
Automated Generation of Readable Proofs with
Geometric Invariants†

I. Multiple and Shortest Proof Generation

Shang-Ching Chou, Xiao-Shan Gao‡, and Jing-Zhong Zhang§

Department of Computer Science, The Wichita State University
Wichita KS 67260-0083, USA

e-mail: (chou,gao,zhang)@cs.twsu.edu

Abstract. In this series of papers, we discuss how to use a fixed set of high level geometry
lemmas or rules related to geometric invariants, such as area, full-angle, etc., to produce
short and human-readable proofs in geometry, especially to produce multiple and shortest
proofs of a given geometry theorem. These rules are proved to be much more effective
and concise than the rules based on triangle congruence used in related work before. The
success of our approach is partially due to a skillful selection of geometric invariants and
the related rules. Control and search strategies are proposed and experimented with to
enhance the efficiency of the prover. In part I of this series, the high level geometry
lemmas are about area and the Ceva-Menelaus configurations.

Keywords. Automated reasoning, automated geometry theorem proving, area method,
multiple proof, shortest proof.

1 Introduction

In [3, 4, 20], we introduced the area method for automated generation of human-readable
proofs of geometry theorems. The computer program based on this method has generated
human-readable proofs of more than 400 difficult geometry theorems. By human-readable
proofs, we mean that the proofs are short enough for people to repeat with pencil and
paper and each step of the proofs has clear geometric meanings.

†This work was supported in part by the NSF Grants CCR-9117870, CCR-9420857 and the Chinese
NSF.

‡On leave from Institute of Systems Sciences, Academia Sinica, Beijing 100080.
§Permanent address: Chengdu Institute of Computer Application, Academia Sinica, 610015 Chengdu,

China

1

However, not all proofs generated by the area method are short. We raise the following
question: can we use other geometric invariants for automated generation of short and
elegant proofs of geometry theorems that our area method is unable to do? By geometric
invariants, we mean those geometric quantities which have clear geometric meanings, such
as ratio of segments, area, full-angle, etc. This is one of the main themes of this work.

It is our experience with the area method that in order to be successful in generating
short proofs, it is crucial to choose the right geometry invariants and the related high level
geometry lemmas about these invariants. The success of our approach is partially due
to a skillful selection of geometric invariants and the related rules. We are seeking sets
of ideal geometric invariants and related methods and hope that they meet the following
criteria: (1) The proofs based on the methods should be generally short. Otherwise, we
may face the problem of search space explosion before reaching a proof. On the contrary,
if the lemmas can be used to produce short proofs efficiently, the computer program
may produce a large number of proofs quickly and select the shortest ones among them.
This is the basis for multiple proof generation. (2) The methods are powerful enough to
prove many difficult geometry theorems without adding auxiliary points or lines. (3) The
methods can be used to prove diagram independent proofs for geometry statements. The
key here is that the lemmas can deal with the order relation properly. For the detailed
discussion of this topic see Section 4.2. (4) The proofs generated by the method should
have clear geometric meanings and are easy to read.

Our area method basically satisfies all the above four criteria, i.e., the method can be
used to produce short, elegant, and diagram independent proofs for hundreds of difficult
geometry theorems within its domain.

In Part I of this series, we extend the area method by adding two new geometry lemmas:
Ceva’s theorem and Menelaus’ theorem. Proofs generated with these two lemmas are
unexpectedly beautiful and short. We also propose control and search strategies for the
area method to produce multiple and shortest proofs. These strategies will also be used
for methods based on other geometric invariants. In Part II of this paper, we introduce
another very useful geometry invariant – full-angle.

Why do we search for more methods to mechanize the proving of geometry theorems?
First, for a certain class of geometry theorems, a particular method may produce much
shorter proofs than other methods. For instance, the area method works particularly well
for constructive theorems in affine geometry. On the other hand, the full-angle method
(in Part II) works well for theorems involving many circles and angles. Second, with these
methods, for the same theorem, the prover can produce a variety of proofs with different
styles. This is important for the method to be used in geometry education, since different
methods may enhance students’ ability to explore different and better proofs.

2

1.1 Multiple and Shortest Proof Generation

Our previous area method is deterministic [3] because the method eliminates points in a
rigid way. In this work, we use a relaxed search strategy; thus the new method has some
kind of non-deterministism. Using a relaxed search strategy has two positive aspects.

First, using a relaxed search allows the program to generate multiple and shorter proofs
for the same theorem. Actually, a new phenomenon we have experienced with the new
approach is the proof explosion. Our preliminary program produces thousands of proofs
even for a simple geometry theorem. Most of the proofs are more or less similar. For
instance, the difference of two similar proofs may be caused by interchanging the order of
applying two rules. However, among those proofs, we do find a few that are essentially
different. For instance, the two different proofs may be produced by applying different sets
of lemmas. Control and search strategies are proposed and experimented with to discard
most of the similar proofs and keep the essentially different proofs and the shortest proofs.
Our precise meaning for the shortest proof can be found in Section 3.3.

Second, by using a relaxed search, we extend our area method in two aspects. (1) The
area method we proposed before is only limited to the constructive geometry statements.
The approach to the area method in this paper can deal with not only constructive geom-
etry statements [3], but also non-constructive geometry statements that can be described
by geometry predicates. (2) Even for the same geometry theorem, our new program
can generate shorter proofs that cannot be generated by the previous area method (see
Example 3.2), since our new program can find the shortest ones among thousands of
proofs.

Most of the previous work of automated theorem proving generally satisfy with one
proof. In our case, since the proofs generated are short and readable, generating mul-
tiple and shortest proofs for geometry theorems is important for the application of the
method/program to geometry education. One thing teachers often do in class is asking
students to find an alternative or better proof for a geometry theorem. A prover capable
of finding multiple and shortest (readable) proofs may help the student to enhance their
ability to solve geometry problems.

