This paper is dedicated to Professor Wu WenTsün on his eightieth birthday

On the Theory of Resolvents and Its Applications

Xiao-Shan Gao
Institute of Systems Science
Academia Sinica
Beijing 100080, P.R. China
e-mail: xgao@mmrc.iss.ac.cn

Shang-Ching Chou
Department of Computer Science
The Wichita State University
Wichita, KS 67208, USA
e-mail: chou@cs.twsu.edu

Abstract

We extend the concept of the resolvent of a prime ideal to the concept of the
resolvent of a general ideal with respect to a set of parameters and propose an algo-
rithm to construct the generalized resolvents based on Wu-Ritt’s zero decomposition
algorithm. Our generalized algorithm has the following applications. (1) For a re-
ducible variety V, we can find a direction on which V is projected birationally to an
irreducible hypersurface. (2) We give a new algorithm to find a primitive element
for a finite algebraic extension of a field of characteristic zero. (3) We present a
complete method of finding parametric equations for algebraic curves. (4) We give
a method of solving a system of polynomial equations to any given precision.

Keywords. Resolvents, parameterization of algebraic curves, primitive elements, poly-
nomial equation solving, Wu-Ritt’s decomposition algorithm.

1 Introduction

Some frequently used algebraic algorithms share the same property that they transform a
set of polynomial equations to a single polynomial equation such that the zero set of the
polynomial set and the hypersurface defined by the single polynomial are equivalent in
certain sense. For algorithms with this property, we may mention: the algorithm to find
a primitive element for a finitely generated algebraic extension field [17], the algorithm
to find a plane curve which is birational to a space algebraic curve [1], etc. In this paper,
we present a general algorithm which can be used to take care of this kind of problems.

In Ritt’s classical book Differential Algebra [19], an algorithm of constructing resolvents
for a prime ideal is given. The hypersurface defined by a resolvent of a prime ideal
is birational to the irreducible variety defined by the prime ideal. Hence by using Ritt’s
resolvent algorithm some of the problems mentioned in the above paragraph can be solved,
e.g., we can construct a plane curve which is birational to a given irreducible algebraic
curve. But Ritt’s resolvent algorithm can not be used to the problem of finding primitive
elements of a finitely generated algebraic extension field, because the polynomial equations
giving the algebraic numbers generally might not consist of a prime ideal.
In this paper, we extend Ritt’s concept of resolvent to general ideals with respect to (abbr. w.r.t) a parameter set. We also give an algorithm to construct a resolvent of an ideal w.r.t to a parameter set. The algorithm works as follows. We first compute a resolvent for each of the prime components of the ideal using Wu-Ritt’s decomposition algorithm or Buchberger’s Gröbner basis algorithm, then obtain the resolvent of the ideal from the resolvents of its prime components.

The generalized resolvent algorithm has the following applications:

(1) For a reducible variety V which is the union of irreducible varieties with the same dimension and the same parameter set, we can find a map to transform V into a hypersurface which is birational to V.

(2) As a special case of (1), we can find plane curves which are birational to a given algebraic curve. We also present a new algorithm to construct a set of parametric equations for a rational plane curve. Hence, we have a complete method to decide whether an algebraic curve is rational, and if it is, to find parametric equations for it.

(3) We give an algorithm to find a primitive element for a finite algebraic extension field of a field with characteristic zero. Probabilistic methods to construct a primitive element for a finitely generated algebraic extension field are given in [17, 25]. Our method in this paper is deterministic and applicable to more general cases: the generator sequence of the algebraic elements can be defined successively, i.e., an algebraic element in the sequence depends on the previous elements.

(4) In the work of solving polynomial equation systems, a typical method is first transforming the system into a triangular system and then solving the triangular system iteratively [23, 15]. But when one tries to solve a triangular form using numerical methods, we meet the following error estimation problem: For a triangular equation system

\[A_1(x_1) = 0, A_2(x_1, x_2) = 0, ..., A_p(x_1, ..., x_p) = 0 \]

we ask what accuracy for x_1 is needed if we want a certain accuracy for x_p. In [2], this is considered to be an inherent difficulty of polynomial equation solving. In [14, 11], probabilistic methods based on the Gröbner basis method to compute the roots of a polynomial set to any given precision are given. Using the method of resolvents, we can give a deterministic method. Since our method is based on the Wu-Ritt’s characteristic method whose complexity is singly exponential [12], it is generally faster than the previously known methods based on Gröbner basis method whose complexity is doubly exponential.

The algorithm of constructing resolvents reported in this paper is used to factorize a polynomial over an algebraic extension field [26]. The factorization algorithm presented in [22] uses a technique similar to that of computing the resolvents.

The paper is organized as follows. In Section 2, we introduce some notions which are used in this paper. In Section 3, we prove the existence of the resolvents and present an algorithm to compute them. In Section 4, we show how to use the theory of resolvents to various problems.
2 Preliminaries on Wu-Ritt’s Decomposition Algorithm

In this section, we introduce some concepts which will be used later. A detailed description of these concepts can be found in [23].

Let K be a computable field of characteristic zero and $K[x_1, ..., x_n]$ or $K[X]$ be the ring of polynomials in the indeterminates $x_1, ..., x_n$. Unless explicitly mentioned otherwise, all polynomials in this paper are in $K[X]$. Since K is of characteristic zero, we can assume that the field of rational numbers \mathbb{Q} is a subfield of K.

