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Abstract–A new evolutionary programming algo-
rithm (NEP) using the non-uniform mutation op-
erator instead of Gaussian or Cauchy mutation op-
erators is proposed. NEP has the merits of “long
jumps” of the Cauchy mutation operator at the
early stage of the algorithm and “fine-tunings” of
the Gaussian mutation operator at the later stage.
Comparisons with the recently proposed sequen-
tial and parallel evolutionary algorithms are made
through comprehensive experiments. NEP signif-
icantly outperforms the adaptive LEP for most of
the benchmarks. NEP outperforms some parallel
GAs and performs comparably to others in terms
of the solution quality and algorithmic robustness.
We give a detailed theoretical analysis of NEP. The
probability convergence is proved. The expected
step size of the non-uniform mutation is calculated.
Based on this, the key property of NEP with “long
jumps” at the early stage and “fine-tunings” at the
later stage is proved strictly. Furthermore, the fea-
ture at the whole process of the algorithm, espe-
cially at the middle stage of it is appended.

Index Terms: Evolutionary programming, genetic
algorithm, non-uniform mutation, global optimiza-
tion, probability convergence, theoretical analysis.

I Introduction

INSPIRED by the biological evolution and natural se-
lection, intelligent computation algorithms are proposed
to provide powerful tools for solving many difficult prob-
lems. Genetic algorithms (GAs) [2, 3], evolutionary strate-
gies (ESs) [4], and the evolutionary programming (EP)
[5, 21] are especially noticeable among them. In GAs, the
crossover operator plays the major role and the mutation
is always seen as an assistant operator. In ESs and EP,
however, the mutation has been considered as the main
operator. GAs usually adopt a high crossover probabil-
ity and a low mutation probability, while ESs and EPs

∗ Partially supported by a National Key Basic Research Project
of China and by a USA NSF grant CCR-0201253.

apply mutation to every individual. In binary GAs, one,
two, multi-point, or uniform crossover and uniform mu-
tation [1, 3] are often used. Some new mutation opera-
tors are proposed recently, such as the { frame-shift} and
{translocation} operators [22], the transposition operator
[18], etc. For real-coded GAs, the non-uniform mutation
operator [1] is introduced. Besides the Gaussian mutation
[5, 21], self-adaptation mutations [11, 12], self-adaptation
rules from ESs [13], Cauchy [14] and Lévy-based [15] muta-
tions are also incorporated into evolutionary programming.
These new operators greatly enhance the performance of
the algorithms.

In this paper, a new evolutionary programming algo-
rithm (abbr. NEP) using the non-uniform mutation instead
of Gaussian or Cauchy mutations is proposed. This work
is inspired by the following observations. First, Yao et al
[14, 15] argued that “higher probability of making longer
jumps” is a key point that FEP and LEP perform better
than CEP. However, “longer jumps” are detrimental if the
current point is already very close to the global optimum.
Second, the non-uniform mutation operator introduced in
[1] has the feature of searching the space uniformly at the
early stage and very locally at the later stage. In other
words, the non-uniform mutation has the common merits
of “higher probability of making far long jumps” at the
early stage and “much better local fine-tuning ability” at
the later stage. In [1], the non-uniform mutation operator
is used in GAs by Michalewicz. As we mentioned before,
the mutation operator is generally seen as an assistant op-
erator in GAs. While in NEP, the mutation operator is
treated as the major operator.

At the initial stage of NEP, the jumping steps are so long
that they almost cover the whole search space (Section IV-
A). The greedy idea and the idea of mutating a single com-
ponent of the individual vector rather than modifying all
the components are incorporated into the NEP algorithm
in order to avoid possible random jumps and to ensure the
algorithm “stays” at the promising area just found by the
search engine.

Comparisons with the adaptive LEP demonstrate that

-1-



NEP greatly outperforms the adaptive LEP for most of
the separable and nonseparable, unidomal and multimodal
benchmarks. Comparisons with five parallel genetic al-
gorithms on high-dimensional benchmarks are also made.
NEP performs much better than R-DC and R-DS, compa-
rable to ECO-GA, and slightly worse than CHC-GA and
GD-RCGA. Detailed introduction on these parallel GAs
can be found in [6].

Convergence is an important issue in the theoretical
study of EAs and many nice results [7, 8, 9, 10] have been
obtained. Based on the Markov process theory, we prove
that NEP with greedy selection is convergent in probability
one. Theoretical analysis on how NEP works is also given
based on the theories of stochastic process. First, the ex-
pected step size of the non-uniform mutation is calculated.
Its derivative with respect to the generation variable t is less
than zero, which implies the monotonously decreasing ex-
ploring region with the progress of the algorithm. Second,
we obtain a quantitative description of the step size through
analyzing the step size equation. Theoretical analysis also
strongly supports the fact that NEP is not sensitive to the
search space size [31].

According to Michalewicz [1], the parameter b in
Eq.(2) of the non-uniform mutation determines the non-
uniformity. Through theoretical analysis, we show that
when b becomes larger, the step size of the mutation de-
ceases faster. So an adaptive NEP is proposed based on
different values of b. We apply several different mutations
with different values of b for a parent and choose the best
offspring for the next generation.

The rest of the paper is organized as follows. In Section
II, we present the NEP algorithm and prove its convergence
property. Comprehensive experiments are done to compare
NEP with the recently proposed adaptive LEP [15] and
five parallel genetic algorithms [6] in Section III. In Section
IV, further theoretical analysis on the executing process of
NEP is given. An adaptive NEP algorithm is proposed in
Section V. In Section VI, conclusions are reached.

II Non-uniform Evolutionary Pro-
gramming

In this section, we introduce an evolutionary programming
algorithm based on the non-uniform mutation operator and
prove its probability convergence.

A Non-uniform Mutation

Michalewicz [1] proposed a dynamical non-uniform muta-
tion operator to reduce the disadvantage of random muta-
tion in the real-coded GA. This new operator is defined as
follows.

For each individual Xt
i in a population of t-th generation,

create an offspring Xt+1
i through non-uniform mutation as

follows: if Xt
i = {x1, x2, . . . , xm} is a chromosome (t is the

generation number) and the element xk is selected for this
mutation, the result is a vector Xt+1

i = {x′1, x′2, . . . , x′m},
where

x′k =
{

xk + ∆(t, UB − xk), if a random ξ is 0
xk −∆(t, xk − LB), if a random ξ is 1 (1)

and LB and UB are the lower and upper bounds of the
variables xk. The function ∆(t, y) returns a value in the
range [0, y] such that ∆(t, y) approaches to zero as t in-
creases. This property causes this operator to search the
space uniformly initially (when t is small), and very locally
at later stages. This strategy increases the probability of
generating a new number close to its successor than a ran-
dom choice. We use the following function:

∆(t, y) = y · (1− r(1− t
T )b

), (2)

where r is a uniform random number from [0, 1], T is the
maximal generation number, and b is a system parame-
ter determining the degree of dependency on the iteration
number.