2 The Prover

2.1 Basic Lemmas About Signed Areas and Ratio of Segments

In this paper, points are represented by capital English letters; lines are represented by
two distinct points on it, e.g., line AB is the line passing through two distinct points A
and B.

3

The signed area SABC of triangle ABC is the usual area with a sign depending on
the order of the vertices A, B, and C: if A− B − C rotates counterclockwisely, SABC is
positive, otherwise it is negative. In our area method, the signed area is used as a basic
(undefined) geometry quantity and its properties are used as axioms for our deduction.
The following properties of the signed area are used as basic lemmas.

L1 SABC = SCAB = SBCA = −SBAC = −SCBA = −SACB.

L2 Points A,B, and C are collinear iff SABC = 0.

L3 PQ ‖ AB iff SPAB = SQAB.

L4 For any four points A, B, C, and D, we have SABC = SABD + SADC + SDBC .

L5 If points A, B, C, and D are four collinear points such that A 6= B, and P is any
point not on line AB, then CD

AB
= SPCD

SPAB
.

Here we introduce another geometry quantity CD
AB

, the ratio of two directed segments on
the same line, which satisfies L8 below.

The signed area of a quadrilateral ABCD is defined to be SABCD = SABC + SACD. By
lemmas L4 and L1, we have.

Q1 SABCD = SABC + SACD = SABD − SCBD,

Q2 SABCD = SBCDA = SCDAB = SDABC = −SADCB = −SDCBA = −SCBAD = −SBADC .

A B

P

Q

M

A B

P

Q

M
A

B

P

Q

M

A B

P

Q

M

Figure 1

L6 (The Co-side Theorem) Let M be the intersection of two lines AB and PQ and
Q 6= M . Then

PM

QM
=

SPAB

SQAB

;
PM

PQ
=

SPAB

SPAQB

;
QM

PQ
=

SQAB

SPAQB

.

Note that the three equations are valid in all of the four cases in Figure 1.

L7 Let R be a point on line PQ. Then for any two points A and B, SRAB = PR
PQ

SQAB +

RQ

PQ
SPAB.

4

L8 For four distinct collinear points P , Q, A, and B, PQ

AB
is a real number which satisfies

(1) PQ

AB
= −QP

AB
= QP

BA
= −PQ

BA
; (2) PQ

AB
· AB

PQ
= 1; (3) PQ

AB
= 0 iff P = Q; and (4)

AP
AB

+ PB
AB

= 1.

These lemmas are a part of the geometry lemmas used in the area method which can
be found in [3]. The difference between our previous work [3] and this work is that here
we add control and search strategies to cover a wider range of geometry theorems and to
produce multiple and shortest proofs. New lemmas about signed area will be introduced
in Subsection 2.5. Also, lemmas about another geometric invariant, the Pythagorean
difference, is omitted.

In our Prolog program, each geometry lemma is represented as a rule or a clause. For
instance, lemma L3 can be written as the following Prolog rule.

el rule([area,P,A,B],[[area,Q,A,B],1]) :- para(A,B,P,Q),P6=Q,

where [area,P,A,B] is SPAB and the predicate para(A,B,P,Q) means that AB ‖ PQ. If
[area,P,A,B] is the input, predicate para is used to find a new point Q such that AB ‖ PQ,
and hence SPAB = SQAB.

Generally speaking, a rule in our program has the following form:
el rule(Inv,[N,D]) :- P1, · · · , Pt.

where Inv is a geometry invariant, N and D are polynomials of geometry invariants, and
Pi are geometry predicates. The meaning of the rule is that when certain points satisfy
the predicates Pi, the invariant Inv will be replaced by the rational expression N

D
. To find

points satisfying the predicates Pi, we only use the hypotheses of the geometry statement.
In Part II of the series, we will discuss how to extend the original hypotheses to a geometry
information base for the purpose of finding points to satisfy predicates Pi in the rule. The
reason that the area method can work with the original hypotheses is that it needs only
very weak “local” facts.

Remark 2.1 1. In lemmas L5, L6, L7, and L8, we introduce some conditions like
two points are not equal or three points are not collinear. These conditions are
usually not in the original hypotheses of the geometry statement. We call them the
non-degenerate (ndg) conditions for the statement [2, 18]. The machine proof (and
generally the statement itself) is valid only under these non-degenerate conditions.
Algebraically, these conditions are used to make denominators of the algebraic ex-
pressions in the proof not vanishing. In our program, the ndg conditions are treated
with the negation by failure strategy used in Prolog.

2. Note that some of the lemmas can be used in several ways. For instance, the
equation PM

QM
= SPAB

SQAB
in L6 can also be used as SPAB = PM

QM
SQAB.

5

2.2 The Prover

The prover is implemented in Prolog. Ideally, we can put the geometry lemmas as inference
rules in Prolog, and leave the logic engine of Prolog to do as much inference job as possible.
The advantage of doing this is that the prover becomes extensible. If we want to use new
lemmas, we can easily add them as inference rules. Since we do not use function symbols,
unification without occur check is not a problem in our Prolog program. At the highest
level, our prover uses a typical backward chaining search strategy.

Step1 The prover first transforms the conclusion predicate into an equation of geometric
quantities α = β.

Step2 The prover keeps replacing geometry quantities in α and β with expressions in
new geometry quantities by using the rules introduced in the preceding subsection
until no new replacement can be made. After applying a rule to α or β to obtain
α′ and β′, we remove the common factors of α′ and β′.

Step3 Let the final equation be α′′ = β′′. If α′′ literally equals to β′′ then the geometry
is true. Otherwise, in some special cases, e.g., if α′′ and β′′ are nonzero-constants
or an expression involving free points in the case of constructive statements, the
statement is wrong. In the general case, we do not know whether the statement is
true or not.

