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Abstract. For a first order autonomous ODE, we give a polynomial
time algorithm to decide whether it has a polynomial general solution
and to compute one if it exists. Experiments show that this algorithm is
quite effective in solving ODEs with high degrees and a large number of
terms.

1 Introduction

To find elementary function solutions for differential equations could be traced
back to the work of Liouville. As a consequence, such solutions of differential
equations are called Liouvillian solutions. In [16], Risch gave an algorithm for
finding Liouvillian solutions for the simplest differential equation y′ = f(x), that
is, to find elementary function solutions to the integration

∫
f(x)dx. Kovacic pre-

sented a method for solving second order linear homogeneous differential equa-
tions [13]. Singer established the general framework to find Liouvillian solutions
of general homogeneous linear differential equations [18]. Many interesting results
on finding Liouvillian solutions of linear ODEs are given in [1, 2, 3, 6, 11, 20, 19].
In [14], Li and Schwarz gave the first method to find rational solutions for a class
of partial differential equations.

All these results are limited to linear cases. There seems no general methods
to find Liouvillian solutions of nonlinear differential equations. With respect to
ODEs of the form y′ = R(x, y) where R(x, y) is a rational function, Poincaré
made important contributions [15]. More recently, Carnicer also made important
progresses in solving the Poincaré problem [5], which is equivalent to finding the
degree bound for the algebraic solutions of y′ = R(x, y). For ODEs of this form,
other work includes: Cano proposed an algorithm to find polynomial solutions
[4]; Singer studied the Liouvillian first integrals [18]. On the other hand, Hubert
gave a method to compute a basis of the general solutions of first order ODEs
and applied it to study the local behavior of the solutions[10]. Bronstein gave
an effective method to compute rational solutions of Ricatti equations [2]. In [9],
we propose an algorithm to find rational solutions for first order autonomous
ODEs. But this algorithm has exponential complexity.
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In this paper, we will give a polynomial time algorithm to find polynomial
solutions of first order autonomous ODEs. Instead of finding arbitrary polyno-
mial solutions, we will find the general solutions for ODEs of polynomial type.
For example, the general solution for (dy

dx )2 − 4y = 0 is: y = (x + c)2, where c
is an arbitrary constant. Three main results are given in this paper. First, we
give a sufficient and necessary condition for an ODE to have polynomial general
solutions. Second, we give a detailed analysis of the structure of the first order
autonomous ODEs which have polynomial general solutions. This leads to an al-
most explicit formula for the polynomial solutions of the first order autonomous
ODE. Third, by introducing a novel method of substituting a polynomial solution
into a first order ODE, we get a polynomial time algorithm to find polynomial
general solutions of first order autonomous ODEs. Our experiments show that
this algorithm is quite effective in solving ODEs with high degree and a large
number of terms.

The paper is organized as follows. In section 2, a criterion for an ODE to
have polynomial general solutions is given. In section 3, we give the degree
bound of polynomial solutions of first order autonomous ODEs. In section 4, we
analyze the structure of the first order autonomous ODEs which have polynomial
solutions. In section 5, we present a polynomial time algorithm to find polynomial
general solutions of first order autonomous ODEs. In section 6, we present the
conclusion.

2 Polynomial General Solution to ODEs

Let K = Q(x) be the differential field of rational functions in x with differential
operator d

dx and y an indeterminate over K. We denote by yi the i-th derivative
of y. We use K{y} to denote the ring of differential polynomials over the differ-
ential field K, which consists of the polynomials in the yi with coefficients in K.
All differential polynomials in this paper are in K{y}, if there is no other state-
ment. Let Σ be a system of differential polynomials in K{y}. A zero of Σ is an
element in a universal extension field of K [17], which vanishes every differential
polynomial in Σ. The totality of the zeros in K is denoted by Zero(Σ). In this
paper, we will use C to denote the constant field of the universal extension of K.