B Simple Crossover in Evolutionary Pro-
gramming

Similar to the binary genetic algorithm, we adopt the simple
crossover. Let m be the dimension of a given problem and
components of chromosomes X,Y are all float numbers.
Choose a pair of individuals:

X = (x1, . . . ,xpos1 , . . . ,xpos2 , . . . , xm)

Y = (y1 . . . ,ypos1 , . . . ,ypos2 , . . . , ym)

and randomly generate a decimal r. If r < pc (crossover
probability), apply simple two-point crossover to them as
follows. Generate two random integers pos1, pos2 in the
interval [1,m]. The components of two individuals between
the numbers pos1 and pos2 will be exchanged. Then the
new individuals are generated as follows.

X′ = (x1, . . . ,ypos1 , . . . ,ypos2 , . . . , xm)

Y′ = (y1, . . . ,xpos1 , . . . ,xpos2 , . . . , ym)

C Greedy Selection in NEP

We first give the definition of neighborhood of an indi-
vidual.

Definition: [31] Given a vector X = (x1, . . . , xi, . . . , xm)
(m is the dimension of vectors), we call X′ is its neighbor,
if and only if one of its component is changed and other
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components remain unchanged. The neighborhood N of a
vector X consists of all its neighbors. That is,

N = {X′|X′ is a neighbor of X}. (3)

Different from the traditional local search which performs
greedy local search until a local optimum is obtained, we
only mutate every component one time in certain prob-
ability for each component of every real-coded individual
(vector). The current individual will be replaced by the
mutated one only when the new one is not worse than the
current individual. This strategy can overcome the plateaus
of constant fitness problem as indicated by Jansen and We-
gener [17]. Such a greedy selection procedure for a current
individual X = (x1, . . . , xi, . . . , xm) is as follows.

For i from 1 to the functional dimension m

Mutate the ith component xi of X and obtain
a new vector X′ using Eqs.(1, 2);
if fitness of X′ is not worse than that of X then

X′ becomes the current individual;

End for.

D Non-Uniform Evolutionary Program-
ming

For a function f(X), NEP will find an

X∗ such that ∀ X, f(X∗) ≤ f(X). (4)

The NEP algorithm adopts real encoding, two-point
crossover and non-uniform mutation. The procedure of
NEP is given as follows.

Procedure of NEP
1) Generate the initial population consisting of n indi-

viduals, each of which, X0
i , has m independent com-

ponents, X0
i = (x1, x2, . . . , xm).

2) Evaluate each individual based on the objective func-
tion, f(X0

i ).
3) Apply two-point crossover to the current population.
4) For each parental individual Xt

i = (xt
1, . . . , x

t
m).

4.1) for each component xt
j constructing xt′

j using
Eq.(1,2) (new individual denoted as Xt′

i )
4.1.1) If f(Xt′

i ) ≤ f(Xt
i )

Xt′
i replaces Xt

i as the current individual.
5) Conduct pairwise comparison over the offspring pop-

ulation. For each comparison, q individuals are chosen
uniformly at random from the offspring population.
The fittest individual is put into the next generation.

6) Repeat steps 3-5, until the stopping criteria are satis-
fied.

End of Procedure

The crossover is firstly applied to the population in a
probability 0.4, the non-uniform mutation operator fol-
lowed at a mutation probability 0.6. The summation of

the mutation and crossover probabilities is kept as 1. Thus
NEP will generate equal number of offsprings in the sense
of probability comparing with other EPs. The parameter b

in NEP remains unchanged during the evolution.

E Analysis on the Convergence of NEP

In this section, the convergence of NEP will be proved based
on the stochastic process theory. Since NEP mutates single
component only in once mutation operation, we only con-
sider the one dimensional case, i.e., n = 1. In this case,
there is no crossover and we need only consider the non-
uniform mutation operation. We divide the objective func-
tions into two classes in the following analysis.

1) Unimodal Functions

We assume that f(x) has a unique minimal value at x∗.
In Fig.(I), let x0 be one initial solution, x′0 another initial
solution lying between x∗ and x0, x0 a number satisfying
f(x0) = f(x0) and x0 6= x0, and ε an arbitrary small pos-
itive number. Without loss of generality, we assume that
variable x lies on the right side of x∗ and x lies on the left
side.

Figure I: Analysis on the Unimodal Function

Based on Eq.(1, 2) and via NEP algorithm, we have

x1 =





x0, if ξ=0, or if ξ=1 and x0 −∆(1, x0 − a)
≤ x0

x0 −∆(1, x0 − a), if ξ=1 and x0 −∆(1, x0

−a) > x0

x′1 =





x′0, if ξ=0, or if ξ=1 and x′0 −∆(1, x′0 − a)
≤ x′0

x′0 −∆(1, x′0 − a), if ξ=1 and x′0 −∆(1, x′0
−a) > x′0

Lemma 1: Let p1 = P{x1 /∈ (x∗ − ε, x∗ + ε)}, p
′
1 =

P{x1
′ /∈ (x∗ − ε, x∗ + ε)}. If x∗ < x

′
0 < x0 then p

′
1 < p1.

Similarly, if x0 < x
′
0 < x∗, p

′
1 < p1 also holds.
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Proof: We have

p1 = 1− P{x1 ∈ (x∗ − ε, x∗ + ε)}
= 1−P{ξ = 1, x∗− ε < x0−∆(1, x0− a) < x∗ + ε)}
= 1− 1

2P{x∗ − ε < x0 −∆(1, x0 − a) < x∗ + ε)}
Similarly,

p
′
1 = 1− 1

2P{x∗ − ε < x
′
0 −∆(1, x

′
0 − a) < x∗ + ε)}

Let q = P{x∗ − ε < x0 −∆(1, x0 − a) < x∗ + ε)}
q
′
= P{x∗ − ε < x

′
0 −∆(1, x

′
0 − a) < x∗ + ε)}

Thus it is enough to show that

q < q
′

(5)

By Eq.(2) we have

q = P{x∗ − ε < x0 −∆(1, x0 − a) < x∗ + ε)}
= P{x∗ − ε < x0 − (x0 − a)(1− r(1− 1

T )b

) < x∗ + ε)}
= P{(x∗−a−ε

x0−a )
1
m < r < (x∗−a+ε

x0−a )
1
m }

= (
x∗ − a + ε

x0 − a
)

1
m − (

x∗ − a− ε

x0 − a
)

1
m (6)

where m = (1− 1
T )b

Similarly, we have

q
′
= P{x∗ − ε < x

′
0 −∆(1, x

′
0 − a) < x∗ + ε)}

= (
x∗ − a + ε

x
′
0 − a

)
1
m − (

x∗ − a− ε

x
′
0 − a

)
1
m (7)

From Eq. (6, 7) and let q subtracts q′, we may derive
Eq. (5) and thus the correctness of the Lemma.