Step4 The prover automatically generates the complete machine proof, if needed, in TeX
typesetting form.

The termination of the algorithm is based on Control Strategy 1 which will be introduced
in the next subsection. It is clear that the prover also uses the computation of symbolic
polynomials of geometry quantities, which are builtin in our program.

In our previous work on the area method [3], the rules introduced in Subsection 2.1
correspond to the basic propositions in [3], and the elimination lemmas used in [3] can
be obtained as combination of several of the basic rules. Therefore, the method we adopt
here includes the method in [3] as a special case; thus the method is complete (decidable)
for constructive geometry statements.

2.3 An Example

We limit ourselves to geometry statements of the form

∀points(Hyp ⇒ Conc)

where Hyp is a set of predicates which consists of the hypothesis and Conc is a predicate
or an equation of geometry invariants which is the conclusion. The predicates used in the

6

program are: coll (collinear), para (parallel), perp (perpendicular), cong (segment con-
gruent), eqangle (full-angle congruent; see Part II), midpoint, cyclic. foot, circumcenter,
orthocenter, incenter, pbisector (perp-bisector).

D

G

A

E

Example 2.2 (The Centroid Theorem)
The three medians of a triangle meet in a point,
and each median is trisected by this point.

Point order: A, B, C, D, E, G.

Hypotheses: midpoint(E, A, B), midpoint(D, A, C), coll(G, B, D), coll(G, C, E).

Conclusion: −2 · GD
GB

= 1.
Non-degenerate condition: A, B, C are not collinear.

The non-degenerate (ndg) condition is generated by our method automatically.

The Machine Proof
(−2) · GD

GB

(GD
GB

=
SEDC
−SECB

, because collinear(B,D,G), collinear(C,E,G). (L6))

=
2·SEDC
SECB

(SEDC = 1
−2

(SECA), because midpoint(D,C,A). (L5))
(SECB = 1

2
(SCBA), because midpoint(E,B,A). (L5))

=
2·SECA

(−1)·SCBA

(SECA = 1
−2

(SCBA), because midpoint(E,B,A). (L5))

=
SCBA
SCBA

(Simplification: removing the factor: SCBA.)

= 1

Ndg conditions: B,A,C are not collinear.

The machine proof format is a series of successive equations of rational expressions in
geometry invariants and each equation is obtained by replacing some geometry invariants
with expressions in new invariants. The geometry conditions and the name of the rules
used in each replacement are also given.

2.4 A Control Strategy Related to Point Order

Control Strategy 1. We introduce a rank among all geometry invariants. A rule can be
used only if it reduces an invariant to an expression in invariants with lower ranks.

7

The rank for the area and ratio of segments is determined by an order among the
points. Suppose that we have an order among the points, denoted by <. First, the area
and ratio of segments can be represented canonically.

Definition 2.3 SABC is said to be in the canonical form if A ≥ B ≥ C. SABCD is said
to be in canonical form if A ≥ C, B ≥ D, and (A > B or (A = B and C > D)). AB

CD
is

said to be in the canonical form if A ≥ B, C ≥ D, and (A > C or (A = C and B > D)).

Using rules L1, Q2, and L8, any geometry quantity can be reduced to canonical form.
In what follows, all geometry quantities are assumed to be in canonical form. Also in
the prover, geometry quantities are represented in canonical forms to enhance search
efficiency.

Definition 2.4 A geometry quantity G1 has lower rank than G2, denoted by G1 < G2,
if one of the following conditions is true.

1. G1 = SABC , G2 = SPQR, and the ordered point set {A,B,C} has a lower rank than
{P,Q, R} in the pure lexicographical order associated with the point order;

2. G1 = AB
CD

, G2 = PQ

RT
, and {A,B,C,D} has a lower rank than {P,Q, R, T} in the

pure lexicographical order associated with the point order;

3. G1 = AB
CD

, G2 = SPQR, and A ≤ P .

Control Strategy 1 has a two-fold purpose. First, it guarantees the termination, because
in each step a geometry quantity will be replaced by another quantity of lower rank and
there is no infinite chain of geometry quantities with decreasing rank. Second, it makes
the production of short proofs possible. Without this strategy, the prover may do endless
searches before reaching the shortest proof. This can be seen from Example 3.1.

It is clear that Control Strategy 1 generally will reduce the number of applicable rules.
So it is natural to ask: does this strategy reduce the power of the prover? The answer is
generally not. According to our experience of proving hundreds of geometry theorems with
computer programs, most of the geometry theorems (not involving inequalities) can be
described constructively, i.e., points are introduced by successfully taking the intersections
of lines and circles. Thus there is a natural order among the points in the statement,
i.e., the order according to which the constructed points are introduced. For such a
constructive theorem, at least one proof in accordance with Control Strategy 1 exists, i.e.,
the proof produced by our previous area method [3] which is complete (decidable) for the
class of constructive statements.

8

2.5 More Lemmas

To enhance the efficiency of the prover, we actually builtin more sophisticated rules (lem-
mas) into our prover. These rules are usually combinations of several basic rules. There
are two kinds of combined rules. The first kind is to eliminate a point from a geometry
quantity. This kind of combined rules corresponds to the elimination lemmas in [3, 4].
The second kind is chosen based on our observation that these combinations are often
used in the proofs of many theorems. Theoretically speaking, these combined rules can
be automatically reached by searching among the basic rules. But the searching process
is time consuming, since the prover has to go through many “bad” combinations before
obtaining a “good” one. We give some of the combined rules as illustrations.

L9 If Y is the intersection of line AB and line EF , then for any point C we have SY AC =
Y A
BA

SBAC = SAEF SBAC

SAEBF
.

