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Abstract. We consider the computational problem of isolating all the
real zeros of a zero-dimensional triangular polynomial system Fn ⊆
Z[x1, . . . , xn]. We present a complete numerical algorithm for this prob-
lem. Our system Fn is general, with no further assumptions. In particu-
lar, our algorithm is the first to successfully treat multiple zeros in such
systems. A key idea is to introduce evaluation and separation bounds,
which are used in conjunction with sleeve bounds to detect zeros of even
multiplicity. Our algorithm assumes a computational model of bigfloats
with exact ring operations. We have implemented our algorithm and
promising experimental results are shown.
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1. Introduction

Many problems in the computational sciences and engineering can be reduced to the
problem of solving polynomial equations. There are two basic approaches to solving such
polynomial systems – numerically or algebraically. Usually, the numerical methods have no
global guarantees of correctness. Algebraic methods for solving polynomial systems include
Gröbner bases [6], characteristic sets [19, 15], CAD (Cylinder Algebraic Decomposition)
[2, 3], or resultants [1, 17]. One general idea in polynomial equation solving is to reduce the
original system into a triangular system. Zero-dimensional polynomial systems are among
the most important cases to solve. This paper considers this case only.

1)Yap’s work is supported in part by NSF Grant No. 043086.
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A zero-dimensional triangular system of polynomials has the form Fn = {f1, . . . , fn},
where each fi ∈ Z[x1, . . . , xi] (i = 1, . . . , n). We are interested in real zeros of Fn. A real
zero of Fn is ξ = (ξ1, . . . , ξn) ∈ Rn such that Fn(ξ) = 0, i.e.,

f1(ξ1) = f2(ξ1, ξ2) = · · · = fn(ξ1, . . . , ξn) = 0. (1)

The standard idea here is to first solve for f1(x1) = 0, and for each solution x1 = ξ1 of f1,
we find the solutions of x2 = ξ2 of f2(ξ1, x2) = 0, etc. This means that the problem can be
reduced to solving univariate polynomials of the form

fi(ξ1, . . . , ξi−1, xi) = 0. (2)

Such polynomials have algebraic number coefficients. We could isolate roots of such poly-
nomials by using standard root isolation algorithms, but using algebraic number arithmetic.
But even for n = 2 or 3, such algorithms are too slow. The numerical approach is to replace
the ξi’s by approximations, and thus reduce the problem to isolating roots of such numerical
polynomials. The challenge is how to guarantee completeness of such numerical algorithms.
Results of This Paper. We will provide a numerical algorithm that solves such triangular
systems completely in the following precise sense: given an n-dimensional box R = J1×· · ·×
Jn ⊆ Rn where Ji are intervals, and any precision ε > 0, it will isolate the zeros of Fn in R
to precision ε. To isolate the zeros of Fn in R means to compute a set of pairwise disjoint
n-dimensional boxes such that each zero of Fn in R is contained in one of these boxes, and
each box contains just one zero of Fn. These boxes have diameter bounded by ε.

Our solution places no restriction on Fn. In particular, ours is the first to achieve complete
root isolation in the presence of multiple zeros. All the existing algorithms require the
system Fn to be square-free (no multiple zeros) and some require Fn to be regular 2) or even
irreducible. As is well known, it is expensive to make a triangular polynomial system to be
square-free, regular or irreducible.

Many algorithms that seek to provide “exact numerical” solution assume computation
over the rational numbers Q. But this is much less efficient than using dyadic numbers: let
D :=Z[12 ] = {m2n : m,n ∈ Z} denote the set of dyadic numbers (or bigfloats). Most current
fast algorithms for bigfloats can be derived from Brent’s work [5]. In the following, we use
the symbol F to denote either D or Q. The only computational assumption about F we need
are: (1) the ring operations (+,−,×) and x 7→ x/2 (halving) are computed without error,
and (2) comparison among the elements of F is exact. The algorithms of this paper can be
implemented exactly over F. We use intervals to isolate real numbers: let F denote the
set of intervals of the form [a, b] where a ≤ b ∈ F. Note that assumptions (1) and (2) are
stronger than the axioms in Brent’s model [5]; see [24] for an axiomatic treatment of F in
real approximations.

Given a polynomial f ∈ R[X] and an interval I = [a, b] ∈ F, the basic idea is to construct
two polynomials fu, fd ∈ F[X] such fu > f > fd holds in I. We call (fu, fd) a sleeve of
f over I. We show that if the sleeve bound SBI(fu, fd) := sup{fu(x) − fd(x) : x ∈ I}
is sufficiently tight, then isolating the roots of fu and fd can lead to isolation of the roots

2)Fn is regular if for each zero (ξ1, . . . , ξn), the leading coefficient of the polynomial fi(ξ1, ξ2, . . . , ξi−1, xi)
does not vanish.
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of f . Note that the coefficients of fufd are in F, but f have real coefficients which can be
arbitrarily approximated.

Univariate root isolation is a well-developed subject in its own right, with many efficient
solutions known (see [10, 12, 13, 14] for some recent work). We can use any of these solutions
in our algorithm. The only additional property we require in these univariate solvers is that
they handle multiple zeros. It is also easy to classify multiple zeros according to their parity:
the parity of the root is even (resp., odd) if the root has even (resp., odd) multiplicity. There
are simple ways to modify standard algorithms to satisfy our extra requirements.

The critical idea in this paper is the introduction of evaluation bounds. For a differ-
entiable function f : R→ R and a subset I ⊆ R, let its evaluation bound be

EBI(f) := inf{|f(x)| : f ′(x) = 0, |f(x)| 6= 0, x ∈ I}, (3)

and its separation bound be

∆I(f) := inf{|x− y| : f(x) = f(y) = 0, x, y ∈ I, x 6= y}. (4)

By definition, the infimum over an empty set is ∞. The subscript I may be omitted when
I = R. Although separation bounds are well-known tools in the area of root isolation, the
use of evaluation bounds appears to be new. It is the ability to compute lower estimates on
EBI(f) and ∆(f) that allows us to detect zeros of even multiplicities. In particular, if the
following sleeve-evaluation inequality

SBI(fu, fd) < EBI(f) (5)

holds, then we show how the isolating intervals of fufd can be used to define isolating
intervals of f . In order to satisfy this inequality, we need to “refine” our sleeves to yield
tighter sleeve bounds. Furthermore, we need to generalize sleeves and (3) to the multivariate
case of triangular systems.

A major goal in our algorithmic design is the emphasis on “adaptive” techniques. In-
formally, adaptivity means that the computational complexity is sensitive to the nature of
the input instance, and in typical or nice instances, the complexity is low. Thus, we prefer
numerical (iterative) tests which are usually adaptive, over more powerful but non-adaptive
algebraic techniques. For instance, in our algorithm below we need determine the sign of
a derivative at a point: this could be reduced to detecting a zero of the derivative using a
Sturm sequence computation, but we prefer to deploy a numerical iteration whose halting
condition is provided by root separation estimates.
Literature Survey. The idea of using a sleeve to solve equations was used by [18] and
[16]. Lu et al [16] proposed an algorithm to isolate the real roots of triangular polynomial
system. Their method could solve many problems in practice. But their algorithm is not
complete in the sense that it does not have a termination condition and cannot handle
multiple zeros. Collins et al [8] considered the problem with interval arithmetic methods
and Descartes’ method using floating point computation. Based on the CAD method, they
considered isolating the real roots of a squarefree triangular system. They constructed a
bitstream interval for each real coefficient of a univariate polynomial f = fi(ξ1, . . . , ξi−1, X).
Then they obtain an interval polynomial for f . The sign determination of fi(ξ1, . . . , ξi−1, X)
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can be replaced by determining the sign of the two corresponding endpoints of the interval
for each coefficient. In this way, they obtained isolating intervals of the triangular system.
They pointed out if a real coefficient is zero (but in some implicit representation), the method
will fail. Their system is restricted to be regular. Xia and Yang [20], based on the resultant
computation, proposed a method to isolate the real roots of a semi-algebraic set. In fact, they
ultimately considered the real root isolation of regular and square-free triangular systems.
They mentioned that their method is not complete and will fail in some cases. Our root
isolation of real polynomials using sleeves is related to Eigenwillig et al [11] who considered
root-isolation for real polynomials with bitstream coefficients. Their algorithm requires f to
be squarefree; but we require algebraic coefficients when f is non-squarefree. Their algorithm
is based on the Descartes method, but ours can be viewed as a generic reduction of the root
isolation problem to univariate root isolation in F[X]. Our evaluation bound is analogous the
curve separation bounds in Yap [23], who used them to provide the first complete subdivision
algorithm for detecting tangential intersection of Bezier curves.
Overview of Paper. In the next section, we describe the basic technique of using sleeves
and evaluation bounds of f . We next exploit a special property of sleeves called monotonic-
ity. This leads to an effective criteria for isolating zeros of even multiplicity. Using these
tools, we provide an algorithm to isolate the real roots of univariate polynomial with real
coefficients. In Section 3, we extend the isolation method to the multivariate case. We com-
pute lower estimates on evaluation and separation bounds. We also show how to construct
sleeves for fi(ξ1, . . . , ξi−1, X) and derive upper estimates on the sleeve bound, as a function
of the precision of the given isolating box for (ξ1, . . . , ξi−1). This shows convergence of our
algorithm. Subalgorithms for refinement of isolating boxes and for verifying zeros are in-
cluded. Finally, the overall isolation algorithm is presented here. Section 4 describes some
experimental work. We conclude in Section 5.

2. Root Isolation for Real Univariate Polynomials

In this section, we give a framework for isolating the real roots of a univariate polynomial
with real coefficients.

2.1. Evaluation and Sleeve Bounds
Let Q be the field of rational numbers, R the field of real numbers, D :=Z[12 ] = {m2n :

m,n ∈ Z} the set of dyadic numbers, and F denote either D or Q. A real function f : R→ R
is C1 if it has a continuous derivative f ′(X) = ∂f

∂X . In this section, we fix f, fu, fd to be C1

functions, and let I = [a, b] be an interval. In applications later, we will further assume that
f ∈ R[X], fu, fd ∈ F[X] and I ∈ F.

We call (I, fu, fd) a sleeve for f if, for all x ∈ I, we have fu(x) > f(x) > fd(x).
For any real function f , let ZeroI(f) denote the set of distinct real zeros of f in the

interval I. If I = R, then we simply write Zero(f). If ZeroI(f) has a single zero, we call I
an isolating interval of f . Sometimes, we need to count the zeros up to the parity (i.e.,
evenness or oddness) of their multiplicity. Call a zero ξ ∈ Zero(f) an even zero if its
multiplicity is even, and odd zero if its multiplicity is odd. Define the multiset 3) ZeroI(f)

3)A multiset S is a pair (xS , µS) where xS is a set in the usual sense, and µS : xS → {1, 2, 3, . . .} is a
function. We call µS(X) the multiplicity of x ∈ xS , and xS the underlying set of S. For simplicity, we
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whose underlying set is ZeroI(f) and where the multiplicity of ξ ∈ ZeroI(f) is 1 (resp., 2)
if ξ is an odd (resp., even) zero of f .

To avoid special treatment near the endpoints of an interval, we would like to enforce
the following conditions.

|f(a)| ≥ EBI(f), fu(b)fd(b) > 0. (6)

We say that the sleeve (I, fu, fd) is faithful for f if (6) as well as the sleeve-evaluation
inequality (5) are both satisfied. We can easily see that |f(a)| ≥ EBI(f) implies fu(a)fd(a) >
0, using (5). We need a stronger condition at X = a than at X = b in (6) because there
might be a zero of f just to the left of X = a that can cause confusion for our lemmas
below: this asymmetry is a consequence of the monotonicity property below. An appendix
will treat the case of non-faithful sleeves.

Intuitively, f is nicely behaved when if we restrict f to a neighborhood of a zero ξ where
|f | < EB(f). This is illustrated in Figure 1.

bξ ξ bξ

ξ

EB(f)

−EB(f)

aξ

(a) (b)

0

f Aξ

f
Iξ

aξ

Bξ

Fig. 1. Neighborhood of zero ξ: Iξ = Aξ ∪ {ξ} ∪Bξ.