Since x0 is a given initial solution (individual), we can
assume that x0 > x∗. Let

p+
1 := P{x0 is the intial solution and x1 /∈ (x∗− ε, x∗+ ε)}

p−1 := P{x0 is the intial solution and x1 /∈ (x∗− ε, x∗+ ε)}
Then p1 := p+

1 (or p−1 )

For n ≥ 2, we define

p+
n := P{xn−1 > x∗, xn /∈ (x∗ − ε, x∗ + ε)}

p−n := P{xn−1 < x∗, xn /∈ (x∗ − ε, x∗ + ε)}
pn := p+

n + p−n

Theorem 2: For any ε > 0, we have

lim
n→∞

pn = 0

Proof: By the description of NEP, it is easy to know that
the stochastic process {xi, i = 0, 1, 2, · · ·} is a Markov pro-
cess. By the property of conditional expectation, Markov

property and Lemma 1, we can obtain that
p2 = P{x2 /∈ (x∗ − ε, x∗ + ε)}

= E[I{x2 /∈(x∗−ε,x∗+ε)}]

= E(E[I{x2 /∈(x∗−ε,x∗+ε)}|x1])

= E(Ex1 [I{x1 /∈(x∗−ε,x∗+ε)}])

= Ex1 [I{x1 /∈(x∗−ε,x∗+ε)}] · P{x1 /∈ (x∗ − ε, x∗ + ε)}
≤ max{p+

1 , p−1 } · p1

p3 = P{x3 /∈ (x∗ − ε, x∗ + ε)}
= E[I{x3 /∈(x∗−ε,x∗+ε)}]

= E(E[I{x3 /∈(x∗−ε,x∗+ε)}|x2])

= E(Ex2 [I{x3 /∈(x∗−ε,x∗+ε)}])

= Ex2 [I{x1 /∈(x∗−ε,x∗+ε)}] · P{x2 /∈ (x∗ − ε, x∗ + ε)}
≤ max{Ex0 [I{x1 /∈(x∗−ε,x∗+ε)}], Ex0 [I{x1 /∈(x∗−ε,x∗+ε)}]}
× p2

≤ (max{p+
1 , p−1 })2 · p1

By induction we have

pn = P{xn /∈ (x∗ − ε, x∗ + ε)}
≤ (max{p+

1 , p−1 })n−1 · p1

Obviously, 0 < p+
1 , p−1 < 1, so

lim
n→∞

pn = 0

The proof is complete.

By the greedy selection of NEP, it is easy to know that

pn = P{xi /∈ (x∗ − ε, x∗ + ε), i = 1, 2, . . . , n}
So Theorem 2 implies that for any ε > 0 we have

lim
n→∞

(1− P{xi /∈ (x∗ − ε, x∗ + ε), i = 1, . . . , n}) = 1

i.e.,

lim
n→∞

P{∃ i = 1, . . . , n, s.t. xi ∈ (x∗ − ε, x∗ + ε)} = 1 (8)

Eq.(8) indicates that for any ε > 0, {xi}∞i=1 is to enter
the domain (x∗ − ε, x∗ + ε) almost surely, and so {xi}∞i=1

converges to x∗ almost surely.

2) Multimodal Functions

We assume that g(x) is a multimodal function with a min-
imal value at x∗. Without loss of generality, we assume
that g has only one global optimum. Let x0, x

′
0 be initial

solutions (individuals).

Without loss of generality, suppose x0, x
′
0 are two points

on the left side of point “c” as in Fig. (II). Denote the
offsprings of them as x1, x

′
1 respectively. Now we will con-

sider how to choose the interval points “c” and “d” which
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Figure II: Analysis on the Multimodal Function

satisfy the following conditions. First, g(x) is unimodal in
the subinterval of [c, d]. Second, we assume g(c) = g(d).
Third, there is no other local optimal region below the line
through g(c) and g(d) on function g(x). We have the fol-
lowing lemma.

Lemma 3: Let

p1 = P{x1(ω) /∈ (c, d), x0 is the initial point},
p
′
1 = P{x1

′(ω) /∈ (c, d), x
′
0 is the initial point}.

Then if x0 < x
′
0 we have p

′
1 < p1.

Proof: We have

p1 = 1− P{x1 ∈ (c, d), x0 is the initial point}
= 1− P{ξ = 0, c < x0 + ∆(1, b− x0) < d}
= 1− 1

2P{c < x0 + ∆(1, b− x0) < d}
Similarly,

p
′
1 = 1− 1

2P{c < x
′
0 + ∆(1, b− x

′
0) < d}

The proof is similar with the Lemma 1.

Remark: This means that if the initial point is closer to
(c, d), the probability that its offspring enters (c, d) is larger.
Next, we want to establish a similar result as Theorem 2.

Let x0 be a given initial individual as indicated in
Fig.(II). Define

A0 := {u ∈ [a, b] : g(u) = g(x0)}
x−0 := min{u ∈ A0 : u < c}
x+

0 := max{u ∈ A0 : u > d}.
For example, x−0 = x1

0, x
+
0 = x4

0 in Fig. (II). For n ≥ 1,
we define

An(ω) := {u ∈ [a, b] : g(u) = g(xn(ω))},
x−n := min{u ∈ An(ω) : u < c},
x+

n = max{u ∈ An(ω) : u > d}.