L10 If Y , B, and C are collinear and Y A ‖ BD, SY CD = SY BD + SBCD = SABD + SBCD

L11 Let the diameter for the circumcircle of triangle ABC be δ. Then SABC = AB·BC·CA
2δ

.

Rule L9 is a combination of rules L5 and L6; rule L10 is a combination of rules L4 and
L3. The proof for L11 may be found in [3].

A new kind of rules used in the prover is match. The rules introduced previously apply
only to one geometry quantity. The match rules on the other hand can apply to more
than one geometry quantities. The reason to introduce the match rules is to enhance the
efficiency and to obtain shorter proofs.

L12 If A, B, and C are collinear then SPAB + SPBC = SPAC .

L13 If O, A, B are collinear and O, C, D are collinear then SOBC + SODA = SABCD.

L14 SABD − SCBD = SABCD.

L15 If points A, B, C, and D are four collinear points and P is any point not on line
AB, then SPCD

SPAB
= CD

AB
.

L16 Let M be the intersection of two non-parallel lines AB and PQ. Then SPAB

SQAB
= PM

QM
.

Rules L12 and L13 are consequences of rule L4. Rule L14 is from the definition of the
area of quadrilateral. Rule L15 is a consequence of rule L5. Rule L16 is a consequence of
rule L6.

Example 2.5 Continuing from Example 2.2. The following is another machine produced
proof for the centroid theorem. Notice that in the third step, it uses a match rule L15.

9

The Machine Proof
(−2) · GD

GB

(GD
GB

=
SEDC
−SECB

, because collinear(B,D,G), collinear(C,E,G). (L6))

=
2·SEDC
SECB

(SEDC = 1
−2

(SECA), because midpoint(D,C,A). (L5))
(SECB = 1

2
(SCBA), because midpoint(E,B,A). (L5))

=
2·SECA

(−1)·SCBA

(
SECA
SCBA

= −EA
BA

, because collinear(A,B,E). (L15))

= 2 · EA
BA

(EA
BA

= 1
2
, because midpoint(E,B,A). (L8))

= 1

Ndg conditions: B,A,C are not collinear.

Finally, we add Ceva’s theorem and Menelaus’ theorem as the basic rules of proving
geometry theorems. These two theorems have been used to produce elegant proofs for
many difficult geometry theorems. The proofs are unexpectedly beautiful and short. Two
of them are in the appendix (Examples 4 and 5). Here, we mention again that Control
Strategy 1 is important for the prover to find the proof efficiently.

C

E

DE

P

C

LC (Ceva’s Theorem) For four points A, B, C, and P , let D = AP ∩CB, E = BP ∩AC,

and F = CP ∩AB (Figure 3). Then AF
FB

= DC
BD

· EA
CE

. The ndg condition is that P is
not on the lines AB, AC, and BC. Triangle DEF is called the cevain triangle of
point P for triangle ABC.

LM (Menelaus’ Theorem) A transversal meets the three sides AB, BC, and CA of a

triangle ABC in F,D, and E respectively (Figure 4). Then AF
FB

= −DC
BD

· EA
CE

. The
ndg condition is that A, B, and C are not on line EF .

10

3 Multiple and Shortest Proof Generation

The area method in [3] is very effective: it can generate a proof for 85 percent of the 478
theorems within one second [3]. This makes it possible for us to generate many proofs for
the same geometry theorem efficiently.

3.1 Algebraic Computation Versus Synthetic Deduction

Wen-Tsun Wu has shown that algebraic computation is an efficient way of proving diffi-
cult geometry theorems [17, 18]. On the contrary, in the synthetic approaches, rarely is
algebraic computation used. In [10], it is reported that algebraic computation may cause
explosion of the search space, and hence should be avoided.

In our opinion, certain kind of algebraic computation is necessary for a powerful geome-
try theorem prover. One reason is that algebraic quantities can be manipulated efficiently
in computers. Another reason is that even the traditional geometry uses simple algebraic
computations in solving of moderately difficult geometry problems. For example, in Eu-
clid’s Elements, the theory of ratios is introduced before the discussion of similar triangles.
We believe that the right way of automatically producing readable proofs for geometry
theorems should be a combination of the algebraic computation with the synthetic de-
duction: using simple algebraic operations to achieve the efficiency and using synthetic
deduction to preserve the elegance of the traditional geometry proofs. Our area method
is such a combination.

In our approach based on geometric invariants, a proof is written as a series of successive
equations of algebraic expressions in geometry invariants and each algebraic expression
has the form

P1 · P2 · · ·Pn

R1 ·R2 · · ·Rm

where Pi and Ri are polynomials in geometry invariants. We do not expand the products
of the polynomials, because after using each rule it is often the case that some polynomials
occur in both the numerator and the denominator and hence can be canceled. This is one
of the reasons that our program may produce short proofs.

3.2 Multiple Proof Generation

We use two approaches to generate different proofs. First, for an algebraic quantity

α =
P1 · P2 · · ·Pn

R1 ·R2 · · ·Rm

we can use the rules to one or several of the polynomials in different orders. Even by
simply changing the order of applying the same set of rules to the algebraic quantities,

11

essentially different proofs may be generated, because when some polynomial, say P1,
becomes Q1 and R1 is unchanged, it might happen that Q1 = R1 could be canceled. If
we change R1 to S1 at the same time, the above reduction will not happen. See Example
3.2. In our prover, we use the following strategy to control the order of elimination, which
allows us to reach all combinations of different eliminations.

Control Strategy 2. To apply a set of rules to an algebraic expression

α =
P1 · P2 · · ·Pn

R1 ·R2 · · ·Rm

means either to apply one rule to one of the polynomials P1, · · · , Pn, R1, · · · , Rm, or to
apply one rule to one of the polynomials in the numerator and to apply another rule to
one of the polynomials in the denominator.