Given f and I, define the polynomials

f̂(X) := f(X)− EBI(f), f(X) := f(X) + EBI(f).

If ξ ∈ ZeroI(f), we define the points aξ, bξ as follows:

aξ :=max{{a} ∪
(
Zero(f̂ · f) ∩ (−∞, ξ)

)
}, (7)

bξ :=min{{b} ∪
(
Zero(f̂ · f) ∩ (ξ, +∞)

)
}. (8)

Then define the open intervals (see Figure 1):

Aξ :=(aξ, ξ), Bξ :=(ξ, bξ) and Iξ :=(aξ, bξ). (9)

The basic properties of these intervals are captured here:

Lemma 1. Let (I, fu, fd) be a faithful sleeve for f . For all ξ, ζ ∈ ZeroI(f), we have:
(i) If ξ 6= ζ then Iξ and Iζ are disjoint.

write “x ∈ S” instead x ∈ xS . Also, the size of S is defined to be |S| :=Px∈X µS(X).
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(ii) ZeroI(fufd) ⊆ ⋃
ξ Iξ.

(iii-a) Aξ ∩ Zero(fu) is empty iff Aξ ∩ Zero(fd) is non-empty.
(iii-b) Bξ ∩ Zero(fu) is empty iff Bξ ∩ Zero(fd) is non-empty.
(iv) The derivative f ′ has a constant non-zero sign in Aξ, and also in Bξ.

Proof. (i) Suppose ξ < ζ are consecutive zeros of ZeroI(f). Then either f is posi-
tive on (ξ, ζ) or f is negative on (ξ, ζ). Wlog, f is positive on (ξ, ζ). Then the multiset
ZeroI(f̂) = Zero(f − EBI(f)) has at least two zeros (they may have the same value) in
(ξ, ζ). This proves bξ ≤ aζ and so Iξ and Iζ are disjoint.
(ii) Let z ∈ ZeroI(fufd). Then (5) implies that |f(z)| < EBI(f). By the definition of evalu-
ation bound, this also means that f ′(z) 6= 0. Thus there are two cases: either f(z)f ′(z) > 0
or f(z)f ′(z) < 0. First, suppose f(z)f ′(z) > 0. Then there is a unique largest ξ ∈ Zero(f)
that is less than z, and there is a unique smallest bξ ∈ Zero(f̂) that is greater than z. This
proves that z ∈ (ξ, bξ). Similarly, if f(z)f ′(z) < 0, we will see that z ∈ (aξ, ξ) for some
ξ ∈ ZeroI(f).
(iii-a) Either f(aξ) > 0 or f(aξ) < 0. If f(aξ) > 0 then (5) implies fd(aξ) > 0. But fd(ξ) < 0,
and hence Aξ ∩ Zero(fd) is non-empty. Now, since fu is positive over Aξ, we conclude that
Aξ ∩ Zero(fu) is empty. The other case, f(aξ) < 0 will similarly imply that Aξ ∩ Zero(fd)
is empty and Aξ ∩ Zero(fu) is non-empty.
(iii-b) This is similar to (iii-a).
(iv) Assume there exist s ∈ Aξ (for Bξ, the proof is similar) such that f ′(s) = 0. We derive
a contradiction from the definitions of aξ by (7), where Aξ = (aξ, ξ). Q.E.D.

If s, t ∈ ZeroI(fufd) such that s < t and (s, t)∩ZeroI(fufd) is empty, then we call (s, t)
a sleeve interval of (I, fu, fd). The following is immediate from the preceding lemma(iii):

Corollary 2. Each zero of ZeroI(f) is isolated by some sleeve interval of (I, fu, fd).

Lemma 3. Let (I, fu, fd) be a faithful sleeve. For all ξ ∈ ZeroI(f), the multiset ZeroBξ
(fu ·

fd) has odd size. Similarly, the multiset ZeroAξ
(fu · fd) has odd size.

Proof. We just prove the result for the multiset ZeroBξ
(fu · fd). Wlog, let f(bξ) > 0

(the case f(bξ) < 0 is similar). By the sleeve-evaluation inequality, fd(bξ) > 0. Note that
when bξ = b, the inequality is also true since (I, fu, fd) is faithful. But fd(ξ) < 0. Hence fd

has an odd number of zeros (counting multiplicities) in the interval Bξ = (ξ, bξ). Moreover,
fu > f implies fu has no zeros in Bξ. Q.E.D.

It follows from the preceding lemma that for each zero ξ of f , the multiset ZeroIξ
(fufd)

has even size. Hence the multiset ZeroI(fufd) has even size, say 2m. So we may denote
the sorted list of zeros of ZeroI(fufd) by

(t0, t1, . . . , t2m−1). (10)

where t0 ≤ t1 ≤ · · · ≤ t2m−1. Note that ti = ti+1 iff ti is an even zero of fufd. Intervals of
the form Ji :=[t2i, t2i+1] where t2i < t2i+1 are called candidate interval of the sleeve. We
immediately obtain:

Corollary 4. Each ξ ∈ ZeroI(f) is contained in some candidate interval of a faithful sleeve
(I, fu, fd).
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Proof. We use the notations in (9) and (10), and use ξ to represent a root of f in I. From
Lemma 1 (ii), any element of ZeroI(fufd) is in some Iξ. From Lemma 3, Iξ ∩ZeroI(fufd)
has even size. Therefore, the smallest element of Aξ ∩ZeroI(fufd) is of the form t2k. From
Lemma 3, Aξ ∩ZeroI(fufd) has odd size. Then the largest element of Aξ is also of the form
t2s and the smallest element of Bξ is t2s+1. As a consequence, ξ is in the candidate interval
(t2s, t2s+1). Q.E.D.

Which of these candidate intervals actually contain zeros of f? To do this, we classify a
candidate interval [t2j , t2j+1] in (10) into two types:

(Odd): t2j ∈ Zero(fd) if and only if t2j+1 ∈ Zero(fu)
(Even): t2j ∈ Zero(fd) if and only if t2j+1 ∈ Zero(fd)

}
(11)

Thus we call a candidate interval J an odd or even candidate interval depending on
whether it satifies (11)(Odd) or (11)(Even). We now treat the easy case of deciding which
candidate intervals are isolating intervals of f :

Lemma 5 (Odd Zero). Let J be a candidate interval. The following are equivalent:
(i) J is an odd candidate interval.
(ii) J contains a unique zero ξ of f . Moreover ξ is an odd zero of f .

Proof. Let J = [t, t′].
(i) implies (ii): Wlog, let fu(t) = 0 and fd(t′) = 0. Thus, f(t) < 0 and f(t′) > 0. Thus f
has an odd zero in J . By Corollary 2, we know that candidate intervals contain at most one
distinct zero.
(ii) implies (i): Since ξ is an odd zero, we see that f must be monotone over J . Wlog, assume
f is increasing. This implies fd(t) < 0 and hence fu(t) = 0. Similarly, fu(t′) > 0 and hence
fd(t′) = 0. Hence J is an odd candidate. Q.E.D.

Lemma 5 provides the theoretical basis to isolate zeros of odd multiplicity. Isolate zeros
of even multiplicity is more subtle and will be dealt with in the following section. To do this
we need to look at the sign of ∂fu

∂X and ∂fd

∂X . We make a first observation along this line:

Lemma 6. Let ti ∈ Zero(fufd).
(a) If ti is a zero of fu,
then i is even implies ∂fu

∂X (ti) ≥ 0, and i is odd implies ∂fu

∂X (ti) ≤ 0.
(b) If ti is a zero of fd,
then i is even implies ∂fd

∂X (ti) ≤ 0. and i is odd implies ∂fd

∂X (ti) ≥ 0.

Proof. The result is true for i = 0, using faithfulness. The rest follows by induction based
on parity tracking. Q.E.D.

2.2. Monotonicity Property
We will now exploit a special property of sleeve (I, fu, fd) for f :

∂fu

∂X
≥ ∂f

∂X
≥ ∂fd

∂X
holds in I (12)

We call this the monotonicity property. In this subsection, we assume the monotonicity
property (12) and as well the faithfulness of the sleeve.

We now strengthen one half of Lemma 3 above.
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Lemma 7. For all ξ ∈ ZeroI(f), there is a unique zero of odd multiplicity of fu · fd in
Aξ = (aξ, ξ).

ξ

aξ z0 z1

f(z1)
f(z0)

EB(f)

0

−EB(f)

Fig. 2. Aξ has a unique zero of fu · fd: CASE of fu(z0) = fu(z1) = 0.

Proof. Alternatively, this lemma says that the multiset ZeroAξ
(fufd) has size 1.

By way of contradiction, suppose z0 ≤ z1 are two zeros of fufd in Aξ = (aξ, ξ). Note
that we allow the possibility that z0 = z1 (in which case z0 is an even root of fufd). From
Lemma 1(iii), we know that either z0, z1 ∈ Zero(fu) or z0, z1 ∈ Zero(fd) (i.e., it is not
possible that one is a zero of Zero(fu) and the other is a zero of Zero(fd)). There are two
cases:

(A) z0, z1 are roots of fu. See Figure 2. By Rolle’s theorem, there exists z ∈ [z0, z1] such
that ∂fu

∂X (z) = 0. Therefore, there exist z− < z < z+ that are arbitrarily close to z such that

∂fu

∂X
(z−) · ∂fu

∂X
(z+) < 0. (13)

On the other hand, note that f(zj) < fu(zj) = 0 for j = 0, 1. Since f(ξ) = 0, and zj < ξ,
this means that the interval (zj , ξ) contains a point z with f ′(z) > 0. But f ′ has constant
sign in Aξ from Lemma 1 (iv), and so this sign of f ′ is positive. Then by monotonicity (12),

∂fu

∂X
(z−) ≥ f ′(z−) > 0, and

∂fu

∂X
(z+) ≥ f ′(z+) > 0. (14)

Now we see that (13) and (14) are contradictory.
(B) z0, z1 are roots of fd. We similarly derive a contradiction. Q.E.D.

Remark: It should be observed that this lemma does not hold when Aξ is replaced by Bξ.
This somewhat surprising asymmetry can be seen in the proof of the preceding result.

Corollary 8. If t2j is an even zero of fufd, then Jj = [t2j , t2j+1] contains no zero of f .

Proof. If Jj contains a zero ξ of f , then t2j would be an even zero of fufd contained in
Aξ, contradicting Lemma 7. Q.E.D.

If t2j is an even zero we have either t2j = t2j+1 or t2j = t2j−1. But the former case
only give us a trivial candidate interval which clearly has no zeros of f . The next result is a
consequence of monotonicity and faithfulness:

Lemma 9. The interval J0 = [t0, t1] is a candidate interval and it isolates a zero of f .



Complete Numerical Isolation of Real Zeros in General Triangular Systems 9

In Lemma 5, we showed that (11)(Odd) holds iff Jj isolates an odd zero of f . The next
result shows what condition must be added to (11)(Even) in order to to characterize the
isolation of even zeros.

Lemma 10 (Even Zero). Let Jj = [t2j , t2j+1] be an even candidate interval.
Then Jj isolates an even zero ξ of f iff one of the following conditions hold:
(i) fd(t2j) = 0 and ∂fu

∂X (t2j) < 0

(ii) fu(t2j) = 0 and ∂fd

∂X (t2j) > 0.

Note: if j > 0 in this lemma, then t2j−1 is a zero of fd iff t2j is a zero of fd.