Let P ∈ K{y}/K. We denote ord(P ) the highest derivative of y in P , called
the order of P . Let o = ord(P ) > 0 be the order of P . We may write P as follows

P = ady
d
o + ad−1y

d−1
o + . . . + a0

where ai are polynomials in y1, . . . , yo−1 for i = 0, . . . , d and ad �= 0. ad is called
the initial of P and S = ∂P

∂yo
is called the separant of P . The k-th derivative of

P is denoted by P (k). Let S be the separant of P , o = ord(P ) and k > 0. Then
we have

P (k) = Syo+k − Rk (1)

where Rk is of lower order than o + k.
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Let P be a differential polynomial of order o. A differential polynomial Q is
said to be reduced with respect to P if ord(Q) < o or ord(Q) = o and deg(Q, yo) <
deg(P, yo). For two differential polynomials P and Q, let R = prem(P,Q) be the
differential pseudo-remainder of P with respect to Q. We have the following
differential remainder formula for R (see [12, 17])

JP =
∑

i

BiQ
(i) + R

where J is a product of certain powers of the initial and separant of Q and Bi

are differential polynomials. For a differential polynomial P with order o, we say
that P is irreducible if P is irreducible when P is treated as a polynomial in
K[y, y1, . . . , yo].

Let P ∈ K{y}/K be an irreducible differential polynomial and

ΣP = {A ∈ K{y}|prem(A,P ) = 0}. (2)

In [17], Ritt proved that

Lemma 1. ΣP is a prime differential ideal.

Let Σ be a non-trivial prime ideal in K{y}. A zero η of Σ is called a
generic zero of Σ if for any differential polynomial P , P (η) = 0 implies that
P ∈ Σ. It is well known that an ideal Σ is prime iff it has a generic zero
[17].

A universal constant extension of Q is obtained by first adding an infinite
number of arbitrary constants to Q and then taking the algebraic closure. We
further assume that the universal field in this paper contains a universal constant
extension of Q.

Definition 1. Let F ∈ K{y}/K be an irreducible differential polynomial. A
general solution of F = 0 is defined as a generic zero of ΣF . A polynomial
general solution of F = 0 is defined as a general solution of F = 0 of the form

ŷ =
n∑

i=0

aix
i, (an �= 0) (3)

where ai are in a universal constant extension of Q.

Example 1. In this example, we give three ODEs Ei = 0 which have polynomial
general solutions Si = 0 respectively.

E1 = y2
1 − 4y S1 = (x − c)2

E2 = xy1 − ny S2 = cxn

E3 = y1(y1 − 1)(y1 − 2) − (xy1 − y)2 S3 = cx +
√

c(c − 1)(c − 2)

where c is an arbitrary constant and n is a fixed positive integer.
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In the literature in general, a general solution of F (y) = 0 is defined as
a family of solutions with o independent parameters in a loose sense where
o = ord(F (y)). From Theorem 6 in [12] (Chapter 2, section 12), we can see that
the above definition of general solutions are essentially the same to the definition
in the literature. But, the definition given by Ritt is more precise.

Theorem 1. Let F (y) be an irreducible differential polynomial. Then F (y) = 0
has a polynomial general solution of degree n iff n is the least integer such that
prem(yn+1, F (y)) = 0.

Proof. (=⇒) Suppose that F (y) = 0 has a polynomial general solution ŷ with
degree n. Since yn+1(ŷ) = 0, yn+1 ∈ ΣF which means that prem(yn+1, F (y)) = 0
by Lemma 1.

(⇐=) Assume that there exists an n such that prem(yn+1, F (y)) = 0 and n
is the least. If n = −1, then F (y) = y. It is obvious. Now we suppose that n ≥ 0.
From Lemma 1, yn+1 ∈ ΣF . Hence, all the elements in the zero set of ΣF must
have the form: ȳ =

∑n
i=0 āix

i. In particularly, the generic zero ŷ has the form:
ŷ =

∑n
i=0 aix

i. If an = 0, then yn(ŷ) = 0 which implies that yn ∈ ΣF . Hence
prem(yn, F (y)) = 0, a contradiction.