The second way of generating different proofs is more important. For each geometry
invariant, we may apply different rules to it to obtain different results. Using this strategy,
many essentially different proofs may be generated.

Besides Strategies 1 and 2, other efforts are made to reduce the production of too many
similar deductions.

Control Strategy 3. If two rules are used to eliminate the same point from both the
numerator and the denominator of an algebraic expression or used to change the types of
the geometry quantities, we will not use them separately to the same algebraic expression,
since the separate use of these rules will not lead to canceling of geometry quantities.

If not using Strategies 1, 2, and 3, even for a simple geometry theorem as the centroid
theorem, tens of thousands of proofs can be generated. We call this phenomenon proof
explosion.

Example 3.1 Continuing from Example 2.2.

If all the three control strategies (1, 2, and 3) are used, the prover gives 70 proofs with
proof lengths ranging from 4 to 7. Three of the proofs can be found in Examples 2.2, 2.5,
and 3.2.

If we relax the control by dropping control strategy 3, then the prover gives 212 proofs
with lengths ranging from 4 to 8.

If we further relax the control by dropping the control strategy 1, then the prover
gives 24360 proofs before it exhausts the memory of the computer. Much more proofs
are expected, because in the 24360 proofs there are only two proofs with length less than
or equal to 8, i.e., only two of the 215 proofs obtained by adopting strategies 1 and 2
occur in the 24360 proofs. Therefore, strategies 1,2, and 3 are quite effective to control
the number and the length of the proofs.

12

3.3 Search Strategies and Shortest Proof Generation

The default search strategy for the prover is depth-first. The advantage of using the depth-
first search is that we can obtain the first proof for a statement very fast (see Subsection
4.3). Since we are only interested in short proofs, the program allows the user to use a
bounded depth-first search to find the proofs with lengths less than a fixed number.

A related topic is the finding of shortest proofs for a geometry statement under certain
rules. If using the breadth-first search, the first available proof is naturally a shortest
proof. But if using the breadth-first search, for some difficult geometry problems, the
prover may exhaust the computer space before it obtains the first (shortest) proof. We
solve this problem by using the following natural technique: if the shortest proof is needed,
the prover will remember the length of a proof when it is generated and prohibit any
backtracking that can generate proofs with lengths longer than or equal to the recorded
length. Therefore, the prover will produce proofs with lengths decrease strictly and obtain
the shortest proof fast. For some really difficult theorems, this method can at least give
the shortest possible proofs within the limit of the computer time and space.

We also implement another approach: the depth-first iterative deepening search [11, 14].
In this approach, we first try to find a proof with depth 1, then depth 2, and so on by
repeated use of depth-first search. Korf [11] has shown that this approach is asymptotically
optimal among brute-force search strategies in terms of solution length, space, and time.
It also has the property that the first proof found is a shortest proof.

Our experience shows that both the above approaches to find shortest proofs are quite
successful: using the depth-first search, our prover fails to find all the proofs for some
examples after running 10 hours; but the prover does find the shortest proofs within
reasonable time using both approaches to find the shortest proof. See Section 6 in Part
II.

It is clear that the shortest proof generated by the above method is only the shortest
one relative to the control strategies used by us. An absolute shortest proof can be
obtained only if we drop all the control strategies which prevent the usage of certain
rules. But it is our belief that the control strategies adopted by us are reasonable and the
shortest proofs relative to these strategies are generally the absolute shortest ones. This
is partially supported by the data given in Example 3.1.

Example 3.2 Continuing from Example 3.1. The following proof for the centroid the-
orem is the shortest proof given by our prover. Note that in the proof, point E is not
eliminated by rules. Actually it is eliminated “accidentally” by deleting a common factor
SECA in the last step of the proof. This proof can not be generated by our previous area
method which eliminates a point at each step.

The Machine Proof

13

(−2) · GD
GB

(GD
GB

=
SEDC
−SECB

, because collinear(B,D,G), collinear(C,E,G). (L6))

=
2·SEDC
SECB

(SEDC = 1
−2

(SECA), because midpoint(D,C,A). (L5))
(SECB = −SECA, because midpoint(E,B,A). (L5))

=
SECA
SECA

(Simplification: removing the factor: SECA.)

= 1

Ndg conditions: B,A,C are not collinear.

4 Final Comments

4.1 Related Work

Producing readable proofs for geometry theorems goes back to as early as the late 50s in
the work [6, 7] by H. Gelertner, J.R. Hanson, and D.W. Loveland. The main tool in this
and the following work ([9, 12, 1, 5]) is the lemmas of triangle congruence. In our opinion,
while the technique of congruent triangles is very useful for proving many theorems of
high school level, it seems unable to prove a large number of moderately difficult theorems
for three reasons. First, the proofs for most of the moderate difficult geometry theorems
use tools other than the triangle congruence. Second, the triangle congruence techniques
are order or diagram related and there is still no efficient and strict way of dealing with
order problems. Third, even in those proofs based on triangle congruence, auxiliary points
or lines are often needed to form the required congruent triangles. As we know, finding
auxiliary lines and points is one of the most difficult steps in solving geometry problems,
and there is still no effective method for doing this automatically. A. Robinson suggested
that the auxiliary points and lines can be “constructed” as elements of the Herbrand
universe for the problem [13]. But no implementation based on this approach has been
given.

While the aim of some of the earlier work was more concerned with the means (a thor-
ough understanding of the organization of information processing activity in the theorem
proving and mathematical discovery) than with the end, the aim of our work is mainly
concerned with generation of short and elegant proofs of much more difficult geometry
theorems.