BξBξAξ

f

(a)

EB(f)

t2j−1 t2j t2j+1

ξ

−EB(f)

0
ζ

f

(b)

EB(f)

t2j−1 t2j t2j+1

−EB(f)

0
ξ

fd

Fig. 3. Detection of even zero when t2j , t2j+1 ∈ ZeroI(fd): (a) even zero, (b) no zero

Proof. Let t2j be a zero of fd (if it is a zero of fu, the proof is similar). So fd(t2j+1) = 0
and by Lemma 6, ∂fd

∂X (t2j+1) ≥ 0. Then monotonicity implies ∂f
∂X (t2j+1) ≥ 0. Next, t2j+1 ∈

Bξ for some zero ξ of f . This means ∂f
∂X is positive in the interval (ξ, t2j+1). There are two

cases: (a) t2j < ξ < t2j+1 or (b) ξ < t2j < t2j+1. If (a), then since f(t2j) > fd(t2j) = 0, we
conclude that ∂f

∂X (t2j) < 0 (see Figure 3(a)). If (b), then ∂f
∂X (t2j) > 0 since ∂f

∂X has constant
sign in Bξ (see Figure 3(b)). Q.E.D.

2.3. Effective Root Isolation of f

So far, we have been treating the roots tj of fufd exactly. But in our algorithms, we only
have isolating intervals [ai, bi] of these tj ’s. We now want to replace the candidate intervals
[t2i, t2i+1] by their “effective versions” of the form [a2i, b2i+1]. As usual, we assume that our
sleeve (I, fu, fd) is faithful and satisfies the monotonicity property (12). Let ZeroI(fufd)
be the sorted list given in (10), and [ai, bi] an isolating interval of ti, where any two distinct
intervals [ai, bi] and [aj , bj ] are disjoint. Let

SLf,I = ([a0, b0], [a1, b1], . . . , [a2m−1, b2m−1]) (15)

be the corresponding list of isolating intervals for the roots of fufd in ZeroI(fufd). Assume
that [ai, bi] = [aj , bj ] iff ti = tj . Note that ti = tj implies |i− j| ≤ 1. Let

Ki :=[a2i, b2i+1]. (16)

By Corollary 8, Ji is not an isolating interval if t2i is an even zero. Hence, we call Ki an
effective candidate iff t2i < t2i+1 and t2i is an odd zero. Thus, Ki contains the candidate
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interval Ji = [t2i, t2i+1]. Furthermore, Ki is called an effective even candidate (resp.,
effective odd candidate) if Ji is an even (resp., odd) candidate interval (cf. (11)).

Our next theorem characterizes when Ki is an isolating interval of f . This is the “effective
version” of Lemma 5 and Lemma 10. But before this theorem, we provide a useful partial
criterion in the case when Ki is an effective even candidate:

Lemma 11. Let Ki = [a2i, b2i+1] be an effective even candidate. Then Ki isolates an even
zero provided one of the following conditions hold:
(E’)d: t2i ∈ Zero(fd) and ∂fu

∂X is negative at a2i or b2i,

(E’)u: t2i ∈ Zero(fu) and ∂fd

∂X is positive at a2i or b2i.

Proof. Say t2i is a zero of fd (the case where t2i ∈ Zero(fu) is similar). We have t2i+1 ∈ Bξ

for some ξ ∈ Zero(f), and we also know that f ′ = ∂f
∂X is positive at t2i+1. There are just

two cases: either (a) t2i is in Aξ, or (b) t2i is in Bξ. If (a) holds, then ξ is an even zero in
[c, t2i+1], and our lemma is true.

So assume (b) and (E’)d. From (E’)d and the monotonicity (12), we know that f ′ is
negative at c where c = a2i or b2i. If c = b2i then we get a contradiction since (b) implies f ′

is positive over Bξ ⊇ [t2i, t2i+1] ⊇ [c, t2i+1]. If c = a2i, the argument is more subtle. We know
that ξ ∈ [t2j , t2j+1] for some j < i and t2j+1 < t2i (for t2i is an odd zero). Moreover, f ′ has
constant sign in Bξ ⊇ [t2j+1, t2i+1] ⊇ [c, t2i+1]. Again this yields a contradiction. Q.E.D.

This lemma is effective because we have reduced the condition Lemma 10 which evalu-
ating ∂fu

∂X (or ∂fd

∂X ) at an algebraic number t2i to evaluating ∂fu

∂X (or ∂fd

∂X ) at bigfloats a2i and
b2i. Let

∆(f̄) := min{∆(
∂fu

∂X
),∆(

∂fd

∂X
)}. (17)

We must next strengthen this to a necessary and sufficient criterion:

Theorem 12 (Effective Isolation Criteria). Let Ki = [a2i, b2i+1] be an effective candidate.
If Ki is an even effective candidate, further assume that b2i − a2i < ∆(f̄). Then Ki is an
isolating interval of f iff one of the following conditions hold:
(O) Ki is an effective odd candidate.
(E)d: Ki is an effective even candidate, with fd(t2i) = 0 and ∂fu

∂X is negative at a2i or b2i.

(E)u: Ki is an effective even candidate, with fu(t2i) = 0 and ∂fd

∂X is positive at a2i or b2i.

Proof. As a preliminary remark, we note that Ki contains at most one zero of f . To see
this, since Ki = [a2i, t2i] ∪ [t2i ∪ t2i+1] ∪ [t2i+1, b2i+1], and [t2i, t2i+1] is a candidate interval,
it suffices to show that [a2i, t2i] and [t2i+1, b2i+1] has no zero of f . If Ki is the first (or
the last) effective candidate interval, it is clear that there is no root of f in [a2i, t2i] (or
[t2i+1, b2i+1]). Else, we have t2i−1 < t2i (since t2i is an odd zero), and so f has no zeros in
[t2i−1, t2i] ⊇ [a2i, t2i] since these are non-candidate intervals. Similarly, if t2i+1 < t2i+2 then
f has no zeros in [t2i+1, t2i+2] ⊇ [t2i+1, b2i+1]. It is possible that t2i+1 = t2i+2, but again f
has no zeros in the non-candidate interval [t2i+2, t2i+3] ⊇ [t2i+1, b2i+1]. This completes our
justification that Ki has at most one zero.

Suppose Ki is an effective odd candidate. Then Lemma 5 shows that Ki is isolating.
Suppose Ki is an effective even candidate. Assume fd(t2i) = 0 (the case fu(t2i) = 0 is
similar). Then the previous lemma shows if ∂fu

∂X is negative at a2i or b2i then Ki is isolating.
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Conversely, suppose Ki is isolating. We claim that ∂fu

∂X is negative at a2i or b2i. Suppose
otherwise: ∂fu

∂X (a2i) ≥ 0 and ∂fu

∂X (b2i) ≥ 0. By Lemma 10, that ∂fu

∂X (t2i) < 0. This implies
that ∂fu

∂X (x) = ∂fu

∂X (y) = 0 for some x ∈ [a2i, t2i) and y ∈ (t2i, b2i]. This is a contradiction
since |x− y| ≤ b2i − a2i ≤ ∆(f̄). Q.E.D.

3. Bounds for Triangular Systems

In this section, we generalize the univariate evaluation and sleeves for a univariate poly-
nomial to a triangular polynomial system Fn where

Fn = {f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)} (18)

where fi ∈ Z[x1, . . . , xi]. Generalizing our univariate notation, if B ⊆ Rn, let ZeroB(Fn)
denote the set of real zeros of Fn restricted to B.

Let B = I1 × · · · × In be a n-dimensional box, Ii = [ai, bi], and ξ = (ξ1, . . . , ξn−1) ∈ ξ =
I1 × · · · × In−1 be a real zero of Fn−1 = {f1, . . . , fn−1} = 0. Consider the polynomial

f(X) := fn(ξ1, . . . , ξn−1, X). (19)

We have a three-fold goal in this section:
1. Compute lower estimates on the evaluation EBIn(f) and separation bounds ∆In(f).
2. Compute a sleeve (In, fu, fd) for f that satisfies the monotonicity property.
3. Compute an upper estimate on the sleeve bound SBIn(fu, fd).

3.1. Lower Estimate on Evaluation and Separation Bounds
We give two methods to compute lower estimates on the evaluation bound EBIn(f). The

first method is based on a general result about multivariate zero bounds in [22]; the other is
based on resultant computation. The same ideas apply to estimating the separation bound
∆In(f ′).

Let Σ = {p1, . . . , pn} ⊆ Z[x1, . . . , xn] be a system of n polynomials in n variables. Assume
Σ has finitely many complex zeros. Let (ξ1, . . . , ξn) ∈ Cn be one of these zeros. Suppose
di = deg(pi) and K := max{√n + 1, ‖p1‖2, . . . , ‖pn‖2} where ‖p‖2 is the 2-norm of p. Then
we have the following result [22, p. 341]:
Proposition 13. Let (ξ1, . . . , ξn) be a complex zero of Σ. For any i = 1, . . . , n, if |ξi| 6= 0
then

|ξi| > MRB(Σ) :=(23/2NK)−D 2−(n+1)d1···dn . (20)

where

N :=
(

1 +
∑n

i=1 di

n

)
, D :=(1 +

n∑

i=1

1
di

)
n∏

i=1

di.

Note that this proposition defines a numerical value MRB(Σ) (the multivariate root
bound) for any zero-dimensional system Σ ⊆ Z[x1, . . . , xn] of n polynomials. We will now
exploit such a value for suitable Σ associated with Fn as in (18). Consider the set

F̂n :={f1, . . . , fn−1,
∂fn(x1, . . . , xn−1, X)

∂X
, Y − fn(x1, . . . , xn−1, X)} (21)

of n + 1 polynomials in Z[x1, . . . , xn−1, X, Y ].
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Lemma 14. Let (ξ1, . . . , ξn−1) be a zero of Fn−1. The evaluation bound of f(X) := fn(ξ1, . . . ,
ξn−1, X) ∈ R[X] satisfies EBIn(f) > MRB(F̂n).

Proof. As Fn is zero-dimensional, so is F̂n, which is easily seen. If (ξ1, . . . , ξn, y) is a zero
of F̂n, then f ′(ξn) = 0. Moreover, y = f(ξn). By definition of EB(f), we have EB(f) is the
minimum of all such non-zero |y|’s. By Proposition 13, EBIn(f) > MRB(F̂n). Q.E.D.

Note that our evaluation bound EBIn(f) in this lemma is a global one: it does not depend
on the interval In. We do not know any general method to exploit this In.

It is instructive to directly define the evaluation bound of a triangular system Fn: for
B ⊆ Rn, let B′ = B × R. Then define

EBB(Fn) := min{|y| : (x1, . . . , xn−1, x, y) ∈ ZeroB′(F̂n), y 6= 0}. (22)

If the set that which we are minimizing over is empty, then EBB(Fn) = ∞. Observe that
(22) is a generalization of the corresponding univariate evaluation bound (3). Note that for
i = 2, . . . , n, we similarly have evaluation bounds EBBi(Fi) for Fi, where Fi = {f1, . . . , fi}.

This multivariate evaluation bound is a lower bound on the univariate one: with f given
by (19), we have

EBIn(f) ≥ EBB(Fn) > MRB(F̂n).

As MRB(F̂n) is easily computed, our algorithm can use it as a lower estimate on EB(Fn).
In general, however, MRB(F̂n) is too pessimistic. So we next propose a computational way
to derive a lower estimate, via resultants. In Section 4.5, this computational approach sped
up the computation of Example 1 (resp., Example 2) by two (resp., over five) orders of
magnitude. Consider F̂n defined by (21). Let

ei =
{

resX(Y − fn, ∂fn

∂X ) i = n,
resxi(ei+1, fi) i = n− 1, . . . , 1

(23)

where resx(p, q) is the resultant of p and q relative to x. Thus e1 ∈ F[Y ]. If e1 6≡ 0, define

R(Fn) := min{|z| : e1(z) = 0, z 6= 0}.

If e1 has no real roots, let R(Fn) = ∞.

Lemma 15. If e1 6≡ 0, EB(Fn) ≥ R(Fn), and we can use R(Fn) as the evaluation bound.

Proof. From properties of the resultant, e1(Y ) is a linear combination of the polynomials
in F̂n. If (x1, . . . , xn−1, x, y) ∈ Zero(F̂n), y must be a zero of e1(Y ) = 0. From (23), we
conclude EB(Fn) ≥ R(Fn). Q.E.D.

Therefore, we may isolate the real roots of e1(Y ) = 0 and take min{l1,−r2} as the
evaluation bound for Fn, where (l1, r1) and (l2, r2) are the isolating intervals for the smallest
positive root and the largest negative root of e1(Y ) = 0 respectively.
Lower Estimate for Separation Bound.