3 A Criterion for First Order Autonomous ODEs

In what follows, if there is no other statement, F (y) will always be a non-zero
first order irreducible differential polynomial with coefficients in C which are not
arbitrary constants.

Lemma 2. Let ȳ =
∑n

i=0 āix
i be a solution of F (y) = 0, where āi ∈ C, n > 0

and ān �= 0. Then for an arbitrary constant c,

ŷ =
n∑

i=0

āi(x + c)i (4)

is a polynomial general solution for F (y) = 0.

Proof. It is easy to show that ŷ is still a zero of ΣF . For any G(y) ∈ K{y}
satisfying G(ŷ) = 0, let R(y) = prem(G(y), F (y)). Then R(ŷ) = 0. Suppose that
R(y) �= 0. Since F (y) is irreducible and deg(R(y), y1) < deg(F (y), y1), there
are two differential polynomials P (y), Q(y) ∈ K(ck,l){y} such that P (y)F (y) +
Q(y)R(y) ∈ K(ck,l)[y] and P (y)F (y) + Q(y)R(y) �= 0 where ck,l are the coef-
ficients of F as a polynomial in y, y1. Thus (PF + QR)(ŷ) = 0. Because c is
an arbitrary constant which is transcendental over K(ck,l) and n > 0, we have
P (y)F (y) + Q(y)R(y) = 0, a contradiction. Hence R(y) = 0 which means that
G(y) ∈ ΣF . So ŷ is a generic zero of ΣF .

The above theorem reduces the problem of finding a polynomial general so-
lution to the problem of finding a polynomial solution. In what below, we will
show how to find such a solution.
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Lemma 3. Suppose that deg(F (y), y1) = m > 0. If ȳ =
∑n

i=0 āix
i (āi ∈ C, ān �=

0) is a solution of F (y) = 0, then n ≤ m.

Proof. Assume that F (y) =
∑l

i=0 cαiβi
yαiyβi

1 , where cαiβi
�= 0 and (αi, βi) �=

(αj , βj) if i �= j. Substituting y in F (y) by ȳ =
∑n

i=0 āix
i, we get a polynomial

F (ȳ) in x. Assume that n > m > 0. Then n ≥ 2. We consider the highest degree
of x in F (ȳ) which is the largest number in {nαi + (n − 1)βi for i = 0, · · · , l}.
If ȳ is a solution of F (y) = 0, all the coefficients of F (ȳ) are zero. Hence the
number of the terms yαiyβi

1 such that nαi + (n − 1)βi is the largest is at least
two. Without loss of generality, we suppose that two of them are nα1 +(n−1)β1

and nα2 + (n− 1)β2. Then we have n(α1 −α2) = (n− 1)(β2 − β1). Assume that
β2 ≥ β1. Since (n, n − 1) = 1, we have n|(β2 − β1). But 0 ≤ β2 − β1 ≤ m < n,
which implies that β1 = β2. Hence α1 = α2. This contradicts (α1, β1) �= (α2, β2).
Hence n ≤ m.

The following theorem gives a criterion for F (y) = 0 to have polynomial
general solutions.

Theorem 2. Let F (y) be a first order autonomous and irreducible differential
polynomial and n = deg(F (y), y1). Then F (y) = 0 has a polynomial general
solution iff prem(yn+1, F (y)) = 0.

Proof. From Lemma 2, we need only to consider polynomial solutions of F (y) =
0 with coefficients in C. Now the result is a direct consequence of Lemma 3 and
Theorem 1.

Algorithm 1. The input is a first order autonomous ODE F (y) = 0. The output
is a polynomial general solution of F (y) = 0 if it exists.

1. Let n be the degree of F (y) in y1. If prem(yn+1, F (y)) �= 0 then F (y) = 0 has
no polynomial solutions and the algorithm exists; otherwise goto the next
step.

2. Let d be the smallest number such that prem(yd+1, F (y)) = 0. By Theorem
1, the polynomial solution of F (y) = 0 is of degree d.

3. Substitute z = adx
d + ad−1x

d−1 + · · · + a1x + a0 into F (y) = 0 and let PS
be the set of the coefficients of F (z) as polynomials in x.