Our approach here is quite different from the algebraic methods which were based on
some general algebraic theories, mainly the characteristic set method and the Gröbner
basis method [17, 2, 8]. These algebraic methods have been used to prove astonishing
difficult geometry theorems. In essence, the above algebraic methods can be characterized

14

as to “trade qualitative difficulty for quantitative complexity” (words of H. Wang [15]),
that is the proofs are carried out by massive algebraic computation. Proofs produced
by these methods generally lose the elegant manner of the traditional geometry proofs.
The basic geometry quantity used in these algebraic methods is the coordinates of points,
whereas the basic quantities used in our method are geometric invariants, such as area,
ratio of two segments etc., which have clear geometric meanings. Also the proofs produced
by the new methods are generally shorter.

4.2 Produce Diagram Independent Proofs

The use of the numerical diagram as the semantic model has been the cornerstone of most
of the previous efforts to mechanize plane geometry theorem proving [7, 9, 1, 5]. There
are two benefits the early provers derive from a numerical diagram. (1) The diagram is
used as a filter to reject goals not consistent with its numerical representation. In other
words, the diagram is used as a counterexample. (2) More importantly, the numerical
diagram is used to determine order relations among points, or points and lines. These
relations are necessary for the prover to find a proof.

While as a counterexample the diagram is used to control the search space successfully,
the second benefit of determining order relation has some theoretical problems. Since
only one or several numerical examples are checked, the previous provers have the risk
of proving only some special cases of the theorem. Nevins [12] claimed that he has got
rid of this drawback by adding the ordering relations to the hypotheses of the statement.
Nevins’ approach makes the situation much clear, but still does not solve the problem
completely. First, to prepare for the order relation in the hypotheses, people still need to
consult a diagram. Second, for some geometry theorems it may happen that the order of
points in different diagrams of the same theorem may be different. For instance, there are
at least three diagrams with different order relations among points and lines for Ceva’s
theorem (Figure 5) and the Butterfly theorem (C, D,E, F are four points on a circle.
G = CF ∩DE, OG ⊥ MN . Show that MG = NG. Figure 6). Thus, a proof based on
a fixed order relation among points and lines is valid only for some special cases of the
statement.

A B

C

P

F

E

D

A B

C
P

F

E

D

A B

C

P

F

E

D

Figure 5

F

O

C E

D

G N

M

F

OC

E

D

G

N

M

F

O

CE

D

G NM

Figure 6The proofs produced by the area method and the method based on full-angles (in Part
II) are independent of the diagrams. For instance, the proofs for Ceva’s theorem and the
butterfly theorem (Examples 1 and 3 in the appendix) are valid for all diagrams. Also
see Example 2.1 in Part II of this series.

A key fact behind the success of our method is that the validity of most elementary

15

geometry theorems involving equalities only is independent of the relative order positions
of the points involved. Such geometry theorems belong to unordered geometry. This
idea is originated from Wu’s algebraic method of automated reasoning [18]. In unordered
geometry, the proofs of these theorems can be very simple. However, the ordinary proofs
of these theorems involve the order relation (among points and lines), hence are not only
complicated, but also not strict. The area method is actually for the unordered geometry.
For instance, rule L6 is valid for all the four possible diagrams (Figure 1) with different
order relations among the points.

By emphasizing diagram independent proofs, we do not diminish the importance of
the diagram in geometry theorem proving. By diagram independent proofs, we mean that
we can not use conditions coming from the numerical diagram. There are two kinds of
order relations. First, the order among some points are invariant. For instance, in Figure
6 point G is always between points M and N . In this case, a proof for this order relation
is needed. Second, the order relation among points may change. For instance, in Figure 6
point M may be in or outside segment CD. In this case, to obtain a diagram independent
proof, one either does not use this order relation or gives different proofs in different cases.
The machine proofs produced by the area method do not depend on these order relations
and thus are valid for all diagrams.

4.3 Comparison Between Different Search Strategies

The prover is implemented using the SB-Prolog [16] on a SPARC-10 Workstation. The fol-
lowing table contains some statistics for Example 2.2, and the examples in the Appendix.
We include six indexes for each theorem. Steps is the length or steps of the shortest proof
obtained. Maxt is the length of the maximal algebraic formula in the shortest proof.
Ftime is the time needed to obtain the first proof using the depth-first search. Mtime
is the time needed to obtain the shortest proof using the depth-first search. Btime is
the time needed to obtain the first proof using the depth-first iterative deepening search.
Allprs is the number of all the proofs generated using depth-first search.

Examples steps maxt ftime (secs) mtime (secs) btime (secs) allprs
2.2 4 1 0.79 1.87 2.37 70
1 5 1 0.61 1.42 2.72 2
2 4 2 0.51 5.68 1.7 168
3 11 1 0.66 1.65 24.63 4
4 3 1 0.85 3.47 0.69 16
5 4 1 0.57 2.06 1.25 16

16

References

[1] J. R. Anderson, C. F. Boyle, A. Corbett, & M. Lewis, The Geometry Tutor, in Proc.
of the IJCAI, Los Angeles, USA, 1985, p. 1–7.

[2] S. C. Chou, Mechanical Geometry Theorem Proving, D.Reidel Publishing Company,
Dordrecht, Netherlands, 1988.

[3] S. C. Chou, X. S. Gao, & J. Z. Zhang, Machine Proofs in Geometry, World Scientific,
1994.

[4] S. C. Chou, X. S. Gao, & J. Z. Zhang, Automated Production of Traditional Proofs
for Constructive Geometry Theorems, Proc. of Eighth IEEE Symposium on Logic in
Computer Science, p.48–56, IEEE Computer Society Press, 1993.

[5] H. Coelho & L. M. Pereira, Automated Reasoning in Geometry Theorem Proving
with Prolog, J. of Automated Reasoning, vol. 2, p. 329-390, 1986.

[6] H. Gelertner, Realization of a Geometry-Theorem Proving Machine, Computers and
Thought, eds. E.A. Feigenbaum, J. Feldman, p. 134-152, Mcgraw Hill.