We similarly need a lower estimate on the separation bound ∆(g), where g ∈ F[X].
Consider the system Ξ comprising the following 3 polynomials:

g(X), g(Y ), Z −X + Y. (24)



Complete Numerical Isolation of Real Zeros in General Triangular Systems 13

Thus for any zero (x, y, z) ∈ Zero(Ξ), we have x, y are zeros of g. Moreover, z = x − y
and so z 6= 0 implies |z| ≥ ∆(g). This proves that MRB(Ξ) is a lower bound on ∆(g).

Then we can compute ∆(f̄) = min{∆(∂fu

∂X ),∆(∂fd

∂X )}, where f is given by (19) and
(fu, fd) is its corresponding sleeve.

We also denote ∆(f̄) as ∆B(Fn) for conveniency.

3.2. Construction of a Sleeve
Our construction depend on In only in a very minimal way: we need only to assume a

definite sign in In. This means 0 6∈ In, or equivalently, either In > 0 or In < 0. In fact, the
construction depends on the signs of each of the intervals I1, . . . , In−1. We will assume that
Ii > 0 for i = 1, . . . , n; below we indicate how to reduce the general case to this “positive”
case.

Given a polynomial g ∈ R[x1, . . . , xn], we may decompose it uniquely as g = g+ − g−,
where g+, g− ∈ R[x1, . . . , xn] each has only positive coefficients, and the support of g+ and
g− are both minimum. Here, the support of a polynomial g is the set of power products
with non-zero coefficients in g.

Given f as in (19) and an isolating box ξ ∈ Fn−1 for ξ, following [16, 18], we define

fu(X) := fu
n ( ξ;X) = f+

n (b1, . . . , bn−1, X)− f−n (a1, . . . , an−1, X),
fd(X) := fd

n( ξ;X) = f+
n (a1, . . . , an−1, X)− f−n (b1, . . . , bn−1, X) (25)

where fn = f+
n − f−n and ξ = [a1, b1]× · · · × [an−1, bn−1].

We briefly indicate two possible solutions when our assumption that Ii > 0 fails. Perhaps
the simplest is to shift the origin of Fn so that the box I1× · · ·× In lies in the first quadrant
of Rn. E.g., replace xi by xi − ai in Fn and replace Ii by ai + Ii. Alternatively, proceed as
follows: for each i, if ξi = 0, we can replace xi in fn(x1, . . . , xn) by 0. After this, we can
split Ii if necessary so that Ii > 0 or Ii < 0. For each i such that Ii < 0, we replace xi in
fn(x1, . . . , xn) by −xi. Let f̄n(x1, . . . , xn) denote the polynomial after these replacements.
Now we may carry out the construction of (25) f̄n with the box B′ = I ′1 × · · · × I ′n where I ′i
is −Ii iff Ii < 0 and otherwise I ′i = Ii.

From the construction, it is clear that fu ≥ f ≥ fd. Moreover, both inequalities are strict
if ai = ξi = bi does not hold for any i = 1, . . . , n− 1. Hence (In, fu(X), fd(X) is a sleeve for
f(X) [16, 18]. We further have:

Lemma 16. Over any positive interval In = [l, r] > 0, we have:
(i) (Monotonicity) ∂fu

∂X ≥ ∂f
∂X ≥ ∂fd

∂X .
(ii) fu(X)− fd(X) is monotonously increasing over In.

Proof. Let f(X) = fn(ξ1, . . . , ξn−1, X) = f+
n (ξ1, . . . , ξn−1, X)− f−n (ξ1, . . . , ξn−1, X) and

T1(X) = fu(X)− f(X)

= (f+
n (b1, . . . , bn−1, X)− f+

n (ξ1, . . . , ξn−1, X))

+(f−n (ξ1, . . . , ξn−1, X)− f−n (a1, . . . , an−1, X)),
T2(X) = f(X)− fd(X)

= (f+
n (ξ1, . . . , ξn−1, X)− f+

n (a1, . . . , an−1, X))

+(f−n (b1, . . . , bn−1, X)− f−n (ξ1, . . . , ξn−1, X)),
T3(X) = fu(X)− fd(X)

= (f+
n (b1, . . . , bn−1, X)− f+

n (a1, . . . , an−1, X))

+(f−n (b1, . . . , bn−1, X)− f−n (a1, . . . , an−1, X)).
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Since f+
n , f−n are polynomials with positive coefficients and 0 < ai ≤ ξi ≤ bi for all i,

f+
n (b1, . . . , bn−1, X) − f+

n (ξ1, . . . , ξn−1, X), f−n (ξ1, . . . , ξn−1, X) − f−n (a1, . . . , an−1, X), and
hence T1(X) are polynomials in X with positive coefficients. Similarly, T2(X) and T3(X) are
polynomials with positive coefficients. For x > 0, we have ∂T1(x)

∂X = ∂fu(x)
∂X − ∂f(x)

∂X ≥ 0. Simi-

larly, we can show that ∂T2(x)
∂X = ∂f(x)

∂X − ∂fd(x)
∂X ≥ 0, and ∂T3(x)

∂X = ∂fu(x)
∂X − ∂fd(x)

∂X ≥ 0. Thus
∂fu

∂X ≥ ∂f
∂X ≥ ∂fd

∂X . As consequence, fu(X)− fd(X) is monotone increasing in In. Q.E.D.

As an immediate corollary, we obtain an upper estimate on the sleeve bound:

Corollary 17.
SBIn(fu, fd) ≤ fu(r)− fd(r). (26)

3.3. Upper Estimate on Sleeve Bound
How good is the upper estimate (26)? Our next goal is to give an upper bound on

fu(r)− fd(r) as a function of

b :=max{b1, . . . , bn}, w :=max{w1, . . . , wn}

where wi = bi − ai. Also let w = (w1, . . . , wn). For f ∈ R[x1, . . . , xn], write f =∑
α cαpα(x1, . . . , xn) where α = (α1, . . . , αn) ∈ Nn, and pα(x1, . . . , xn) denotes the mono-

mial xα1
1 · · ·xαn

n . Let ‖f‖1 :=maxα |cα| denote its 1-norm. The inner product of two vectors,
say w and α, is denoted 〈w,α〉 =

∑n
i=1 wiαi.

Lemma 18. Let α = (α1, . . . , αn) where m =
∑n

i=1 αi ≥ 1. Then

pα(b1, . . . , bn)− pα(a1, . . . , an) ≤ bm−1〈α,w〉 ≤ wmbm−1.

Proof. We have

Xm − Y m = (X − Y )(Xm−1 + Xm−2Y + · · ·+ Y m−1) ≤ (X − Y )mXm−1, (27)

provided X ≥ Y ≥ 0 and m ≥ 1. Then, assuming each αi ≥ 1,

pα(b1, . . . , bn)− pα(a1, . . . , an) =
∑n

i=1

{(∏i−1
j=1 a

αj

j

)
(bαi

i − aαi
i )

(∏n
k=i+1 bαk

k

)}

≤ ∑n
i=1 wiαi

{(∏i−1
j=1 a

αj

j

)(
bαi−1
i

) (∏n
k=i+1 bαk

k

)}
(by (27))

≤ ∑n
i=1 wiαi

{(∏i−1
j=1 bαj

) (
bαi−1

) (∏n
k=i+1 bαk

)}

= bm−1
∑n

i=1 wiαi.

In general, if any αi = 0, the corresponding term in the summation could be omitted in the
above derivation, and the proof remains valid. Q.E.D.

For example, if each αi = m/n then
∑n

i=1 wiαi ≤ mw/n.

Corollary 19. Let f =
∑

α cαpα(x1, . . . , xn) ∈ R[x1, . . . , xn].
If each coefficient cα is positive and m = deg(f) ≥ 1, then

f(b1, . . . , bn)− f(a1, . . . , an) ≤ bm−1
∑
α

|cα|〈w,α〉 ≤ wmbm−1‖f‖1.
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Proof. The above lemma extends linearly to a polynomial f :

f(b1, . . . , bn)− f(a1, . . . , an) =
∑
α

cα (pα(b1, . . . , bn)− pα(a1, . . . , an))

≤
∑
α

|cα|〈α,w〉

≤ wmbm−1‖f‖1.

Q.E.D.

Theorem 20. Let (In, fu, fd) be a sleeve as in (25), and n−1ξ = I1×· · ·×In−1 an isolating
box for ξ ∈ Rn−1, where Ii = [ai, bi] > 0, In = [l, r] > 0, and w = maxn−1

i=1 {bi − ai}. Then

SBI(fu, fd) ≤ wm‖fn‖1b
m−1,

where m = deg(fn), b = max{b1, . . . , bn−1, r}.
Proof. Let f(X) =

∑m
i=0 Ci(ξ1, . . . , ξn−1)Xi where Ci ∈ Z[x1, . . . , xn−1] has degree ≤

m − i, Ci = C+
i − C−

i , a = (a1, . . . , an−1), and b = (b1, . . . , bn−1). We have fu(X) =∑m
i=0(C

+
i (b)− C−

i (a))Xi, fd(X) =
∑m

i=0(C
+
i (a)− C−

i (b))Xi. For x ∈ In, we have

fu(x)− fd(x) =
m∑

i=0

(C+
i (b)− C+

i (a) + C−
i (b)− C−

i (a))xi

≤
m∑

i=0

w(m− i)bm−i−1(‖C+
i ‖1 + ‖C−

i ‖1)bi

< wmbm−1
m∑

i=0

‖Ci‖1 = wmbm−1‖fn‖1.

Q.E.D.

We give two corollaries to the above theorem.

Corollary 21. For a fixed Fn and In, when w → 0, SBIn(fu, fd) → 0.

So when w → 0, fu → f and fd → f . The correctness of our algorithm follows from the
fact with sufficient refinement, the sleeve-evaluation inequality (5) will eventually hold. The
next corollary gives an explicit condition to guarantee this:

Corollary 22. The sleeve-evaluation inequality (5) holds provided

w <
EBIn(f)

m‖fn‖1bm−1
. (28)

4. The Main Algorithm

In this section, we present our root isolation algorithm for a triangular system: given Fn

as in (18), to isolate the real zeros of Fn in a given n-dimensional box B = I1 × · · · × In.
But first, we outline the method for the case n = 2. Most of the issues in the general
algorithm already appear in this case, but the notations are more transparent. We also give
two subalgorithms for root refinement and an effective method for verifying zeros.
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4.1. Bivariate Isolation Algorithm
Suppose we are given f(X), g(X, Y ) ∈ Z[X, Y ], and we want to compute the zeros of

f = g = 0 in a box B = I × J (I, J ∈ F) to within precision ε. The algorithm proceeds as
follows:

INPUT: Σ = {f(X), g(X, Y )}, B = I × J , ε.
OUTPUT: Isolating boxes of Σ to precision ε.
1. Compute an evaluation bound EB = EBB(f, g) as defined in (22).
2. Isolate all the zeros of f in I.
3. For each [a, b] that isolates some zero ξ ∈ ZeroI(f), we perform the following:

3.1 Initialize sleeve bound, SB ←∞.
3.2 while (EB ≤ SB) do

3.2.1Refine the isolating interval K = [a, b] of ξ.
3.2.2Compute a sleeve (J, gu, gd) for g(Y ) = g(ξ, Y ).
3.2.3Compute the sleeve bound SB :=SB(J, gu, gd).

3.3 Isolate the zeros of gugd.
3.3.1Compute parity of each zero of gugd.
3.3.2Form the sorted list SLg,J .
3.3.3From this, we have the effective candidate intervals Ki for various i.

3.4 for each effective candidate Ki, apply Theorem 12 to check if Ki is an isolating interval.
3.5 Refine the isolating intervals to the given precision ε.

We note various operations assumed in the above algorithm:

• Step 1: Compute an evaluation bound EBB(f, g). This is given in Section 3.1..

• Steps 2 and 3.3: Isolate the zeros of polynomials in F[X].