4. Solve equations PS = 0 with Wu’s method [22]. Any solution with ad �= 0
of PS = 0 will provide a polynomial general solution of F (y) = 0. If PS = 0
has no solutions, then F (y) = 0 has no polynomial general solutions.

Now we give a simple example to show how the algorithm works.

Example 2. Consider the equation

F (y) = 31 − 54y + 27y2 − 3y2
1 − y3

1 .

1. n := 3. Since four is the smallest number k such that prem(yk, F (y)) = 0,
F (y) = 0 has a polynomial general solution with degree three.
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2. y := a0 + a1x + a2x
2 + a3x

3. Substituting y into F (y), we get PS =

{ 27a2
3 − 27a3

3, 54a2a3 − 54a2a
2
3,

54a1a3 + 27a2
2 − 27a2

3 − 9a1a
2
3 − 24a2

2a3 − 3a3(6a1a3 + 4a2
2),

−54a3 + 54a0a3 + 54a1a2 − 36a2a3 − 24a1a2a3 − 2a2(6a1a3 + 4a2
2),

−54a2 + 54a0a2 + 27a2
1 − 18a1a3 − 12a2

2 − a1(6a1a3 + 4a2
2) − 8a2

2a1 − 3a3a
2
1,

−54a1 + 54a0a1 − 12a1a2 − 6a2
1a2, 31 − 54a0 + 27a2

0 − 3a2
1 − a3

1 }.

3. Solve PS = 0. We have the solutions

{a3 = 1, a1 =
a2
2

3
+ 1, a0 = 1 +

a2

3
+

a3
2

27
, a2 = a2}.

Let a2 = 0. Then F (y) = 0 has a polynomial general solution

ŷ = (x + c)3 + (x + c) + 1

by Lemma 2.

It is known that the general methods of equation solving are exponential
algorithms. Therefore, the above algorithm might be ineffective. In the next
section, we will analyze the structure of the first order autonomous ODEs which
have polynomial solutions. After doing so, we can obtain a polynomial time
algorithm.

4 Structure of the First Order Autonomous ODEs with
Polynomial General Solutions

If ȳ =
∑n

i=0 āix
i is a polynomial solution of F (y) = 0, we regard x, y, y1 as

independent indeterminants and eliminate x in the polynomial set {∑n
i=0 āix

i −
y,

∑n
i=1 iāix

i−1 − y1}. Then we will obtain a new differential polynomial R(y).
Theorem 3 below will give the relation between R(y) and F (y).

Lemma 4. Let f1(y) =
∑n

i=0 āix
i − y, f2(y) =

∑n
i=1 iāix

i−1 − y1 (n ≥
1, ān �= 0, āi ∈ C). If n ≥ 2, let R(y) be the Sylvester-resultant of f1(y) and f2(y)
with respect to x and if n = 1, let R(y) = f2(y). Then R(y) is an irreducible
polynomial in C[y, y1] and has the form

R(y) = (−1)nān−1
n yn

1 + (−1)n−1nnān
nyn−1 + G(y, y1) (5)

where tdeg(G) (the total degree of G) ≤ n − 1 and G does not contain the term
yn−1.

Proof. When n = 1, it is clear. Assume that n ≥ 2. We know that R(y) is the
following determinant which has 2n-1 columns and rows:
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ān ān−1 ān−2 · · · ā1 ā0 − y
ān ān−1 · · · ā2 ā1 ā0 − y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ān ān−1 ān−2 · · · ā1 ā0 − y

nān (n − 1)ān−1 (n − 2)ān−2 · · · ā1 − y1
nān (n − 1)ān−1 · · · ā2 ā1 − y1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
nān (n − 1)ān−1 (n − 2)ān−2 · · · ā2 ā1 − y1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Regard āi in the above determinant as indeterminants. Let R =
∑