Let p−1 := P{x1(ω) /∈ (c, d), x−0 is the initial point};
p+
1 := P{x1(ω) /∈ (c, d), x+

0 is the initial point};
For n ≥ 1 (all the following equations should be under-

stood under the condition that x0 is the beginning point),
we define

pn = P{xn(ω) /∈ (c, d)}.
Theorem 4: We have that

lim
n→∞

pn = 0

Proof. By the procedure of NEP, we know that the
stochastic process {xi, i = 0, 1, · · ·} is a Markov process. By
the property of conditional expectation, Markov property
and Lemma 3 we can obtain that

p2 = P{x2(ω) /∈ (c, d)}
= E[I{x2(ω)/∈(c,d)}]

= E(E[I{x2(ω)/∈(c,d)}|x1(ω)])

= E(Ex1(ω)[I{x1(ω)/∈(c,d)}])

= Ex1(ω)(I{x1(ω)/∈(c,d)}) · I{x1(ω)/∈(c,d)} +

Ex1(ω)(I{x1(ω)/∈(c,d)}) · I{x1(ω)∈(c,d)}

= Ex1(ω)(I{x1(ω)/∈(c,d)}) · I{x1(ω)/∈(c,d)}

≤ max{Ex−0 (I{x1(ω)/∈(c,d)}), Ex+
0 (I{x1(ω)/∈(c,d)})}

×P{x1(ω) /∈ (c, d)}
≤ p1 ·max{p+

1 , p−1 }
Similarly we have

p3 = P{x3(ω) /∈ (c, d)}
= E[I{x3(ω)/∈(c,d)}]

= E(E[I{x3(ω)/∈(c,d)}|x2(ω)])

= E(Ex2(ω)[I{x1(ω)/∈(c,d)}])

= Ex2(ω)(I{x1(ω)/∈(c,d)}) · I{x2(ω)/∈(c,d)} +

Ex2(ω)(I{x1(ω)/∈(c,d)}) · I{x2(ω)∈(c,d)}

= Ex2(ω)(I{x1(ω)/∈(c,d)}) · I{x2(ω)/∈(c,d)}

≤ max{Ex−1 (ω)(I{x1(ω)/∈(c,d)}), Ex+
1 (ω)(I{x1(ω)/∈(c,d)})}

×P{x2(ω) /∈ (c, d)}
≤ max{Ex−0 (I{x1(ω)/∈(c,d)}), Ex+

0 (I{x1(ω)/∈(c,d)})} × p2

≤ p1 · (max{p+
1 , p−1 })2

By induction we have

pn := P{xn(ω) /∈ (c, d)}
≤ p1 · (max{p+

1 , p−1 })n−1

By the procedure of NEP, we know that 0 ≤ p+
1 , p−1 < 1

(if x0 ∈ (c, d), then obviously we have p+
1 = p−1 = 0). Thus
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we have
lim

n→∞
pn = 0.

The proof is complete.

By greedy selection of NEP, it is easy to know that pn =
P{xi(ω) /∈ (c, d), i = 1, 2, · · · , n}. And by Theorem 4, we
know that

lim
n→∞

(1− P{xi(ω) /∈ (c, d), i = 1, 2, · · · , n}) = 1,

i.e.

P{∃i = 1, 2, · · · , n, such that xi(ω) ∈ (c, d)} = 1

Obviously, the function (g(x), x ∈ [c d]) is a unimodal func-
tion. So from Theorem 2 we know that

P{ω : xi(ω) converges to x∗} = 1 (9)

Remark: Similarly, it is easy to reach the same conclu-
sions for the high-dimensional problems because algorithm
NEP only mutates one component of a vector (individual)
per mutation operation.

III Experiments and Analysis

In our algorithm, we set the simple crossover probabil-
ity pc = 0.4 and the non-uniform mutation probability
pm = 0.6 in all cases. Following Michalewicz [1], the pa-
rameter b in Eq.(2) is set to be 5. The population size and
the maximal evolutionary generation numbers will vary for
the comparing algorithms. To make the comparison fair in
terms of computing time, the population size of NEP is re-
duced proportionally according to the problem dimensions,
since each individual in NEP generates m (dimension of
function) offsprings. For example, for a four dimensional
function, if the population size of CEP is 100 then the pop-
ulation size of NEP will be 25. It is worth pointing out
that NEP actually uses less computing time, because oper-
ations, such as selection, use less time in a small population.
The programs are implemented with the C programming
language.

A Comparison with Adaptive LEP [15]

Yao [14] et al. proposed an evolutionary programming algo-
rithm (FEP) based on the Cauchy probability distribution.
Lee and Yao [15] proposed an evolutionary programming
algorithm (LEP) based on the Lévy probability distribu-
tion. The Cauchy probability distribution is a special case
of the Lévy probability distribution and the adaptive LEP
performs at least as well as the nonadaptive LEP with a
fixed α [15]. So we just compare our algorithm with the
adaptive LEP.

1) Benchmark Functions and Parameters Setting

We use the same test functions with the adaptive LEP
which can be found in Table I or [15]. The large number
of benchmarks is necessary as Wolpert and Macready [19]
have shown that under certain assumptions no single search
algorithm is best on average for all problems. If the num-
ber of benchmarks is too small, it would be very difficult to
make a generalized conclusion and have the potential risk
that the algorithm is biased toward the chosen problems.
Among them, f1, f2, f3 are high-dimension and unimodal
functions, f4, . . . , f9 are mutilmodal functions where the
number of local minims increases exponentially with the
augment of the problem dimensions and are the most dif-
ficult class of problems for many optimization algorithms
[14]. f10, . . . , f14 are low-dimensional functions which only
have a few local minima. Some properties of several bench-
marks are listed below [6].

• f3 is a continuous and unimodal function, with the
optimum located in a steep parabolic valley with a
flat bottom and the nonlinear interactions between the
variables, i.e., it is nonseparable [20]. These features
make the search direction have to continually change to
reach the optimum. Experiments show that it is even
more difficult than those multimodal benchmarks.

• The difficulty of f2 concerns the fact that searching
along the coordinate axes only gives a poor rate of
convergence since its gradient is not oriented along the
axes. It presents similar difficulties with f3, but its
valley is narrower.

• f7 is difficult to optimize because it is nonseparable
and the search algorithm has to climb a hill to reach
the next valley [20].

The maximal evolutionary generation numbers are set to
be the same to adaptive LEP (1500 for functions f1, · · · , f9,
30 for f10, f11 and 100 for f12, · · · , f14). Due to the popula-
tion size of the adaptive LEP being 100 and each individual
generates four offsprings at every generation, the popula-
tion size of the adaptive LEP is equivalent to 400. Conse-
quently, we set the population size of NEP to be an integer
less than 400

Dimensions of Problem (dimension is 30 for high di-
mensional functions) which are 13 for functions f1, . . . , f9,
200 for f10, f11 and 100 for f12, f13, f14. A computational
precision of 50 digits after point is used in NEP. So a result
being 0 means that it is less that 10−50 in NEP and vice
versa in this subsection. We do not find the computational
precision demand of [15].

