, e.g., the imaginary ellipsoid x2/a2 +y2/b2 +z2/c2 = −1. We do not consider them
here.
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