cαiβi
yαiyβi

1 ,
where (αi, βi) �= (αj , βj) if i �= j and cαiβi

are non-zero polynomials in ā0, · · · , ān.
We define a weight

w : C[x, y, y1, āi] → Z
which satisfies w(x) = 1, w(āi) = n − i, w(y) = n, w(y1) = n − 1, w(st) =
w(s) + w(t) and w(k) = 0 for k ∈ C. Then f1 and f2 are the isobaric poly-
nomials with the weight n and n − 1. From [7], we know that the resultant of
two homogeneous polynomials is still homogeneous. By the same way, we can
show that the resultant of two isobaric polynomials with the weight n and n− 1
is still an isobaric polynomial with weight n(n − 1). Hence R(y) is an isobaric
polynomial with the weight n(n − 1). We have w(yαiyβi

1 ) = nαi + (n − 1)βi =
αi +(n−1)(αi +βi) ≤ n(n−1), which implies if αi > 0 then we have αi +βi < n.
By the computation of the above determinant, the coefficients of yn

1 and yn−1

in R(y) are (−1)nān−1
n and (−1)n−1nnān

n. Then the form of R(y) is as (5).
In the following, we take āi as complex numbers. If R(y) is reducible, we

assume that R(y) = F1(y)F2(y), where 0 < tdeg(F1(y)), tdeg(F2(y)) < n. Since
R(y) = P (y)f1(y) + Q(y)f2(y), where P (y), Q(y) are two differential polynomi-
als, we have R(ȳ) ≡ 0 which implies that F1(ȳ) = 0 or F2(ȳ) = 0. But we know
that it is impossible by Lemma 3, because deg(F1(y), y1), deg(F2(y), y1) < n, a
contradiction.

Theorem 3. Use the same notations as in Lemma 4. If ȳ =
∑n

i=0 āix
i is a

polynomial solution of F (y) = 0, then R(y)|F (y). Since F (y) is irreducible,
F (y) = λR(y), where λ ∈ C and λ �= 0.

Proof. From Lemma 3 and Lemma 4, we know deg(F (y), y1) ≥ n = deg(R(y), y1).
Let T (y) = prem(F (y), R(y)). Then we have the remainder formula J(y)kF (y) =
Q(y)R(y) + T (y), where Q(y), T (y) ∈ C[y, y1] , J(y) is the initial of R(y) and
deg(T (y), y1) < deg(R(y), y1). Since F (ȳ) = 0 and R(ȳ) = 0, we have T (ȳ) = 0.
By Lemma 3, T (y) = 0. That is J(y)kF (y) = Q(y)R(y) which implies that
R(y)|F (y) because R(y) is irreducible. Since F (y) is irreducible, it is clear that
F (y) = λR(y) where λ ∈ C and λ �= 0.

From Lemma 4 and Theorem 3, if F (y) has a polynomial solution ȳ =∑n
i=0 āix

i, it must be of the following form

F (y) = ayn
1 + byn−1 + G(y, y1) (6)
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where a, b ∈ C are not zero, tdeg(G) ≤ n−1 and G does not contain the term
yn−1.

As a consequence of Theorem 3 and Lemma 4, we have
Corollary 1. Let F (y) be of the form (6) and have a polynomial solution of the
form (4). Then

ān = − b

nna
. (7)

Lemma 5. Let F (y) be of the form (6) and have a polynomial general solution
of the form (4). Then we may construct a new general solution of the following
form for F (y) = 0

ŷ = ān(x + c)n +
n−2∑

i=0

ãi(x + c)i. (8)

In other words, we may assume that ān−1 = 0 in the general solution of F (y) = 0.

Proof. It is clear that

ŷ = ān(x + c − ān−1

nān
)n +

n−2∑

i=0

ãi(x + c − ān−1

nān
)i.

Since c− ān−1
nān

is still an arbitrary constant, replacing c− ān−1
nān

by c in the above
equation, we get the form (8) and it is still a general solution of F (y) = 0.

The following theorem tells us that the value of āk only depends on the values
of āi for i ≥ k if F (y) = 0 has polynomial general solutions.