• Steps 3.2.1, 3.4, and 3.6: We need to refine an isolating interval [a, b], which will be
discussed in Section 4.2..

• Step 3.2.2: Given [a, b] we need to compute a sleeve gu, gd. This is given in Section
3.3..

• Step 3.2.3: Given a sleeve, (J, gu, gd), compute a sleeve bound. This is given in Section
3.3..

• Step 3.3.1: We need to compute the parity. If [c, d] is an isolating interval of a real
root ξ of h = gugd = 0. Assuming c < ξ < d. Then ξ is an odd root of h = 0 iff
h(c)h(d) < 0; ξ is an even root of h = 0 iff h(c)h(d) > 0.

• Step 3.4: According to Theorem 12, we need to detect the sign of ∂fu

∂X (or ∂fd

∂X ) at a2i or
b2i when Ki = [a2i, b2i+1] is an even effective candidate interval under b2i− a2i < ∆(f̄)
(see (17)). In fact, when the condition in Lemma 11 holds, we need not to ensure that
b2i − a2i < ∆(f̄).
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4.2. Refinement of Isolating Box
Since refining an isolation box is an essential subroutine in our algorithm, we now provide

more details of this subalgorithm. Let nξ = n−1ξ × [c, d] > 0 be an isolating box for a
zero ξ = (ξ1, . . . , ξn) of Fn. With f(X) = fn(ξ1, . . . , ξn−1, X) as usual, we construct the
sleeve ([c, d], fd, fu) associated with nξ satisfying the sleeve-evaluation inequality (5) and
the monotonicity property (12). Suppose ′

n−1ξ is a proper refinement of n−1ξ, i.e.,
′
n−1ξ  n−1ξ (proper subset). We obtain the corresponding sleeve functions:

f̄u(X) = fu
n ( ′

n−1ξ,X)(see definition in (25)),

f̄d(X) = fd
n( ′

n−1ξ, X).

Lemma 23. Let t0 < t1 be distinct zeros of fufd in [c, d], and t′0 < t′1 be the two smallest zeros
of f̄uf̄d in [c, d]. If ′

n−1 is not a point (i.e., 6= (ξ1, . . . , ξn−1)), then ξ ∈ ′
n−1ξ × [t′0, t

′
1] ⊆

nξ.

Proof. From ′
n−1ξ  n−1ξ, ′

n−1 6= [ξ1, ξ1]× · · · × [ξn−1, ξn−1], and (25), we have

fd(x) < f̄d(x) < f(x) < f̄u(x) < fu(x),∀x ∈ [c, d].

It is not difficult to check that sleeve-evaluation inequality (5) and the monotonicity property
(12) hold for the sleeve ([c, d], f̄u, f̄d). Wlog, we assume fu(t0) = 0, fd(t1) = 0. The proofs
for other cases are similar. We have f̄u(t0) < fu(t0) = 0 and f̄u(ξn) > f(ξn) = 0. Then f̄u

has at least one root in (t0, ξn). Since (t0, ξn) ⊂ Aξn , by Lemma 7, f̄u(x) has a unique real
root in (t0, ξn). Let t′0 be this root. Then, t′0 > t0. Since f̄u(x) < fu(x) < 0, f̄u has no real
roots in [c, t0] and t′0 is the smallest root of f̄uf̄d = 0 in [c, d]. Similarly, we could show that
f̄d(x) = 0 has at least one root in (ξn, t1). Let t′1 be the smallest of these roots. Then t′0 and
t′1 are the two smallest roots of f̄uf̄d = 0 in [c, d] and ξn ∈ (t′0, t

′
1) ⊂ [t0, t1]. Q.E.D.

The lemma tells us how to refine the isolating box of a triangular system without checking
which of the subdivided intervals is the isolating interval with Theorem 12.

Refine(Fn,K, ε)
Input: K = I1 × · · · × In (an isolating box of the triangular system Fn) and ε (a given precision).
Output: A refined isolating box K̂ = Î1 × · · · × În of K such that w = maxn

j=1{|Îj |} ≤ ε.
1. If n = 1, subdivide In by half until |In| < ε and return In.
2. Let Kn−1 = I1 × · · · × In−1.

w = maxn
j=1{|Ij |}.

If w ≤ ε, return K.
δ = ε.

3. while w > ε, do
3.1. δ = δ/2.
3.2. Kn−1 ← Refine(Fn−1, Kn−1, δ).
3.3. If Kn−1 is a point, f(X) ← fn(ξ1, . . . , ξn−1, X) is a univariate polynomial with rational

coefficients. Subdivide In by half until |In| < ε and return In.
3.4. Compute the sleeve: fu(X) ← fu

n (Kn−1, X), fd(X) ← fd
n(Kn−1, X).

3.5. Isolate the real roots of fufd in In with precision δ.
3.6. Denote the first two intervals as [c1, d1], [c2, d2].
3.7. w ← d2 − c1.

4. Return K̂ ← Kn−1 × [c1, d2].
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Remark: In step 3.3, when Kn−1 is a point, Kn−1 = [ξ1, ξ1] × · · · × [ξn−1, ξn−1] ∈ Fn−1,
where (ξ1, . . . , ξn−1) is the real root of Fn−1 in I1 × · · · × In−1.

Proof of Correctness. By Lemma 23, we need only select the first two isolating intervals
of fdfu = 0. By Corollary 21, when |Kn−1| → 0, fu → f and fd → f . Since we isolate the
real roots of fufd in In with precision δ, after enough subdivision, w will be smaller than ε
and the algorithm will terminate.

4.3. Verifying Zeros
We are given a box B = I1×· · ·×Ik, a triangular system Σ = {h1(x1), . . . , hk(x1, . . . , xk)}

and a polynomial g(x1, . . . , xk) ∈ Z[x1, . . . , xk]. If B is the isolating box of a zero ξ =
(ξ1, . . . , ξk) ∈ Zero(Σ), we will provide a subroutine to verify whether g(ξ1, . . . , ξk) = 0.
Consider the polynomial system:

Σg = {h1(x1), h2(x1, x2), . . . , hk(x1, . . . , xk), Y − g(x1, . . . , xk)}. (29)

We define a generalized evaluation bound,

EBB(g; Σ) := inf{|y| : (x1, . . . , xk, y) ∈ ZeroB(Σg), y 6= 0}.
Note that the evaluation bound definition (22) can be reduced to this case. It is easily seen
that if y0 := g(ξ1, . . . , ξk) 6= 0 then |y0| ≥ EBB(g; Σ). By Proposition 13, we obtain the
lower estimate EBB(g; Σ) > MRB(Σg). We again provide a resultant-based computational
estimate, as follows: define the sequence rk+1, rk, . . . , r1 of polynomials where rk+1 :=Y −
g(x1, . . . , xk) and ri := resxi(hi(x1, . . . , xi), ri+1(x1, . . . , xi, Y )) for i = k, . . . , 1. Then r1 =
r1(Y ). If r1 6≡ 0, let ξ+ (resp., ξ−) be the smallest positive zero of r1(Y ) (resp., r1(−Y )). If
y0 = g(ξ1, . . . , ξk) 6= 0 then |y0| ≥ min{ξ+, ξ−}; this is because y0 is a zero of r1(Y ) = 0. We
can compute lower bounds on ξ+, ξ− via root isolation. Note that the second method is only
complete for regular triangular systems (when r1 6≡ 0).

We give the following algorithm.

ZeroTest(Fn,K = I1 × · · · × In, g(x1, . . . , xn))
Input: an isolating box K of a zero ξ of triangular system Fn, g ∈ F[x1, . . . , xn], Ii = [ai, bi] > 0.
Output: TRUE iff g(ξ) = 0.
1. δ = maxn

j=1{|Ij |}.
2. Compute bounds similar to a sleeve of g:

gu = g+(b1, . . . , bn)− g−(a1, . . . , an),
gd = g+(a1, . . . , an)− g−(b1, . . . , bn).

3. If gd = gu, then g = gd = gu. If gd = 0 return TRUE; otherwise return FALSE.
4. If gugd ≥ 0, then g 6= 0 and return FALSE.
5. Compute the zero bound ρ if it does not exist.
6. If |gu| < ρ, and |gd| < ρ, then g < ρ and hence g = 0 and return TRUE.
7. δ = δ/2, K = Refine(Fn,K, δ), and goto step 2.

Proof of Correctness. From the construction, we have gd ≤ g ≤ gu. If gd = gu, then
g = gd = gu and g = 0 iff gd = 0. If gugd ≥ 0, then g 6= 0. Note that gd < g < gu in this
case. The sign of g is the same as the sign of sign(gu) or sign(gd). In the two cases, we
need not to compute zero bound of g. If gugd < 0, we need to compute the zero bound ρ. If
|gu| < ρ and |gd| < ρ, then g < ρ and hence g = 0 by the definition of the zero bound. It is
obvious that the algorithm will terminate since gu and gd approach g when |K| → 0.
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4.4. Isolation Algorithm
We now give the main algorithm of this paper. Note that our algorithm can detect

whether the input triangular system is positive dimensional.

RootIsol(Fn, Bn, ε)
Input: Fn ⊆ Z[x1, . . . , xn], Bn =

∏n
i=1 Ii ⊂ Fn with Ii > 0 and ε > 0.

Output: An isolating set for ZeroBn
(Fn), or else “Fn is positive dimensional”.

1. Compute an isolating interval set ZeroB1(F1) for F1 to precision ε.
Result := ZeroB1(F1). NewResult ← ∅.
If Result = ∅, return Result.

2. For i from 2 to n, do
2.1. Compute an evaluation bound EBi :=EB(Fi) for Fi.
2.2. δ ← ε.
2.3. while Result 6= ∅, do

2.3.1. Choose an element i−1ξ from Result.
Result ← Result \ { i−1ξ}.

2.3.2. Let f(X) ← fi(ξ1, . . . , ξi−1, X) =
∑

k ck(ξ1, . . . , ξi−1)Xk.
If ZeroTest(Fi−1, i−1ξ, ck(x1, . . . , xi−1)) =TRUE for all k then fi ≡ 0, then
return(“Fn is positive dimensional”).

2.3.3. Compute the sleeve: fu(X) ← fu
i ( i−1ξ;X), fd(X) ← fd

i ( i−1ξ;X).
2.3.4. While fu(bi)− fd(bi) ≥ EBi,

δ ← δ/2 and i−1ξ ← Refine(Fi−1, i−1ξ, δ).
fu(X) ← fu

i ( i−1ξ;X), fd(X) ← fd
i ( i−1ξ;X).

2.3.5. Isolate the real roots of fufd in Ii.
2.3.6. Compute the parity of each root of fufd in Ii.
2.3.7. Construct the effective candidate intervals.
2.3.8. for each effective candidate interval K,

2.3.8.1. Apply Theorem 12 to decide whether K is isolating.
K is an effective odd candidate interval, K is isolating;
K is an effective even candidate interval:

If K satisfies the condition in Lemma 11, K is isolating;
Else, compute a lower estimate ∆i = ∆Bn

(Fi) = ∆(f̄) by (17),
refine K to the precision ∆i.
K is isolating iff it satisfies the condition of Lemma 11.

2.3.8.2. If K is isolating, then
K ← Refine(Fi,K, ε).
NewResult ← NewResult

⋃{ i−1ξ ×K}.
2.4. If NewResult = ∅, return NewResult.
2.5. Result ← NewResult. NewResult ← ∅.

3. return Result.

Remarks:
1. In Step 2.1, when the system is not regular, we need to compute the evaluation bound
by Proposition 13. When the system is not zero-dimensional, we still use Proposition 13 to
compute the evaluation bound. Though the evaluation bound is not right, the system can
be detected to be positive dimensional. The algorithm is correct in global sense.
2. Algorithm RootIsol can be improved in several ways.

• In the Section 3.3., we give two methods to compute the sleeve bound. Note that the
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algorithm based on (26) is more adaptive. If we use (28) to give the sleeve bound, the
Sleeve-Evaluation Inequality holds automatically.