[7] H. Gelertner, J.R. Hanson, and D.W. Loveland, Empirical Explorations of the
Geometry-theorem Proving Machine, Proc. West. Joint Computer Conf., 143-147,
1960.

[8] D. Kapur, Geometry Theorem Proving Using Hilbert’s Nullstellensatz, Proc. of SYM-
SAC’86, Waterloo, 1986, 202–208.

[9] P. C. Gilmore, An Examination of the Geometry Theorem Proving Machine, Artificial
Intelligence, 1, p. 171–187.

[10] K. R. Koedinger and J. R. Anderson, Abstract Planning and Perceptual Chunks:
Elements of Expertise in Geometry, Cognitive Science, 14, 511-550, (1990).

[11] R. E. Korf, Depth-first Interactive-deepening: an Optimal Admissible Tree Search,
Artificial Intelligence, 27, 1, p.97-109, 1985.

[12] A.J. Nevins, Plane Geometry Theorem Proving Using Forward Chaining, Artificial
Intelligence, 6, 1-23.

[13] A. Robinson, Proving a Theorem (as done by Man, Logician, or machine), in Automa-
tion of Reasoning, ed. by J. Siekmann and G. Wrightson, p.74-78, 1983, Springer-
Verlag.

[14] M. Stickel, A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler, J. of Automated Reasoning, 4(4), 353–380, 1985.

[15] H. Wang, A Variant to Turing’s Theory of Computing Machines, J. of ACM, vol. 4,
1957, p.63–92.

[16] D. S. Warren, F. Pereira, & S. K. Debray, The SB-Prolog System, Version 3.0 De-
partment of Computer Science, Univ. of Arizona.

[17] Wu Wen-tsün, On the Decision Problem and the Mechanization of Theorem in Ele-
mentary Geometry, Scientia Sinica 21(1978), 159–172; Also in Automated Theorem
Proving: After 25 years, A.M.S., Contemporary Mathematics, 29(1984), 213–234.

[18] Wu Wen-tsün, Basic Principles of Mechanical Theorem Proving in Geometries, Vol-
ume I: Part of Elementary Geometries, Science Press, Beijing (in Chinese), 1984.

[19] J. Z. Zhang & P. S. Cao, From Education of Mathematics to Mathematics for Edu-
cation, Sichuan Educational Publishing Inc., (in Chinese) 1988.

17

[20] J. Z. Zhang, S. C. Chou, & X. S. Gao, Automated Production of Traditional Proofs
for Theorems in Euclidean Geometry, I. The Hilbert Intersection Point Theorems,
TR-92-3, Department of Computer Science, WSU, 1992. (to appear in Annals of
Mathematics and Artificial Intelligence)

18

Appendix. Some Examples and Their Machine Produced Proofs

Example 1 (Ceva’s Theorem) For four points A, B, C, and P , let D = AP ∩ CB,

E = BP ∩ AC, and F = CP ∩ AB (Figure 3). Then AF
FB

· BD
DC

· CE
EA

= 1.

Point order: A, B, C, P , D, E, F .

Hypotheses: coll(A, F , B), coll(C, P , F), coll(B, D, C), coll(A, P , D), coll(C, E, A), coll(B, P , E).

Conclusion: AF
FB

· BD
DC

· CE
EA

= 1.

The Machine Proof
−EC

EA
/FB

FA
· DC

DB

(EC
EA

=
SPCB
−SPBA

, because collinear(A,C,E), collinear(B,E,P). (L6))

(FB
FA

=
SPCB
SPCA

, because collinear(A,B,F), collinear(C,F ,P). (L6))

=
SPCB ·SPCA

DC
DB

·SPCB ·SPBA

(Simplification: removing the factor: SPCB.)

=
SPCA

DC
DB

·SPBA

(DC
DB

=
SPCA
SPBA

, because collinear(B,C,D), collinear(A,D,P). (L6))

=
SPCA·SPBA
SPCA·SPBA

(Simplification: removing the factors: SPCA, SPBA.)

= 1

Ndg conditions: B,P ,A are not collinear; C,P ,A are not collinear; A,P ,B are not collinear.

Note that the first algebraic formula in the proof, −EC
EA

/FB
FA

· DC
DB

, is different from the
input. The reason is that in the input, the user can write the geometry quantities arbi-
trarily, while in the machine proof all geometry quantities are automatically transformed
into canonical form.

C

O

D

R

Q
P

Example 2 (Pascalian Axiom) Let A, B and C be three points on one line, and P ,
Q, and R be three points on another line. If AQ ‖ RB and BP ‖ QC then AP ‖ RC.

Point order: A, B, P , Q, C, R.

19

Hypotheses: coll(A, B, C), coll(P , Q, R), para(A, Q, B, R), para(B, P , C, Q).

Conclusion: para(C, R, A, P).

The Machine Proof
SCPA
SRPA

(SCPA = SCBP + SBAP = SQPB − SPBA, because collinear(A,B,C), CQ ‖ BA. (L10))
(SRPA = SRQA + SQPASQPA − SQBA, because collinear(P ,Q,R), RB ‖ QP . (L10))

=
SQPB−SPBA
SQPA−SQBA

(SQPB − SPBA = SQPAB. (L14))
(SQPA − SQBA = SQPAB. (L14))

=
SQPAB
SQPAB

(Simplification: removing the factor: SQPAB.)

= 1

Example 3 (Generalization of the Butterfly Theorem) The cross ratio of four points
on a circles with respect to any points on the circle is constant.

Point order: A, B, C, D, E, E1, F , G, F1, G1.

Hypotheses: cyclic(A, B, C, D, E, E1), coll(A, B, F , G, F1, G1), coll(F , E, D), coll(G, E, C),
coll(F1, E1, D), coll(G1, E1, C).