Lemma 6. Let F (y) be of the form (6) and z = (−b/nna)xn + an−1x
n−1 +

an−2x
n−2 + · · · + a0 where ai are indeterminants. Substituting y by z in F (y),

the coefficients of x(n−1)2+i−1 in F (z) are of the following form

(
−b

nna
)n−2(n − 1 − i)bai + hi(an−1, · · · , ai+1), for i = n − 2, · · · , 0 (9)

where hi(an−1, · · · , ai+1) are the polynomials in an−1, · · · , ai+1.

Proof. Let Ci be the coefficient of x(n−1)2+i−1 in F (z) for i = 0, · · · , n− 2 where

F (z) = azn
1 + bzn−1 + G(z, z1).

As in the proof of Lemma 4, we define a weight w. Then z = (−b/nna)xn +
an−1x

n−1 + · · · + a0 is an isobaric polynomial with the weight n. Hence zαj z
βj

1

is still an isobaric polynomial with the weight nαj + (n− 1)βj . Now we consider
Ci. By computation, we know that the highest weight of the terms in F (z) is
n(n− 1). Hence the highest weight in Ci is not greater than n− i. So ak can not
appear in Ci for k ≤ i − 1 and if ai appears in Ci, then it must be linear and its
coefficient must be constant. In the coefficients of x(n−1)2+i−1 in azn

1 + bzn−1,
the term in which ai appears are ( −b

nna )n−1innaai + ( −b
nna )n−2(n − 1)bai. In the

coefficients of x(n−1)2+i−1 in G(z, z1), since the weight of each term is less than
n − i (for tdeg(G) < n), ai can not appear. Therefore Ci has the form (9).
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5 A Polynomial-Time Algorithm

From the results in section 4, we have the following algorithm.

Algorithm 2. The input is F (y). The output is a polynomial general solution
of F (y) = 0 if it exists.

1. If F (y) can be written as the form (6), then goto step 2. Otherwise, by
Theorem 3, F (y) = 0 has no polynomial general solutions and the algorithm
terminates.

2. Let F (y) be of degree n in y1. Let ān = − b
nna , ān−1 = 0,

āi = − hi(ān−1,···,āi+1)
(−b/nna)n−2(n−1−i)b , i = n−2, · · · , 0, where hi are from Lemma 6. We

have āi ∈ C.
3. Let ȳ =

∑n
i=0 āix

i. If F (ȳ) ≡ 0 then ŷ =
∑n

i=0 āi(x + c)i is a polynomial
general solution of F (y) = 0. Otherwise, F (y) = 0 has no polynomial general
solutions.

The correctness of Step 3 is due to the following facts. By Corollary 1,
Lemmas 5 and 6, if F (y) = 0 has polynomial general solutions, then ŷ =∑n

i=0 āi(x + c)i must be such a solution. By Lemma 2, to check wether ŷ is
a polynomial general solution we need only to check whether ȳ is a solution of
F (y) = 0.

Now we give some examples.

Example 3. Consider the differential polynomial:

F (y) = y1
4 − 8 y1

3 + (6 + 24 y) y1
2 + 257 + 528 y2 − 256 y3 − 552 y.

1. F (y) can be written as the form:

F (y) = y1
4 − 256 y3 + G(y, y1)

where

G(y, y1) = −8 y1
3 + (6 + 24 y) y1

2 + 257 + 528 y2 − 552 y,

tdeg(G) ≤ 3.
2. If F (y) = 0 has a polynomial general solution, then its degree is four and

the coefficient of x4 must be a4 = 256
44 = 1.

3. Let z = x4 + a2x
2 + a1x + a0. Replacing y by z in F (y) and collecting the

coefficients of x8, x9, x10, we obtain the following equations:

768 a2 + 528 − 384 a2
2 − 768 a0 = 0,

−512 − 512 a1 = 0,

384 − 256 a2 = 0.

Solving the above equations, we have a0 = 17
16 , a1 = −1, a2 = 3

2 .
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4. Let ȳ = x4 + 3
2x2 − x + 17

16 . Substituting y by ȳ in F (y), F (y) becomes zero.
Hence a polynomial general solution of F (y) = 0 is

ȳ = (x + c)4 +
3
2
(x + c)2 − (x + c) +

17
16

.