2) Performance Comparison and Analysis

Comparisons between NEP and the adaptive LEP are given
in Figures III-V and Table II which includes the average re-
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Benchmark Functions n D fmin

high-dimension unimodal functions

f1 =
n∑

i=1

x2
i 30 [-100, 100]n 0

f2 =
n∑

i=1

(
i∑

j=1

xj)2 30 [-100, 100]n 0

f3 =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] 30 [-30, 30]n 0

high-dimension multimodal functions with many local minima

f4 = −
n∑

i=1

(xi sin(
√
|xi|)) 30 [500, 500]n -12569.48

f5 =
n∑

i=1

[x2
i − 10 cos(2πxi) + 10] 30 [-5.12, 5.12]n 0

f6 = −20 exp[−0.2

√
1
n

n∑
i=1

x2
i ]−

exp( 1
n

n∑
i=1

cos(2πxi)) +20+e 30 [-32, 32]n 0

f7 = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
)+1 30 [-600, 600]n 0

f8 = π
n{10 sin2(πyi) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)]

+(yn − 1)2}+
n∑

i=1

u(xi, 10, 100, 4), yi = 1 + 1
4 (xi + 1) 30 [-50, 50]n 0

f9 = 0.1{10 sin2(3πx1) +
n−1∑
i=1

(xi − 1)2[1 + 10 sin2(3πxi+1)]

+(xn − 1)2[1 + sin2(2πxn)]}+
n∑

i=1

u(xi, 5, 100, 4) 30 [-50, 50]n 0

low-dimension functions with only a few local minima
f10 = (4− 2.1x2

1 + 1
3x4

1)x
2
1 + x1x2 + (−4 + 4x2

2)x
2
2 2 [-5, 5]n -1.0316

f11 = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1−

14x2 + 6x1x2 + 3x2
2)]× [30 + (2x1 − 3x2)2×

(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)] 2 [-2, 2]n 3

f12 = −
5∑

j=1

[
4∑

i=1

(xi − aij)2 + cj ]−1 4 [0, 10]n -10.1532

f13 = −
7∑

j=1

[
4∑

i=1

(xi − aij)2 + cj ]−1 4 [0, 10]n -10.40282

f14 = −
10∑

j=1

[
4∑

i=1

(xi − aij)2 + cj ]−1 4 [0, 10]n -10.53628

Table I: Benchmark functions used by LEP & NEP
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sult for 50 independent runs. Figures III-V show the evolu-
tionary behaviors of the best and average fitness versus the
evolutionary generations. Due to the small population size
(13) of high-dimensional functions, the plots of the average
and best fitness nearly completely overlap each other.
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Figure III: Best and average fitness of unimodal functions
vs evolutionary generation

Figure IV showing strong exploring abilities for multi-
modal functions with high-dimensions and very large search
spaces, NEP can find the potential area quickly in the ini-
tial stage of algorithm. The results approach to 0.1-0.001
after 200 generations. In the middle stage of the algorithm,
a smooth behavior is indicated when it maybe patiently lo-
cate the position of the global optimum. A fast convergent
speed once again appears in the later stage of the algo-
rithm, which once again illuminate the fine-tuning ability
of the non-uniform mutation operator. For function f7, at
about the last ten generations, the algorithm reached the
minimal value. These results show that NEP has the merits
of long jumping (initial stage) and fine-tuning (later stage)
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Figure IV: Best and average fitness of multimodal functions
vs evolutionary generation

abilities. For unimodal functions, NEP shows similar be-
haviors as the multimodal functions observed from Fig. III
excluding function f3. Although f3 is the most difficultone,
NEP still outperforms the adaptive LEP as Table II shows.

Table II shows that NEP is only outperformed by the
adaptive LEP on the low dimensional multimodal functions
with only a few local minima. For the high dimensional
functions with the unimodal and multimodal, NEP is bet-
ter in terms of the convergent ability and robustness. What
is more, this encouraging result is achieved without intro-
ducing any extra parameters and no extra computation cost
comparing with CEP.

Function f3 is nonseparable [20] whose result is the worst
one comparing with the results of other functions for NEP.
Even though, it still outperforms the adaptive LEP in terms
of the solution quality and the robustness. It is notewor-
thy that NEP nearly finds the global optima for all the
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Population Size Mean Best Std Dev
f NEP Adaptive LEP NEP Adaptive LEP NEP Adaptive LEP
1 13 100 3.66e-19 6.32e-4 1.65e-18 7.6e-5
2 13 100 1.62e-5 4.18e-2 8.34e-6 5.97e-2
3 13 100 1.35e1 4.34e1 7.91 3.15e1
4 13 100 -12569.49 -11469.2 5.15e-12 5.82e1
5 13 100 5.68e-14 5.85e0 0 2.07
6 13 100 1.07e-11 1.9e-2 2.93e-11 1.0e-3
7 13 100 9.94e-3 2.4e-2 9.39e-3 2.8e-2
8 13 100 2.02e-21 6.0e-6 3.86e-21 1.0e-6
9 13 100 1.93e-20 9.8e-5 4.25e-19 1.2e-5
10 200 100 -1.03162845 -1.031 2.37e-11 0.00
11 200 100 3.008 3.000 2.22e-2 0.000
12 100 100 -6.71 -9.54 2.68 1.69
13 100 100 -7.82 -10.30 2.76 0.74
14 100 100 -7.53 -10.54 2.77 4.9e-5

Table II: Performance comparison between NEP and the adaptive LEP. “Mean Best” indicates the average of the minimum
values obtained at every run and “Std Dev” stands for the standard deviation.

high-dimension multimodal functions except for function
f7 whose standard deviation just reaches 3 digits after the
decimal point. The experimental results further confirm the
difficulty of function f7. The standard deviation of func-
tion f5 is equal to zero, that is, all the 50 runs reach the
optimum.

For functions with only a few local minima, the perfor-
mance of NEP is a little worse than the adaptive LEP.
As Schnier and Yao [27] analyzed the last benchmarks are
rather deceptive. But we have no need to worry about
it based on two reasons. Firstly and most importantly,
all the realistic problems from engineering and society are
generally very complicated. Secondly, there are many other
methods to deal with such problems, such as steady-state
GA [1] and multiple representations EA with a modified
configuration [27] which perform very well for these func-
tions.

B Comparisons with Parallel Genetic Al-
gorithms

In this section, we will make further comparison between
NEP and five parallel genetic algorithms which are GD-
BLXr [6], ECO-GA model [23], CHC algorithm [24], deter-
ministic crowding (DC) [25] and disruptive selection (DS)
[26]. All the results of the parallel genetic algorithms are
obtained from [6] and detailed introductions about these
algorithms can also be found in [6]. All these parallel ge-
netic algorithms are based on the BLX-α crossover and non-
uniform mutation.