Conclusion: AF
BF

· BG
AG

= AF1

BF1
· BG1

AG1
.

The Machine Proof
F1B
F1A

· GB
GA

/G1B
G1A

· FB
FA

(F1B
F1A

=
SE1DB
SE1DA

, because collinear(A,B,F1), collinear(D,E1,F1). (L6))

(G1B
G1A

=
SE1CB
SE1CA

, because collinear(A,B,G1), collinear(C,E1,G1). (L6))

=
GB
GA

·SE1DB ·SE1CA

FB
FA

·SE1DA·SE1CB

(GB
GA

=
SECB
SECA

, because collinear(A,B,G), collinear(C,E,G). (L6))

(FB
FA

=
SEDB
SEDA

, because collinear(A,B,F), collinear(D,E,F). (L6))

=
SE1DB ·SE1CA·SEDA·SECB
SE1DA·SE1CB ·SEDB ·SECA

(SE1DB = E1D·E1B·DB
2δ

, because cyclic(E1,D,B). (L11))

(SE1DA = E1D·E1A·DA
2δ

, because cyclic(E1,D,A). (L11))

=
E1D·E1B·SE1CA·SEDA·SECB ·DB·δ
E1D·E1A·SE1CB ·SEDB ·SECA·DA·δ
(Simplification: removing the factors: E1D, δ.)

20

=
E1B·SE1CA·SEDA·SECB ·DB

E1A·SE1CB ·SEDB ·SECA·DA

(SE1CA = E1C·E1A·CA
2δ

, because cyclic(E1,C,A). (L11))

(SE1CB = E1C·E1B·CB
2δ

, because cyclic(E1,C,B). (L11))

=
E1C·E1B·E1A·SEDA·SECB ·DB·CA·δ
E1C·E1B·E1A·SEDB ·SECA·DA·CB·δ
(Simplification: removing the factors: E1C, E1B, E1A, δ.)

=
SEDA·SECB ·DB·CA

SEDB ·SECA·DA·CB

(SEDA = ED·EA·DA
2δ

, because cyclic(E,D,A). (L11))

(SEDB = ED·EB·DB
2δ

, because cyclic(E,D,B). (L11))

=
ED·EA·SECB ·DB·DA·CA·δ
ED·EB·SECA·DB·DA·CB·δ
(Simplification: removing the factors: ED, DB, DA, δ.)

=
EA·SECB ·CA

EB·SECA·CB

(SECB = EC·EB·CB
2δ

, because cyclic(E,C,B). (L11))

(SECA = EC·EA·CA
2δ

, because cyclic(E,C,A). (L11))

= EC·EB·EA·CB·CA·δ
EC·EB·EA·CB·CA·δ
(Simplification: removing the factors: EC, EB, EA, CB, CA, δ.)

= 1

Ndg conditions: D,E1,A are not collinear; C,E1,A are not collinear; C,E,A are not collinear;
D,E,A are not collinear.

C 1B

1CP

Q

B

C

A

D

Example 4 (Harmonic Set) Let L be the intersection of AB and CD, K the intersec-
tion of AD and BC, F the intersection of BD and KL, and G the intersection of AC
and KL. Then LF

KF
= LG

GK
.

The Machine Proof
−FK

FL
/GK

GL

(FK
FL

= −KA
DA

/ LC
DC

, because FCA is the cevain triangle of point B for KLD (the Ceva
Theorem).)

(GK
GL

= KA
DA

/ LC
DC

, because GCA is a transversal for triangle KLD (the Menelaus Theorem).)

21

= KA
DA

· LC
DC

/KA
DA

· LC
DC

(Simplification: removing the factors: KA
DA

, LC
DC

.)

= 1

Ndg conditions: B,K,L are not collinear; K,G,C are not collinear; D,G,C are not collinear.

Example 5 (Desargues’ Theorem) Given two triangles ABC, A1B1C1, if the three
lines AA1, BB1, CC1 meet in a point, S, the three points P = BC∩B1C1, Q = CA∩C1A1,
R = AB ∩ A1B1 lie on a line.

Point order: O, A, B, C, A1, B1, C1, P , Q, S, R.

Hypotheses: coll(A1, A, O), coll(B1, B, O), coll(C1, C, O), coll(B, C, P), coll(B1, C1, P),
coll(A, C, Q), coll(A1, C1, Q), coll(A, B, S), coll(A1, B1, S), coll(P , Q, R), coll(A, B, R).

Conclusion: AS
BS

= AR
BR

.

The Machine Proof
RB
RA

/SB
SA

(RB
RA

= QC

QA
/PC

PB
, because RQP is a transversal for triangle BAC (the Menelaus Theorem).)

(SB
SA

= B1B
B1O

/A1A
A1O

, because SA1B1 is a transversal for triangle BAO (the Menelaus Theo-

rem).)

= QC

QA
· A1A

A1O
/PC

PB
· B1B

B1O

(QC

QA
= C1C

C1O
/A1A

A1O
, because QA1C1 is a transversal for triangle CAO (the Menelaus Theo-

rem).)

(PC
PB

= C1C
C1O

/B1B
B1O

, because PB1C1 is a transversal for triangle CBO (the Menelaus Theo-

rem).)

= C1C
C1O

· B1B
B1O

· A1A
A1O

/C1C
C1O

· B1B
B1O

· A1A
A1O

(Simplification: removing the factors: C1C
C1O

, B1B
B1O

, A1A
A1O

.)

= 1

Ndg conditions: B,R,Q are not collinear; C,R,Q are not collinear; B,S,A1 are not collinear;
O,S,A1 are not collinear; C,Q,A1 are not collinear; O,Q,A1 are not collinear; C,P ,B1 are not
collinear; O,P ,B1 are not collinear.

22