In Step 2 of Algorithm 2, we need to compute F (z) where z = − b
nnaxn +

an−1x
n−1 + · · · + a0 and ai are indeterminants. A naive method of doing this

evaluation is very costly. In order to give a polynomial-time algorithm, we need
to give an efficient algorithm for Step 2. From Theorem 6, to compute the value
of āk, we need only to compute hk(ān−1, · · · , āk+1). In other words, we need only
to compute F (z̄) where z̄ =

∑n
k+1 āix

i and āi ∈ C. Moreover, we need only to
compute the coefficient of x(n−1)2+k−1 in F (z̄). To compute F (z̄), we need to
compute multiplication of two univariate polynomials which can be computed
by the classical Karatsuba method ([21]).

Algorithm 3. The inputs are F (y) as the form (6) and z̄ = ānxn + · · · + ā0

where āi ∈ C. The output is the coefficient of x(n−1)2+k−1 in F (z̄) for some k.

1. Compute z̄n and z̄n−1
1 where z̄1 is the derivative of z̄ wrt x. We compute z̄n

step by step. That is, we compute z̄2 first, then compute the multiplication of
z̄2 and z̄, and so on. Note that, after we computed z̄n, we have also obtained
z̄i for i < n. For z̄n−1

1 , we compute it in the same way.
2. Write F (y) as the form: F (y) =

∑n
i=0(d0,i +d1,iy+ · · ·+dn−i,iy

n−i)yi
1 where

di,j ∈ C.
3. For i from 0 to n, compute pi = d0,i + d1,iz̄ + · · · + dn−i,iz̄

n−i.

4. result:=0.
For j from 0 to n
For i from 0 to (n − 1)2 + k − 1
result:=result+coeff(pj , x, i)∗coeff(yj

1, x, (n − 1)2 + k − 1 − i)
where coeff(p, x, k) means the coefficient of xk in p.

5. return(result).

Example 4. Let F (y) be as in Example 3 and z̄ = x4. Now we compute the
coefficient of x10 in F (z̄).

1. z̄ := x4, z̄2 := x8, z̄3 := x12.
z̄1 := 4x3, z̄2

1 := 16x6, z̄3
1 := 64x9, z̄4

1 := 256x12.
2.

p0 := 257 + 528 z̄2 − 256 z̄3 − 552 z̄ = 257 − 552x4 + 528x8 − 256x12,

p1 := 0, p2 := 6 + 24z̄ = 6 + 24x4, p3 := −8, p4 := 1.

3. result:=coeff(p2, x, 4)*coeff(z̄2
1 , x, 6)=24*16=384. Because for other i, j,

coeff(pj , x, i)*coeff(z̄j
1, x, 10 − i)= 0.
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Since multiplication is the dominant factor for the running time of the algo-
rithm, we will use the number of multiplications of rational numbers to measure
the complexity of the algorithm. In Algorithm 3, the complexity of Step 1 is
O(n4). The complexity of Step 2 is O(n2). The complexity of Step 3 is O(n4).
The complexity of Step 4 is O(n3). Hence the complexity of Algorithm 3 is
O(n4).

Algorithm 4. The inputs are F (y) as the form (6) and z = anxn +an−1x
n−1 +

· · ·+ a0 where ai are interminates. The output is āi for i = n, · · · , 0 in Step 2 of
Algorithm 2.

1. Let ān = − b
nna , ān−1 = 0.

2. Let i = n − 2.
while i ≥ 0 do
(a) ȳ := ānxn + · · · + āi+1x

i+1.
(b) Ci :=the coefficient of x(n−1)2+i−1 in F (ȳ) by Algorithm 3.
(c) āi := − Ci

(−b/nna)n−2(n−1−i)b .
(d) i := i − 1.

Example 5. (Example 3 continued)

1. n := 4, a := 1, b := −256.
2. ā4 := 1, ā3 := 0.
3. ȳ := x4. Substitute ȳ into F (y).
4. Then by Algorithm 3, the coefficient of x10 in F (x4) equals to 384. That is,

C2 = 384.
5. ā2 := − 384

−256 = 3
2 which equals to a2 in Example 3. The other coefficients

can be computed similarly.