1) Benchmark Functions

Herrera and Lozano [6] proposed a gradual distributed real-
coded genetic algorithm (GD-RCGA), which is a “hetero-
geneous” distributed real-coded genetic algorithm that ap-
plies different configurations (control parameters, genetic
operators) to each subpopulation. They proved that GD-
RCGA consistently outperforms the sequential real-coded
GAs and the homogeneous distributed GAs. In this pa-
per, we will further compare the performance of the se-
quential NEP with the parallel genetic algorithms based on
some typical test functions which can be found in Table
III. Function ef10 is the expanded version of f(x, y) which
has nonlinear interaction between two variables. It is built
in such a way that it induces nonlinear interaction across
multiple variables.

2) Performance Comparison and Analysis

The algorithms were executed 30 times independently.
There are 20 individuals in each subpopulation, 8 subpop-
ulations in total (equivalent to 160 in sequential) and the
number of evolutional generations is 5000. So we set the
population size of NEP to be 7 for the first 5 functions
and 8 for ef10. The tournament size is 3 for benchmarks.
A computational precision of 60 digits after point is used
in NEP. So a result being 0 means that it is less that
10−60 in NEP and vice versa in this subsection. But we do
not know the computational precision of [6]. There are two
groups of experiments for the parallel genetic algorithms.
One group of experiment is based on the BLX-α crossover,
the other is based on the extended FCB-α crossover [6].
The results of two groups of experiments are somewhat
equal, so we just compare the performance of NEP with
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Benchmark Functions n D fmin

fSph =
n∑

i=1

x2
i 25 [-5.12, 5.12]n 0

fRos =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] 25 [-5.12, 5.12]n 0

fSch =
n∑

i=1

(
i∑

j=1

xj)2 25 [-65.536, 65.536]n 0

fRas =
n∑

i=1

[x2
i − 10 cos(2πxi) + 10] 25 [-5.12, 5.12]n 0

fGri = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
)+1 25 [-600, 600]n 0

ef10(X) = f(x1, x2) + . . . + f(xn, x1)
f10 = (x2 + y2)0.25[sin2(50(x2 + y2)0.1) + 1] 10 [-100, 100]n 0

Table III: Benchmark functions used by parallel genetic algorithms & NEP
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Figure V: Best and average fitness of low dimensional func-
tions vs evolutionary generation

the experiments based on the BLX-α crossover in Table X
in [6]. The experimental results are given in Table IV.

From Table IV, a very encouraging conclusion is obtained
that NEP is in the same breath with the parallel genetic al-
gorithms in terms of the solution quality and algorithmic ro-
bustness. First, NEP performs best for functions fRos, fSch

among all the parallel genetic algorithms. Secondly, NEP
is consistently and greatly outperforms the parallel genetic
algorithms R-DC-BLX and R-DS-BLX based on determin-
istic crowding (DC) [25] and disruptive selection (DS) [26]
for all the test functions. Thirdly, NEP significantly outper-
forms ECO-BLX for functions fRos, fSch, fRas, fGri which

can be found from A and B columns in Table IV, and
is worse than it for functions fSph, ef10. Lastly, NEP is
outperformed by CHC-BLX and GD-RCGA for functions
fSph, fRas, fGri, ef10, but performs better than them for
functions fRos, fSch. The result does not surprise us as
CHC-BLX is a usually used benchmark parallel GA [6] and
GD-RCGA performs even better than CHC-BLX.

Generally speaking, the sequential evolutionary algo-
rithm NEP is comparable to the commonly used benchmark
parallel genetic algorithm CHC-BLX.

IV Theoretical Analysis on the Ex-
ecuting Process of NEP

In Section III, experiments are used to show that NEP is
fast and robust. In this section, we try to give the underling
reasons by conducting theoretical analysis.

Suppose X = {x1, . . . , xk, . . . , xm} is a real-coded chro-
mosome in the population and the component xk (whose
lower and upper bounds are Lk, Uk) is selected for varia-
tion through some mutation operation and x′k is obtained.
A decimal fraction r is uniformly and randomly generated
in [0, 1].

A Preliminary Analysis on NEP

It is well known that the normal [28] Gaussian random
variables (mean 0 and variance 1) has the density function

fGaussian(x) =
1√
2π

e−
x2
2 (10)

The Cauchy distribution has the density function

fCauchy(x) =
1

π(1 + x2)
(11)
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fSph fRos fSch

Algorithms A SD B O A SD B O A SD B O
ECO-BLX 1e-31 2e-31 8e-33 2e0 2e1 4e-1 2e1 2e3 6e0 5e0 1e0 6e3
CHC-BLX 9e-32 2e-32 5e-32 4e0 2e1 7e-1 2e1 2e3 1e-1 3e-1 7e-12 1e3
R-DC-BLX 3e-6 2e-6 2e-7 9e0 1e1 5e0 4e0 8e3 3e3 7e2 2e3 1e4
R-DS-BLX 2e0 1e0 4e-1 8e1 3e2 1e2 1e2 9e4 2e3 4e2 1e3 4e5
GD-BLXr 8e-53 4e-52 8e-58 9e-1 2e1 9e0 1e1 1e3 2e-6 3e-6 7e-8 2e3

NEP 3e-26 6e-26 4e-29 1e-1 5e-1 6e-1 3e-3 2e2 3e-9 3e-9 3e-10 1e3
fRas fGri ef10

ECO-BLX 1e-2 1e1 8e1 3e2 1e0 3e-2 9e-1 9e0 5e-9 2e-8 4e-10 8e0
CHC-BLX 0e0 0e0 100% 7e1 0e0 0e0 100% 2e0 1e-7 2e-8 9e-8 8e0
R-DC-BLX 9e0 1e0 5e0 5e1 1e-2 1e-2 1e-4 3e1 2e-1 1e-1 8e-2 2e1
R-DS-BLX 5e1 1e1 3e1 3e2 6e0 3e0 2e0 3e2 1e1 3e0 7e0 9e1
GD-BLXr 0e0 0e0 100% 2e1 4e-4 2e-3 96.7% 5e0 9e-39 5e-38 3e-47 6e0

NEP 9e-10 1e-9 66.7% 7e-1 1e-2 2e-2 46.7% 5e-1 2e-2 5e-2 1e-6 1e0

Table IV: Performance comparison between NEP and parallel genetic algorithms ECO-BLX, CHC-BLX, R-DC-BLX,
R-DS-BLX and GD-BLX. All results are averaged over 30 trials. A: average of the best fitness of all runs. SD: standard
deviation. B: best fitness of all runs. If the global optimum has be reached sometimes, this performance will represent
the percentage of runs in which this happens. O: average of the fitness of all the elements appearing in all 30 runs.