• Theorem 12 gives a criterion to isolate roots in an open interval. We thus need to
check whether a rational number r is a zero of f(X). In other words, we need to check
whether f(r) = fi(ξ1, . . . , ξi−1, r) = 0; this can be done using ZeroTest.

• We will show that the assumption Bn > 0 is reasonable. If we want to obtain the real
roots of f in the interval I = (a, b) < 0, we may consider g(X) = f(−X) in the interval
(−b,−a). If 0 ∈ (a, b), we can consider the two parts, (a, 0) and (0, b) respectively,
since we can check if 0 is a zero of f(X).

• If we want to find all the real roots of f , we first isolate the real roots of f in (0, 1),
then isolate the real roots of g(X) = Xn ∗ f(1/X) in (0, 1), and check whether 1 is a
root of f . As a result, we can find all the zeros of f(X) in (0,+∞). We can find the
zeros of f(X) in (−∞, 0) by isolating the zeros of f(−X) in (0,+∞). Finally, we check
whether 0 is a zero of f(X).

• Theorem 12 assumes that the sleeves are faithful (see (6)). We will show how to isolate
the real roots of f when the sleeve-evaluation inequality (5) holds but |f(a)| < EBI(f)
or fu(b)fd(b) ≤ 0. In fact, if we replace EBI(f) with

ETI(f) := min{|f(z)| : z ∈ ZeroI(f ′) ∪ {a} \ ZeroI(f)}, (30)

then almost all the sleeve (I, fu, fd) is faithful except for f(a) = 0 or f(b) = 0. If
f(a) = 0 or f(b) = 0, we can ignore the first or last element in SLf,I to form effective
candidate intervals of f . When f(a) = 0, the first effective candidate interval may or
may not be the isolating interval of f , we need to check it by Theorem 12. And we need
to use the first isolating interval in SLf,I to decide whether the first effective candidate
interval is isolating if the first three elements in SLf,I are all isolating intervals of fu

(or fd).

Although we can simply solve the non-faithful problem as mentioned above, when
f(a) or f(b) is very close but not equal to 0, ETI(f) is very small. It is expensive to
construct (I, fu, fd) in order to satisfy the sleeve-evaluation inequality (5). In order to
avoid this case, we just use EBI(f) directly and deal with the non-faithful sleeve case
as in the Appendix.

4.5. Worked Examples
We provide some worked examples with multiple zeros. Note that all the rational numbers

in our examples are dyadics, D.
Example 1: Consider the system F2 = {f1, f2} where

f1 = x4 − 3 x2 − x3 + 2 x + 2,

f2 = y4 + xy3 + 3 y2 − 6 x2y2 + 4 x y + 2 xy2 − 4 x2y + 4 x + 2.

We isolate all the real roots of the system to precision 2−4 with algorithm RootIsol.
Isolating the real roots of f1 to precision 2−4, we obtain the following isolating inter-
vals: [[−23

16 , −11
8 ], [−5

8 , −9
16 ], [11

8 , 23
16 ], [25

16 , 13
8 ]]. Next consider the first positive isolating interval
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1ξ = [11
8 , 23

16 ], where ξ satisfies f1(ξ) = 0 and ξ ∈ [118 , 23
16 ]. We will isolate the real roots of

f2(ξ, y) = 0 in [0, 2].
Computing the evaluation bound with the resultant method introduced in Section 3.1.,

we have EB2 = 1
2 . The sleeve computed using the interval 1ξ is

fu(y) = −175

32
y2 − 29

16
y + y4 +

23

16
y3 +

31

4
,

fd(y) = −851

128
y2 − 177

64
y + y4 +

11

8
y3 +

15

2
.

The sleeve bound of ([0, 2], fu, fd) is SB = fu(2) − fd(2) = 59
8 . Since the sleeve-evaluation

inequality (5) does not hold, we refine 1ξ. Let 1ξ = Refine(f1, 1ξ,
1
28 ) = [181128 , 363

256 ]. We
have the new sleeve

fu(y) = −50475

8192
y2 − 9529

4096
y + y4 +

363

256
y3 +

491

64
,

fd(y) = −204331

32768
y2 − 39097

16384
y + y4 +

181

128
y3 +

245

32

with sleeve bound SB = fu(2)−fd(2) = 949
2048 < 1

2 = EB2. The sleeve ([0, 2], fu, fd) is faithful
(6) since fu(0) = 491

64 > 1
2 , fd(0) = 245

32 > 1
2 , fu(2) = 2927

512 > 1
2 , fd(2) = 10759

2048 > 1
2 .

Isolating fufd in [0, 2] to precision 2−8, we obtain SLf2,[0,2]: [[165128 , 331
256 ], [395256 , 99

64 ]] both with
parities 1. The two isolating intervals are both isolating intervals of fd. It is an isolating
interval of f2(ξ, y) by Lemma 9. So there is an even root of f2(ξ, y) in [0, 2] by Theorem 12.
It is in [165

128 , 99
64 ]. So [118 , 23

16 ]× [165
128 , 99

64 ] is an isolating box of triangular system F2.
The isolating box does not satisfy our output precision requirement. Refine the isolating

box with Refine, we obtain [181
128 , 5793

4096 ]× [1423
1024 , 2947

2048 ].
Eventually, we obtain all the isolating boxes for F2 = 0 in 0.141s with RootIsol. If we use

Lemma 14 to compute MRB(F2), we have 1
2289 < MRB(F2) < 1

2288 , and the time to isolate
the roots is 9.282s, about 100 times slower.
Example 2: Consider the system F3 = {f1, f2, f3} where

f1 = x3 − 2 x2 + 8,

f2 = 4 y4 + (4 x3 − 8 x2 − 32) y2 + x6 − 4 x5 + 4 x4 + 16 x3 − 32 x2 + 64,

f3 = (2 z2 + 2 y2 + x3 − 2 x2 − 8)2 + 32 x3 − 64 x2.

Here f3 = 0 is a surface in R3 discussed in [4] and [7]. We isolate F3 in the box [−5, 5] ×
[−5, 5] × [−5, 5] with RootIsol. We deal with the non-faithful case in the appendix of the
paper.

At first, isolating f1 to precision 2−10, we have one isolating interval for the real root ξ
of f1 = 0: [−773

512 ,−1545
1024 ].

Computing the evaluation bound EB2 of F2 by resultant computation, we have EB2 =
256.

Let f̄2(x, y) := f2(−x, y). Then we consider f̄2(−ξ, y) in [0, 5] with −ξ ∈ [15451024 , 773
512 ].

Computing its sleeve, we have

fu
2 = 4 y4 − 17166515417

268435456
y2 +

3622826437025545

18014398509481984
,

fd
2 = 4 y4 − 2147501437

33554432
y2 − 231682548623839247

1152921504606846976
.
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So
fu
2 (5)− fd

2 (5) =
1912673888824283727
1152921504606846976

< EB2.

We can check: fu
2 (5) fd

2 (5) > 0, but fu
2 (0) fd

2 (0) < 0. Isolating fu
2 fd

2 in [0, 5], we obtain
Zero[0,5](fu

2 fd
2 ):

[[
57

1024
,

29
512

], [
2047
512

,
4095
1024

], [4,
4097
1024

]].

Since ZeroTest(f1, [−773
512 ,−1545

1024 ], f2(x, 0)) = TRUE, 0 is a root of f2(ξ, y) = 0. Then the
first element in SLf2,[0,5] should be ignored. And the last two elements form an effective
candidate interval K of f̄2(−ξ, y). Since one element is the isolating interval of fu

2 and the
other is the isolating interval of fd

2 , K = [2047
512 , 4097

1024 ] is an isolating interval of f̄2(−ξ, y) by
Theorem 12 (O). Then the isolating interval of f̄2(−ξ, y) in [0, 5] is

[[0, 0], [
2047
512

,
4097
1024

]].

In the end, we can find all the isolating boxes of F2 = {f1, f2} in [−5, 5]× [−5, 5]:

[[−773
512

,−1545
1024

]× [−4097
1024

,−2047
512

], [−773
512

,−1545
1024

]× [0, 0], [−773
512

,−1545
1024

]× [
2047
512

,
4097
1024

]].

Computing the evaluation bound of F3 with resultant computation, we obtain EB3 = 256.
Consider the isolating box [−773

512 ,−1545
1024 ]× [−4097

1024 ,−2047
512 ]. Assume that it is an isolating box

of root (ξ, η). Let f̄3(x, y, z) = f3(−x,−y, z). So f̄3(−ξ,−η, z) = f3(ξ, η, z). We will isolate
f̄3(−ξ,−η, z) in (0, 5). Computing its sleeve, we have

fu
3 = 4 z4 +

17210002215

268435456
z2 +

53978322667881993

18014398509481984
,

fd
3 = 4 z4 +

2143272579

33554432
z2 − 3122152760668065807

1152921504606846976
.

We derive fu
3 (5) − fd

3 (5) = 13429555705511252559
1152921504606846976 < 256 = EB3. It is easy to check that

fu
3 (5) fd

3 (5) > 0 and fu
3 (0) fd

3 (0) < 0. Isolating fu
3 fd

3 in [0, 5], we obtain: [[105512 , 211
1024 ]], which

means that f3(ξ, η, z) = 0 has no roots in (0, 5). With ZeroTest, we may check that 0 is a
root of f3(ξ, η, z) = 0. That is, the real roots of f̄3(−ξ,−η, z) in [0, 5] is [[0, 0]]. In a similar
way, we can show that the real roots of f3(ξ, η, z) in [−5, 5] is [[0, 0]].

We can compute all the isolating boxes for F3 in [−5, 5]×[−5, 5]×[−5, 5]: [[−773
512 ,−1545

1024 ]×
[−4097

1024 ,−2047
512 ] × [0, 0], [−773

512 ,−1545
1024 ] × [0, 0] × [−4097

1024 ,−2047
512 ], [−773

512 ,−1545
1024 ] × [0, 0] × [0, 0],

[−773
512 ,−1545

1024 ]× [0, 0]× [2047
512 , 4097

1024 ], [−773
512 ,−1545

1024 ]× [2047
512 , 4097

1024 ]× [0, 0]]. Using Lemma 15 over
Lemma 14 improves the time from > 40, 000s to 0.235s.

4.6. Experimental Results
In order to evaluate the effectiveness of our algorithms, we implemented RootIsol in Maple

10 and did extensive tests on randomly generated triangular systems. In our implementation,
we lower estimate the evaluation bound with the resultant computation method described in
Section 3.1.. The most time-consuming parts are the computation of the evaluation bounds
for the system and the refinement for the isolating boxes.

We tested our program with three sets of examples. The coefficients of the tested polyno-
mials are between −100 and 100. The precision is set to 2−10. We use the method mentioned
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in the Remarks for RootIsol to compute all the real solutions for the triangular systems.
The timings are collected on a PC with a 3.2G CPU and 512M memory.

The first set of examples are sparse polynomials and the results are given in Table 1.
We use the Maple command randpoly({x1, . . . , xn}, degree=d, terms =t) to generate poly-
nomials with given degree and given number of terms. The type of a triangular system
Fn = {f1, . . . , fn} is a list (d1, . . . , dn) where di is the degree of fi in xi. The tested trian-
gular systems have types indicated under the TYPE column. TIME is the average running
time for each triangular system in seconds. NS is the average number of real solutions for
each triangular system. NT is the number of tested triangular systems. NE is the average
number of terms in each polynomial.

TYPE TIME NS NT NE
(3, 3) 0.04862 2.04 100 (4, 10)
(9, 7) 0.52717 3.99 100 (10, 10)

(21, 21) 108.9115 5.45 20 (10, 10)
(3, 3, 3) 0.15783 3.48 100 (4, 10, 10)
(9, 7, 5) 16.20573 8.36 100 (10, 10, 10)

(3, 3, 3, 3) 1.69115 5.64 100 (4, 10, 10, 10)
(3, 3, 3, 3, 3) 159.1199 8.0 10 (4, 10, 10, 10, 10)

Table 1. Timings for solving sparse triangular systems

The second set of examples are dense polynomials and the results are given in Table 2.
A triangular system Fn = {f1, . . . , fn} of type (d1, . . . , dn) is called dense if fi =

∑di
k=0 ckx

k
i

and deg(ck, xj) = dj − 1 for all k and i > j.