It is easy to know that the complexity of Algorithm 4 is O(n5). In Step 3 of
Algorithm 2, we verify whether ȳ is a polynomial solution of F (y) = 0. If ȳ is
not a polynomial solution of F (y) = 0, that is F (ȳ) �= 0, then F (ȳ) will be a
polynomial in x with degree not greater than n(n− 1). Hence, if F (ȳ) �= 0, then
F (ȳ) = 0 as an equation in x has n(n − 1) roots at most. So we can verify it by
numerical computation. If F (ȳ)(k) = 0 for k = −n(n−1)

2 ,−n(n−1)
2 +1, · · · , n(n−1)

2 ,
then F (ȳ) = 0. Otherwise, F (ȳ) �= 0.

Algorithm 5. The inputs are F (y) as the form (6) and ȳ =
∑n

i=0 āix
i as in

Algorithm 2. The output is “Yes” or “No” where “Yes” means ȳ is a solution of
F (y) = 0 and “No” means ȳ is not a solution of F (y) = 0.

1. Write F (y) as the form: F (y) =
∑n

j=0(d0,j + d1,jy + · · · + dn−j,jy
n−j)yj

1

where di,j ∈ C.
2. For k from −n(n − 1)/2 to n(n − 1)/2

(a) Substitute xi by ki in ȳ and ȳ1. Then we get the values of ȳ and ȳ1 at
k, which are denoted by ȳ(k) and ȳ1(k). Compute ȳ1(k)i and ȳ(k)i for
i = 1 · · ·n in the same way as Step 1 of Algorithm 3.
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(b) result:=0.
For j from 0 to n, compute pj(k) = d0,j + d1,j ȳ(k) + · · · + dn−j,j ȳ(k)j ,
result:=result+pj(k)ȳ1(k)j .

(c) If result �= 0 then return(No).
3. return(Yes).

It is easy to check that the complexity of Algorithm 5 is O(n3). So we have
the following theorem.

Theorem 4. We can decide whether F (y) = 0 has a polynomial general so-
lution and compute one if it exists with O(n5) multiplications of rational
numbers.

6 Conclusion

We have implemented the algorithms in Maple. The software is available at
http://www.mmrc .iss.ac.cn/˜ xgao/software.html. In Table 1, we present the
statistic results of running our algorithm for twenty differential equations, which
could be found in [8]. We only give the total degrees and numbers of terms in
these differential equations. In Table 1, Fi and Gi denote the differential equa-
tions. Here, the coefficients of Fi and Gj are integers. The coefficients of Fi are
less than 106 but that of Gj may be very large. The running time is in sec-
onds. The column of “solution” means whether they have a polynomial general
solution or not. The running time is collected on a computer with Pentium 4,
2.66GHzCPU and 256M memory.

From the experimental results, we could conclude that the algorithm can be
used to find polynomial solutions for very large ODEs efficiently. Recently, we
have extended the method proposed in this paper to find rational and algebraic
solutions of first order autonomous ODEs. It is interesting to see whether the
result can be extended to the case when the coefficients of first order ODEs are
not constant.

Table 1. Statistics on Algorithm2

tdegree term time(s) solution tdegree term time(s) solution

G6 6 17 0.077 Y F6 6 22 0.063 N
G7 7 22 0.125 Y F7 7 28 0.266 N
G8 8 30 0.312 Y F8 8 37 1.141 N
G9 9 38 1.468 Y F9 9 45 3.500 N
G10 10 47 8.108 Y F10 10 55 10.656 N
G11 11 57 16.062 Y F11 11 60 31.345 N
G12 12 68 34.250 Y F12 12 74 70.438 N
G13 13 80 78.203 Y F13 13 80 148.984 N
G14 14 93 178.469 Y F14 14 90 273.065 N
G15 15 106 306.250 Y F15 15 110 434.514 N
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