Yao et al. [14] indicated that the expected length of
Gaussian and Cauchy jumps are 0.8 and ∞.

EGau(x) = E|x′k − xk| = 2

+∞∫

0

x
1√
2π

e−
x2
2 dx = 0.80 (12)

ECau(x) = E|x′k − xk| = 2

+∞∫

0

x
1

π(1 + x2)
dx = +∞ (13)

Lee and Yao [15] also proved that the mean-square displace-
ment is infinite.

ELevy(x) = E|x′k − xk| = 2

+∞∫

0

Lα(y)dy = +∞ (14)

where Lα(y) stands for the probability function of Levy
distribution and it has the following property

Lα(y) ∼ 1
yα+1

,when |y| À 1.

From Eq.(12, 13, 14), it is obvious that Gaussian mu-
tation is much localized than Cauchy or Levy mutation.
From this, FEP [14] and LEP [15] have higher probabili-
ties of making longer jumps than CEP. However, as they
analyzed, “longer jumps” are not always beneficial. If the
current search point is near the small neighborhood of the
global optimum, the “longer jumps” are detrimental. For
NEP, comprehensive experiments show that it can find the
promising areas quickly and locate the global optimum in
a very high probability.

Let ξ be a Bernoulli random variable in Eq.(2) with

P (ξ = 0) = p(ξ = 1) =
1
2

Let η = −2ξ + 1. Then η is a random variable with only
two values

P (η = 1) = p(η = −1) =
1
2

Thus by Eq.(1,2), we have

x′k = xk +
1 + η

2
∆(t, Uk − xk)− 1− η

2
∆(t, xk − Lk)

= xk + 1+η
2 (Uk − xk)(1− r(1− t

T )b

)+

1− η

2
(xk − Lk)(1− r(1− t

T )b

) (15)

Then the expected step size of the non-uniform mutation
is

E|x′k − xk| = P (η = 1) · (Uk − xk) · E(1− r(1− t
T )b

)+
P (η = −1) · (xk − Lk) · E(1− r(1− t

T )b

)
= Uk−Lk

2 E(1− r(1− t
T )b

)

= Uk−Lk

2

1∫
0

(1− r(1− t
T )b

)dr

=
Uk − Lk

2
(1− 1

1 + (1− t
T )b

) (16)

It is not like the Gaussian mutation which locally
searches and the Cauchy or Levy mutation which makes
long jumps from begin to end of the algorithms. It is
these reasons that attract so many researchers to focus
on the mutation operation on evolutionary programming
[5, 11, 12, 14, 15, 21] or evolution strategy [13, 29, 30]. The
expected step size of the non-uniform mutation in an inter-
val depends on the generation t. Let f(t) = E|x′k − xk|. It
is obvious that f(t) is a decreasing function of t, because
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∂f(t)
∂t

=
Uk − Lk

2
·
∂(1− 1

1+(1− t
T )b )

∂t

= −Uk − Lk

2
×

b
T · (1− t

T )b−1

(1 + (1− t
T )b)2

< 0 (17)

Hence the jumping size of the non-uniform mutation
monotonously decreases with the progress of the algorithm.
This roughly shows that the exploration region of NEP is
smaller and smaller when t increases. However, we are still
not able to say that the non-uniform mutation has the fea-
ture of searching the space uniformly initially and very lo-
cally at later stages of algorithms.

B Detailed Analysis on NEP

First, we will give an approximate analysis. From Eq.(15),
we have the following jumping equation

x′k =

{
xk + (Uk − xk) · (1− r(1− t

T )b

), if η= 1
xk − (xk − Lk) · (1− r(1− t

T )b

), if η= -1
(18)

Without loss of generality, we assume xk to jump to its
right side and obtain x′k. Then we have

x′k = xk + (Uk − xk) · (1− r(1− t
T )b

) (19)

From Eq.(19), it can be seen obviously that at the initial
stage of the algorithm, i.e., t ¿ T , t

T ≈ 0. Since b is a
constant,

x′k ≈ xk + (Uk − xk) · (1− r) (20)

Similarly, to jump to left side, we have

x′k ≈ xk − (xk − Lk) · (1− r) (21)

From Eq.(20, 21) and r is a uniform random fraction
decimal in [0, 1], we can clearly say that at the initial stage
of the algorithm, the search engine of NEP nearly explores
the whole space uniformly.

Similar to the above analysis and from Eq.(19), if t is
close to T (later stage of the algorithm), i.e., t

T ≈ 1, then
t
T ≈ 1 =⇒ (1 − t

T )b ≈ 0 =⇒ r(1− t
T )b ≈ 1 regardless of

r. Therefore, 1 − r(1− t
T )b ≈ 0. That is to say, the term

of 1 − r(1− t
T )b

in Eq.(18) is “infinitely” approaching to 0.
Then

x′k =
{

xk + ε · (Uk − xk), if η= 1
xk − ε · (xk − Lk), if η= -1 (22)

From Eq.(22), we can say that at later stage (t is close to
T ) of the algorithm, the search engine of NEP very locally
exploits the neighborhood of the current solution.

Now, we are able to say that the non-uniform mutation
has the feature of searching the space uniformly initially
and very locally at later stage of algorithms. The theo-
retical analysis on the non-uniform mutation consummates
the features that it “monotonously reduces” its search re-
gion with the run of the algorithm(Eq.(17)), however, the
search step size has random factor(Eq.(1, 2)) besides its
feature of searching the space uniformly initially and very
locally at later stage of algorithms.

C Analysis from Another Perspective

From Eq.(19), mutation explores the interval [xk, Uk].
Then we have

x′k − xk = (Uk − xk) · (1− r(1− t
T )b

) (23)

For any random uniform decimal fraction q in [0, 1], we
have

Pq := P{|x′k − xk| > (Uk − xk)× q}
= P{1− r(1− t

T )b

> q}
= P{r < (1− q)(1−

t
T )−b}

= q
1

(1− t
T

)b (24)

It follows from Eq.(24) that when t ¿ T , t
T ≈ 0 =⇒ (1−

t
T )b ≈ 1. Hence Pq ≈ q. In such a case, x′k approximately
searches the whole right interval [xk, Uk] uniformly. It is
the same when xk jumps to the left side.