TYPE TIME NS NT NE
(3, 3) 0.05355 1.91 100 (3.99, 8.02)
(9, 8) 1.87486 4.26 100 (9.94, 43.98)

(11, 11) 8.78255 4.5 80 (11.975, 72.5)
(16, 14) 50.22294 6.0 100 (16.9, 127.13)
(21, 15) 164.23443 6.22 100 (21.91, 176.8)
(3, 3, 3) 0.38702 2.91 100 (3.99, 7.77, 13.01)
(5, 4, 4) 2.97011 4.88 100 (5.99, 14.72, 24.24)
(5, 5, 5) 33.225275 5.6125 80 (5.9625, 17.775, 42.1375)
(8, 7, 6) 592.1848 7.6 10 (8.9, 36.0, 79.8)

(3, 3, 3, 3) 119.94042 6.96 50 (4.0, 8.12, 12.82, 20.92)
(5, 5, 5, 3) 551.4401 3.4 10 (6.0, 32.1, 42.3, 21.5)

Table 2. Timings for solving dense triangular systems

The third set of test examples are triangular systems with multiple roots and the results
are given in Table 3. A triangular system of type (d1, . . . , dn) is generated as follows: f1

is a random polynomial in x1 and with degree d1 in x1 and fi = a2
i (bixi + ci)b

di+1

2
c−b di

2
c

for i = 2, . . . , n, where ai is a random polynomial in x1, . . . , xi of degree bdi/2c in xi, and
bi, ci are random polynomials in x1, . . . , xi−1. The column NM gives the average number of
multiple roots for the tested triangular systems.

From the above experimental results, we could conclude that our algorithm is capable of
handling quite large triangular systems.

5. Conclusion

This paper provides a complete algorithm of isolating the real roots for arbitrary zero-
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TYPE TIME NS NM NT NE
(5, 5) 0.71251 3.71 1.57 100 (5.97, 34.47)
(9, 8) 0.60408 3.1 3.1 100 (9.94, 18.92)

(13, 11) 32.44376 6.55 3.92 100 (13.94, 107.68)
(23, 21) 466.0289 6.15 3.75 20 (24.0, 183.4)
(3, 3, 3) 3.21342 5.59 3.24 100 (3.99, 13.08, 31.71)
(9, 7, 5) 425.95055 12.95 8.15 20 (9.95, 60.85, 100.35)

(3, 3, 3, 3) 130.617 11.15 6.1 20 (4.0, 12.2, 33.7, 62.95)

Table 3. Timings for solving dense triangular systems

dimensional triangular polynomial systems. The key idea is to use a sleeve satisfying the the
sleeve-evaluation inequality to isolate the roots for a univariate polynomial with algebraic
number in its coefficients. We further introduce the new tools of evaluation and separation
bounds, as well as methods to estimate them. Even with our current simple implementa-
tion, the algorithm is shown to be quite effective for modest size problems. To solve larger
problems, the bottle neck of the algorithm is the estimation of evaluation and separation
bounds. An important research problem is to derive “local bounds”, i.e., bounds that exploit
the box B in ∆B(Fn) or EBB(Fn). Furthermore, current bounds cannot distinguish among
the different components of a zero of Fn, but we only want to bound the last component.
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Appendix A. Non-faithful (I, fu, fd) treatment. If we want to use EBI(f) directly, we
need to deal with the special cases near the endpoints of I.

Before solving these cases, we will show a useful lemma. We will define the similar open
intervals for any real root ξ of f in the whole interval (−∞,+∞) as (9):

Lξ :=(lξ, ξ), Rξ :=(ξ, rξ) and Mξ :=(lξ, rξ), (31)

where lξ :=max{z : z ∈ Zero(f̂ · f) ∩ (−∞, ξ)}, rξ :=min{z : z ∈ Zero(f̂ · f) ∩ (ξ, +∞)}.
Lemma 24. Assuming the sleeve-evaluation inequality (5). If t ∈ F and |f(t)| < EBI(f),
then we have
(i)If f(t) > 0 and f ′(t) > 0, then t ∈ Rξ for some ξ ∈ Zero(f);
(ii)If f(t) > 0 and f ′(t) < 0, then t ∈ Lξ for some ξ ∈ Zero(f);
(iii)If f(t) < 0 and f ′(t) > 0, then t ∈ Lξ for some ξ ∈ Zero(f);
(iv)If f(t) < 0 and f ′(t) < 0, then t ∈ Rξ for some ξ ∈ Zero(f).

Note that all the isolating intervals are strictly inside I and [a, a], [b, b] are not included
in Sf,I even if fu(t)fd(t) = 0, where t = a, b. If [c, d] is an isolating interval of g in an interval
J , we labeled as [c, d] Ã ZeroJ(g).

When |f(a)| < EBI(f), there are three cases may happen: fu(a)fd(a) > 0, fu(a)fd(a) <
0 or fu(a)fd(a) = 0. We analyze all the cases and solve them below. Note that we need
only to check whether or not there is a root of f in the first effective candidate interval or
between a and the first root of fufd.

1. If fu(a)fd(a) > 0, of course, f(a) 6= 0. In this case, the first effective candidate interval
of f may or may not be the isolating interval of f . We need to check it. Denote the
first two isolating intervals in Sf,I as [a0, b0], [a1, b1], if they exist.

(a) f(a) > 0,

i. ∂f(a)
∂X > 0. We know a is in some Rξ by Lemma 24 (i), where ξ ∈ Zero(f).
A. [a0, b0], [a1, b1] both exist.

• When [a0, b0] Ã ZeroI(fd) iff [a1, b1] Ã ZeroI(fu), it is clear that
[a0, b1] is an isolating interval of f by Theorem 12(O).

• When both of them are the isolating intervals of fd, [a0, b1] may not
be the isolating interval of f as mentioned in Theorem 12. But we
can check it by Theorem 12 (E). We can define b−1 := a (note that
∂fu(a)

∂X ≥ ∂f(a)
∂X > 0) and refine [a1, b1], if needed, such that ∂fu(X)

∂X is
positive in [a1, b1]. Then check whether ∂fu(X)

∂X has real zeros in [b−1, b1].
If so, [a0, b1] Ã ZeroI(f). If not, [a0, b1] is not an isolating interval of
f .

B. Sf,I = ∅, it is clear that ZeroI(f) = ∅. In fact, if there is a root of f in I,
then there must at least exist a root of fd in I.

C. Sf,I = {[a0, b0]}. It is clear that [a0, b0] Ã ZeroI(fd).
• f(b) > 0, ZeroI(f) = ∅.
• f(b) < 0, we can easily find that [a0, b] Ã ZeroI(f).
• f(b) = 0, it is clear that [b, b] Ã ZeroI(f).
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ii. ∂f(a)
∂X < 0. We can derive that a is in some Lξ by Lemma 24 (ii), where

ξ ∈ Zero(f).
A. [a0, b0], [a1, b1] both exist. It is clear that ξ ∈ I and Aξ = (a, ξ). We can

derive that [a0, b0] ⊂ Aξ and [a1, b1] ⊂ Bξ by Lemma 7. So [a0, b1] Ã
ZeroI(f).

B. Sf,I = ∅. It is clear that ZeroI(f) = ∅.
C. Sf,I = {[a0, b0]}. Then [a0, b0] Ã ZeroI(fd).

• f(b) > 0, ZeroI(f) = ∅.
• f(b) < 0, we can easily find that [a0, b] Ã ZeroI(f).
• f(b) = 0, it is clear that [b, b] Ã ZeroI(f).

(b) f(a) < 0,

i. ∂f(a)
∂X > 0. It is clear that a ∈ Lξ by Lemma 24 (iii). This case is similar as

1-(a)-(ii).
A. [a0, b0], [a1, b1] both exist. It is clear that ξ ∈ I and Aξ = (a, ξ). We can

derive that [a0, b0] ⊂ Aξ and [a1, b1] ⊂ Bξ by Lemma 7. So [a0, b1] Ã
ZeroI(f).

B. Sf,I = ∅. It is clear that ZeroI(f) = ∅.
C. Sf,I = {[a0, b0]}. Then [a0, b0] Ã ZeroI(fu).

• f(b) > 0, we can easily find that [a0, b] Ã ZeroI(f).
• f(b) < 0, ZeroI(f) = ∅.
• f(b) = 0, it is clear that [b, b] Ã ZeroI(f).

ii. ∂f(a)
∂X < 0. Then a ∈ Rξ for some ξ ∈ Zero(f) by Lemma 24 (iv). This case

is similar to 1-(a)-(i).
A. [a0, b0], [a1, b1] both exist.

• When [a0, b0] Ã ZeroI(fu) iff [a1, b1] Ã ZeroI(fd), it is clear that
[a0, b1] Ã ZeroI(f) by Theorem 12(O).

• When both of them are the isolating intervals of fu, [a0, b1] may not
be the isolating interval of f as mentioned in Theorem 12. But we
can check it by Theorem 12 (E). We can define b−1 := a (note that
∂fd(a)

∂X ≤ ∂f(a)
∂X < 0) and refine [a1, b1], if needed, such that ∂fd(X)

∂X

is negative in [a1, b1]. Then check whether ∂fd(X)
∂X has real zeros in

[b−1, b1]. If so, [a0, b1] Ã ZeroI(f). Else, [a0, b1] is not an isolating
interval of f .

B. Sf,I = ∅, it is clear that ZeroI(f) = ∅.
C. Sf,I = {[a0, b0]}. It is clear that [a0, b0] Ã ZeroI(fu).

• f(b) > 0, we can easily find that [a0, b] Ã ZeroI(f).
• f(b) < 0, ZeroI(f) = ∅.
• f(b) = 0, it is clear that [b, b] Ã ZeroI(f).

2. If fu(a)fd(a) < 0, from Lemma 3, we need to ignore the first isolating interval, denoted
it as [a−1, b−1], if it exists, in Sf,I in order to form candidate interval of f . There may or
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may not exist real roots of f in [a, b−1]. We need to check it as below. Let [a0, b0], [a1, b1]
be the second and third isolating intervals in Sf,I, if they exist.

(a) f(a) > 0, we can derive that fd(a) < 0 since fd(a) < f(a) < fu(a).

i. ∂f(a)
∂X > 0. Then a ∈ Rξ for some ξ ∈ Zero(f). We can derive that

[a−1, b−1] Ã ZeroI(fd) and [a0, b0] Ã ZeroI(fd) if they exist.
A. [a−1, b−1], [a0, b0], [a1, b1] all exist.

• If [a1, b1] Ã ZeroI(fu), it is clear that [a0, b1] Ã ZeroI(f).
• If [a1, b1] Ã ZeroI(fd), we can refine [a−1, b−1] and [a1, b1], if needed,

such that ∂fu(X)
∂X is positive in the two intervals. If ∂fu(X)

∂X has real root
in [b−1, b1], we can derive that [a0, b1] Ã ZeroI(f). Else, there is no
real root of f in [a0, b1].

B. Sf,I = {[a−1, b−1], [a0, b0]}.
• f(b) > 0, we can find there is no real root of f in I.
• f(b) < 0, we can derive that [a0, b] Ã ZeroI(f).
• f(b) = 0, it is clear that [b, b] Ã ZeroI(f).

C. Sf,I = {[a−1, b−1]} or Sf,I = ∅. We can find that there is on real root of
f in I.

ii. ∂f(a)
∂X < 0. Then a ∈ Lξ for some ξ ∈ Zero(f). We can derive that [a−1, b−1] Ã
ZeroI(fu) and [a0, b0] Ã ZeroI(fu) if they exist.
A. [a−1, b−1], [a0, b0], [a1, b1] all exist. Then ξ ∈ I. So Aξ = (a, ξ). We can

find that there is no real root of fufd in Aξ. So [a, b−1] Ã ZeroI(f).
• If [a1, b1] Ã ZeroI(fd), it is clear that [a0, b1] Ã ZeroI(f).
• If [a1, b1] Ã ZeroI(fu), we can refine [a−1, b−1] and [a1, b1], if needed,

such that ∂fd(X)
∂X is negative in the two intervals. If ∂fd(X)

∂X has real root
in [b−1, b1], we can derive that [a0, b1] Ã ZeroI(f). Else, there is no
real root of f in [a0, b1].