On the other hand, when t → T , t
T ≈ 1 =⇒ (1 − t

T )b ≈
0 (but > 0). Then q

1
(1− t

T
)b ≈ 0 (but slightly > 0). So

Pq consistently approaches to 0. In this case, x′k mainly
exploits the local domain of the current solution (xk). It is
the same when xk jumps to the left side.

For the total varying principle of Pq, especially for the
middle process, we let g(t) = Pq. Then

g′(t) =
∂g(t)
∂t

= ln q · b · q
1

1− t
T

T · (1− t
T )b+1

< 0 (25)

which means that Pq is decreasing with the run of the al-
gorithm. We can once again make the conclusion from the
total perspective that the exploring region is smaller and
smaller in the algorithm.

D Experimental Results

In order to illustrate our analysis about the feature of
the non-uniform mutation, we consider two functions f1, f7

(just investigate their first component) chosen from Table I
to see how they are varying during the algorithm. Function
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f1 is a typical unimodal sphere and f7 is a typical multi-
modal benchmark. Figure VI clearly shows the feature of
the non-uniform mutation. At the initial stage, variables
“fly” to scan the whole search space. In the middle stage
of algorithm, the exploring space has a decreasing trend.
However, it is not absolutely monotonous as Fig. VI shows.
Sometimes, NEP has another long jump leaving the current
solution to find new promising area. At the later stage, they
just exploit the neighborhood of the global optima (x∗i = 0).
This experiment strongly supports the theoretical analysis
above about the feature of the non-uniform mutation.

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 101 201 301 401 501

Variation Numbers for the First Component

R
ea

l V
al

ue
 o

f t
he

 F
irs

t C
om

po
ne

nt

c

-600
-500
-400
-300
-200
-100

0
100
200
300
400
500
600

1 101 201 301 401 501

Variation Numbers for the First Component

R
ea

l V
al

ue
 o

f t
he

 F
irs

t C
om

po
ne

nt

Figure VI: Mutation numbers vs the real value for the first
component of functions f1 and f7. X coordinate stands for
the mutation numbers and Y coordinate is the value of the
first component coordinate.

We will make a simple analogy with persons to under-
stand the behaviors of NEP. It likes an “intelligent pi-
lot” who quickly scans the total search space initially, then
switches to automobile, bike subsequently with the process
of algorithm. In the final stage, he throws off all the vehi-
cles decidedly and walks to his destination by small step.
So it can exactly locate the global optimum of the problem.
There is another important point in the execution of non-
uniform mutation. This “intelligent pilot” has keen greedy
idea who goes to the new region only if it is better than the
current place. Otherwise, he will stay there until an even
better area is found.

V An Adaptive Non-uniform Evo-
lutionary Programming

A The Influence of the parameter b

Besides t in Eq.(16), there is another parameter b that we
have always treat it as a constant. However, as Michalewicz
[1] indicated that b is a parameter determining the degree
of non-uniformity. Now we will analyze this parameter to
show how it affects the search step of the non-uniformity.
For a given t in Eq.(16), let

g(b) =
Uk − Lk

2
× (1− 1

1 + (1− t
T )b

)

=
Uk − Lk

2
× 1

1 + (1− t
T )−b

We have

∂g(b)
∂b

=
Uk − Lk

2
× −1

(1 + (1− t
T )−b)2

×(1− t

T
)−b×ln(1− t

T
)

=
Uk − Lk

2
× ln( T

T−t )× (1− t
T )−b

(1 + (1− t
T )−b)2

> 0 (26)

From the above equation, when b becomes larger, the
decreasing speed of the step size of the mutation becomes
faster. That is, different b means different non-uniformity
in the algorithms. Furthermore, as the experimental results
of Table II in Section III-A show that NEP performs rather
poor for the low-dimension benchmarks with only a few
local optima. Consequently, an adaptive non-uniform evo-
lutionary programming (ANEP) is proposed in this Section
based on Eq.(26). It differs from NEP only in step 4 of the
algorithm described in Section III-D. In ANEP, we generate
three candidate offsprings with b = 2, 5, 30 from the same
parent and select the best one as the surviving offspring.
This scheme is adaptive because the value of b to be used
is not predefined and is determined by the evolution.

B Experiments and Discussions

Only three benchmarks f12, f13, f14 in Table I are used to
investigate the performance of ANEP because the perfor-
mance of NEP is poor for these three benchmarks and ex-
cellent for others. Furthermore, there is no statistical dif-
ference between the performance of NEP and the adaptive
NEP for other benchmarks (so the results are omitted here).
Since ANEP uses three different values for b, we let the pop-
ulation size of ANEP (67) be one third of NEP (200) and
all the other parameters remain the same to Section III-A.
The computing results are averaged over 50 trials and are
listed in Table V.

Although the performance of ANEP is improved based on
the experimental results and the theoretical analysis on the
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Mean Best Std Dev
FuncAdaptive LEPNEPANEPAdaptive LEPNEPANEP
f12 -9.54 -6.71 -7.29 1.69 2.68 2.86
f13 -10.30 -7.82 -8.59 0.74 2.76 2.49
f14 -10.54 -7.53 -8.76 4.9e-5 2.77 2.40

Table V: Comparison between ANEP, NEP and the adap-
tive LEP for the low-dimension benchmarks with only a
few local optima. “Mean Best” indicates the average of
the minimum values obtained at every run and “Std Dev”
stands for the standard deviation.

expected search step, it is still poorer than the adaptive
LEP [15] for these benchmarks. As the “No Free Lunch
Theorem” [19] states, there is no one optimization algo-
rithm performs best for all problems. By the way, ANEP
finds the optimal minima about 25 times in 50 trials for
these three benchmarks.

VI Conclusion

In this paper, a new evolutionary programming algorithm
NEP based on the non-uniform mutation is proposed. Com-
parisons with the newly proposed sequential and parallel
evolutionary algorithms, NEP is generally faster and more
robust.

Detailed theoretical analysis on NEP is presented. The
probability convergence of NEP is first proved. Then its
working schemes are also analyzed. NEP searches the space
uniformly at the early stage of the algorithm and very lo-
cally at the later stage. The greedy idea is incorporated
into the non-uniform search in order to avoid the random
blind jumping and to “stay” at the promising solution areas.
The probabilistic gradual decreasing jump length makes the
algorithm exploring smaller and smaller regions with the
progress of algorithm. At the later stage, the algorithm
just exploits the neighborhood of the current solution so as
to exactly locate the global optimum.
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