B. Sf,I = {[a−1, b−1], [a0, b0]}. At first, we can derive that [a, b−1] Ã ZeroI(f).
• f(b) > 0, we can find that [a0, b] Ã ZeroI(f).
• f(b) < 0, we can derive that there is no real root of f in [a0, b].
• f(b) = 0, it is clear that [b, b] Ã ZeroI(f).

C. Sf,I = {[a−1, b−1]}. Similarly, [a, b−1] Ã ZeroI(f). Note that f(b) < 0 in
this case. Otherwise, there must exist at least another isolating interval
of fu in I.

D. Sf,I = ∅.
• f(b) > 0.

If ∂f(b)
∂X > 0, then b ∈ Rξ for some ξ ∈ Zero(f). So we have [a, b] Ã

ZeroI(f). And the root is an even root of f .
If ∂f(b)

∂X < 0, then b ∈ Lξ for some ξ ∈ Zero(f). It is clear that there is
no real root of f in I.

• f(b) < 0, it is clear that [a, b] Ã ZeroI(f).
• f(b) = 0, then [b, b] Ã ZeroI(f).
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(b) f(a) < 0, we have fu(a) > 0.

i. ∂f(a)
∂X > 0. Then a ∈ Lξ for some ξ ∈ Zero(f). We can derive that [a−1, b−1] Ã
ZeroI(fd) and [a0, b0] Ã ZeroI(fd) if they exist.
A. [a−1, b−1], [a0, b0], [a1, b1] all exist. Then ξ ∈ I. So Aξ = (a, ξ). We can

find that there is no real root of fufd in Aξ. So [a, b−1] Ã ZeroI(f).
• If [a1, b1] Ã ZeroI(fu), it is clear that [a0, b1] Ã ZeroI(f).
• If [a1, b1] Ã ZeroI(fd), we can refine [a−1, b−1] and [a1, b1], if needed,

such that ∂fu(X)
∂X is positive in the two intervals. If ∂fu(X)

∂X has real root
in [b−1, b1], we can derive that [a0, b1] Ã ZeroI(f). Else, there is no
real root of f in [a0, b1].

B. Sf,I = {[a−1, b−1], [a0, b0]}. At first, we can derive that [a, b−1] Ã ZeroI(f).
• f(b) > 0, we can derive that there is no real root of f in [a0, b].
• f(b) < 0, we can find that [a0, b] Ã ZeroI(f).
• f(b) = 0, it is clear that [b, b] Ã ZeroI(f).

C. Sf,I = {[a−1, b−1]}. Similarly, [a, b−1] Ã ZeroI(f). Note that f(b) > 0 in
this case. Otherwise, there must exist at least another isolating interval
of fd in I.

D. Sf,I = ∅.
• f(b) > 0, it is clear that [a, b] Ã ZeroI(f).
• f(b) < 0.

If ∂f(b)
∂X > 0, then b ∈ Lξ for some ξ ∈ Zero(f). It is clear that there is

no real root of f in I.
If ∂f(b)

∂X < 0, then b ∈ Rξ for some ξ ∈ Zero(f). So we have [a, b] Ã
ZeroI(f). And the root is an even root of f .

• f(b) = 0, then [b, b] Ã ZeroI(f).

ii. ∂f(a)
∂X < 0. Then a ∈ Rξ for some ξ ∈ Zero(f). We can derive that

[a−1, b−1] Ã ZeroI(fu) and [a0, b0] Ã ZeroI(fu) if they exist.
A. [a−1, b−1], [a0, b0], [a1, b1] all exist.

• If [a1, b1] Ã ZeroI(fd), it is clear that [a0, b1] Ã ZeroI(f).
• If [a1, b1] Ã ZeroI(fu), we can refine [a−1, b−1] and [a1, b1], if needed,

such that ∂fd(X)
∂X is negative in the two intervals. If ∂fd(X)

∂X has real root
in [b−1, b1], we can derive that [a0, b1] Ã ZeroI(f). Else, there is no
real root of f in [a0, b1].

B. Sf,I = {[a−1, b−1], [a0, b0]}.
• f(b) > 0, we can derive that [a0, b] Ã ZeroI(f).
• f(b) < 0, we can find there is no real root of f in I.
• f(b) = 0, it is clear that [b, b] Ã ZeroI(f).

C. Sf,I = {[a−1, b−1]} or Sf,I = ∅. We can find that there is on real root of
f in I.

(c) f(a) = 0.
i. Sf,I = ∅. In this case f ≡ 0 may happen.
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A. If f(a+) 6= 0(a < a+ < b), [a, a] Ã ZeroI(f).
B. If f(a+) = 0(a < a+ < b), f ≡ 0. Otherwise, there is a root t of f ′ such

that f(t) 6= 0 and f ′(t) = 0, so there must exist real roots of fufd in
[a, a+] since the sleeve-evaluation inequality (5) holds.

ii. Sf,I 6= ∅. Of course, [a, a] Ã ZeroI(f) in this case. Denote the first three
elements in Sf,I as [a−1, b−1], [a0, b0], [a1, b1], if they exist.
A. [a−1, b−1], [a0, b0], [a1, b1] all exist. We can use the same method to check

whether there is a root of f in [a0, b1].
B. Sf,I = {[a−1, b−1], [a0, b0]}. Let t be the first nonzero value in the sorted

list {f ′(a), f ′′(a) , . . . , f (k)(a)}. In practice, we can let t = f(a+), where
a+ is close to a on its right side. When f(b) = 0, it is clear that [b, b] Ã
ZeroI(f) and there are no real roots of f in (a, b). So we just consider
the case f(b) 6= 0.
• t f(b) > 0, there are no real roots of f in (a, b].
• t f(b) < 0, [a0, b] Ã ZeroI(f).

C. Sf,I = {[a−1, b−1]}. There are no real roots of f in (a, b].

3. If fu(a)fd(a) = 0, then fu(a) = 0 or fd(a) = 0. Note that just one of the two equations
holds. We need to mention that in this case [a, a] is an isolating interval of fufd, but
we have ignored it from Sf,I.

(a) fu(a) = 0. That means fd(a) < 0. We can choose a point which is very close to a
and on the right side of a, denoted as a+. In fact, we can compute the derivative
of fd at the point a to replace fu(a+). And if ∂ifu(a)

∂Xi = 0, i = 0, 1, . . . , j and
∂j+1fu(a)

∂Xj+1 6= 0, we can use ∂j+1fu(a)
∂Xj+1 to replace fu(a+). If fu(a+)fd(a) > 0, we can

deal with it by the method discussed above in 1-(b). Else, fu(a+)fd(a) < 0, we
can deal with it by the method discussed above in 2-(b).

(b) fd(a) = 0. We can deal with this case similar to 3-(a). If fd(a+)fu(a) > 0, we
can deal with it by the method discussed above in 1-(a). Else, fd(a+)fu(a) < 0,
we can deal with it by the method discussed above in 2-(a).

Now we need to consider the other endpoint of the non-faithful sleeve (I, fu, fd). When
fu(b)fd(b) ≤ 0, we point out all the cases and solve them below. Note that |f(b)| < EBI(f)
in this case. Otherwise, it can not happen. Since we have considered the special cases, there
are less than four isolating intervals in Sf,I, when we discuss the case |f(a)| < EBI(f), now
we always assume there are more than three isolating intervals in Sf,I. We need only to
check whether or not there is a real root of f between the last root in ZeroI(fufd) and b.

1. If fu(b)fd(b) < 0, it is similar to the case fu(a)fd(a) < 0. The last isolating interval in
Sf,I, denoted as [l1, l2], need to be ignored when forming effective candidate intervals.

(a) f(b) > 0. Then fd(b) < 0.

i. ∂f(b)
∂X > 0. Then b ∈ Rξ for some ξ ∈ Zero(f). It is clear that ξ ∈ I. So

Bξ = (ξ, b).
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A. If [l1, l2] Ã ZeroI(fu), then there is no real root of fufd in Bξ. We can
derive that [l1, b] Ã ZeroI(f).

B. If [l1, l2] Ã ZeroI(fd), we can not conclude directly whether there is a
real root of f in [l1, b] or not since the last root in ZeroI(fufd) may be
in Aξ or in Bξ. But we can check whether there is a root of f in [l1, b] by
Theorem 12 (E). Note that the isolating interval in Sf,I adjacent to [l1, l2],
denoted as [l′1, l

′
2], is clearly an isolating interval of fd. Refine [l′1, l

′
2], if

needed, such that ∂fu(X)
∂X is positive in it. Note that ∂fu(b)

∂X > ∂f(b)
∂X > 0.

We can check whether ∂fu(X)
∂X has real root in [l′2, b]. If it has, then

[l1, b] Ã ZeroI(f). Else, there is no real root in [l1, b].
ii. ∂f(b)

∂X < 0. Then b ∈ Lξ for some ξ ∈ Zero(f). It is clear that ξ 6∈ I. We can
find that [l1, l2] Ã ZeroIf

d. And there is no real root of f in [l1, b].
(b) f(b) < 0. We can find fu(b) > 0.

i. ∂f(b)
∂X > 0. Then b ∈ Lξ for some ξ ∈ Zero(f) and ξ 6∈ I. We can derive that

[l1, l2] Ã ZeroI(fu). This case similar to 1-(a)-(ii). There is no real root of f
in [l1, b].

ii. ∂f(b)
∂X < 0. Then b ∈ Rξ for some ξ ∈ ZeroI(f). Of course, ξ ∈ I.
A. If [l1, l2] Ã ZeroI(fd), then there is no real root of fufd in Bξ. We can

derive that [l1, b] Ã ZeroI(f).
B. If [l1, l2] Ã ZeroI(fu), we can not conclude directly whether there is a

real root of f in [l1, b] or not since the last root in ZeroI(fufd) may be
in Aξ or in Bξ. But we can check whether there is a root of f in [l1, b] by
Theorem 12 (E). Note that the isolating interval in Sf,I adjacent to [l1, l2],
denoted as [l′1, l

′
2], is clearly an isolating interval of fd. Refine [l′1, l

′
2], if

needed, such that ∂fd(X)
∂X is negative in it. Note that ∂fd(b)

∂X ≤ ∂f(b)
∂X <

0. We can check whether ∂fd(X)
∂X has real root in [l′2, b]. If it has, then

[l1, b] Ã ZeroI(f). Else, there is no real root in [l1, b].

2. fu(b)fd(b) = 0. We can deal with this case similar to the case fu(a)fd(a).

(a) fu(b) = 0. We can find a point b−, which is close to b and smaller than b. In fact,
if ∂ifu(b)

∂Xi = 0, i = 0, 1, . . . , j and ∂j+1fu(b)
∂Xj+1 6= 0, we can use −∂j+1fu(b)

∂Xj+1 to replace
fu(b−). If fu(b−)fd(b) < 0, we can deal with it in the same way as 1-(b). Else,
we can treat it as a good case. Note that when fu(b)fd(b) > 0 is faithful for this
endpoint.

(b) fd(b) = 0. The treatment of this case is similar to 2-(a). If fu(b)fd(b−) < 0, we
can deal with it in the same way as 1-(a). Else, we can treat it as a good case.

Remark: From the discussion above, we need to solve the following problems: How to check
whether |f(a)| < EBI(f)? f(t) = 0, f(t) > 0 or f(t) < 0? And ∂f(t)

∂X > 0 or ∂f(t)
∂X < 0?

Here t = a or t = b. In fact, it is easy to find that these problems all can be transform to
Problem 2 in Section 2.3, which we have mentioned above. Note that when c1 ≤ g(t) ≤ c2

and c1c2 > 0, we can decide the sign of g(t) by c1 or c2, where g(X) can be f(X) or ∂f(X)
∂X

and c1, c2 ∈ F are used to approximate g(t).