For $P \in K[X]$, we can write $P = c_d x_d^d + ... + c_1 x_p + c_0$, where $c_i \in K[x_1, ..., x_{p-1}]$. We call $c_d \neq 0$ the initial of P and p the class of P, or $\text{init}(P) = c_d$ and $\text{class}(P) = p$. If $P \in K$, $\text{class}(P) = 0$. For polynomials P and G with $\text{class}(P) > 0$, let $\text{prem}(G; P)$ be the pseudo remainder of G w.r.t P.

A sequence of polynomials $ASC = A_1, ..., A_p$ is said to be an ascending (abbr. asc) chain, if either $r = 1$ and $A_1 \neq 0$ or $0 < \text{class}(A_i) < \text{class}(A_j)$ for $1 \leq i < j$ and A_k is of higher degree than A_m for $m > k$ in x_{n_k} where $n_k = \text{class}(A_k)$.

For an asc chain $ASC = A_1, ..., A_p$ such that $\text{class}(A_1) > 0$, we define the pseudo remainder of a polynomial G w.r.t ASC inductively as

$$\text{prem}(G; ASC) = \text{prem}(\text{prem}(G; A_p); A_1, ..., A_{p-1}).$$

Let $R = \text{prem}(G; ASC)$. Then from the computation procedure of the pseudo division, we have the following important remainder formula:

$$JG = B_1 A_1 + \ldots + B_p A_p + R$$

where J is a product of powers of the initials of the polynomials in ASC and the B_i are polynomials. For an asc chain ASC, we define

$$PD(ASC) = \{g \mid \text{prem}(g, ASC) = 0\}$$

By (2.1), a zero of ASC which does not annul the initials of the polynomial in ASC is a zero of $PD(ASC)$.

For an asc chain $ASC = A_1, ..., A_p$, we always make a renaming of the variables. If A_i is of class n_i, we rename x_{m_i} as y_i, and the other variables are renamed as $u_1, ..., u_q$, where $q = n - p$. The variables $u_1, ..., u_q$ are called a parameter set of ASC. A polynomial in $K[u_1, ..., u_q]$ is called a u-pol.

Let $ASC = A_1, ..., A_p$ be an asc chain with $u_1, ..., u_q$ as parameters. We will define when ASC is irreducible. For indeterminates $\tau_1, ..., \tau_q$, let H_1 be the polynomial obtained from A_1 by replacing u_i by τ_i, $i = 1, ..., q$. Then H_1 is a polynomial in $K_1[y_1]$ where $K_1 = K(\tau)$. We assume that H_1 is irreducible and let η_1 be a zero of H_1. Now let

$$\tau_1, ..., \tau_q, \eta_1, ..., \eta_{k-1}$$
be a set of zeros of $A_1, ..., A_{k-1}$ constructed as above. Let H_k be the polynomial obtained by replacing $u_1, ..., u_q, y_1, ..., y_{k-1}$ by (2.1.1). We assume that (2.1.1) is not a zero of the initial of A_k and H_k is an irreducible polynomial in $K_k[y_k]$ where $K_k = K_{k-1}(\eta_{k-1})$. Let η_k be a zero of H_k. Finally, we have the following quantities

$$\tau_1, ..., \tau_q, \eta_1, ..., \eta_{p-1}, \eta_p$$

which consist of a solution for the polynomials in ASC. If we can construct such a set of zeros according to the above procedure then ASC is said to be irreducible and the zero is called a generic zero of ASC. Since a generic zero of ASC does not annul the initials of the polynomials in ASC, by (2.1) it is a zero of $PD(ASC)$.

Definition 2.1. The dimension of an irreducible ascending chain $ASC = A_1, ..., A_p$ is defined to be $DIM(ASC) = n - p$.

Thus $DIM(ASC)$ is equal to the number of parameters of ASC.

Definition 2.2. A characteristic set (abbr. char set) of an ideal ID is an asc chain ASC in ID such that for all $P \in D$, $\text{prem}(P, ASC) = 0$.

Theorem 2.3. If ASC is an irreducible asc chain then $PD(ASC)$ is a prime ideal with dimension $DIM(ASC)$. Conversely, each char set of a prime ideal is an irreducible asc chain.

Lemma 2.4. Let ASC be an irreducible asc chain with parameters $u_1, ..., u_q$. If Q is a polynomial not in $PD(ASC)$, then we can find a nonzero u-pol P such that $P \in \text{Ideal}(ASC, Q)$ (i.e., the ideal generated by Q and the polynomials in ASC).

Proof. See [23].

Lemma 2.5. Let ASC be an irreducible asc chain with parameters $u_1, ..., u_q$. We can find an irreducible asc chain ASC' such that $PD(ASC) = PD(ASC')$ and the initials of the polynomials in ASC' are u-pols.

Proof. See [8].

Let PS be a polynomial set. For an algebraic closed extension field E of K, let

$$\text{Zero}(PS) = \{x = (x_1, ..., x_n) \in E^n \mid \forall P \in PS, P(x) = 0\}.$$

For two polynomial sets PS and DS, we define

$$\text{Zero}(PS/DS) = \text{Zero}(PS) - \bigcup_{d \in DS} \text{Zero}(d).$$

Then we have the following Wu-Ritt’s decomposition algorithm.

Theorem 2.6. For finite polynomial sets PS and DS, we can either detect the emptiness of $\text{Zero}(PS/DS)$ or find irreducible asc chains $ASC_i, i = 1, ..., l$, such that

$$\text{Zero}(PS/DS) = \bigcup_{i=1}^l \text{Zero}(PD(ASC_i)/DS)$$
and that (a) there exist no \(i, j, i \neq j \) such that \(PD(ASC_i) \subset PD(ASC_j) \); (b) for all \(d \in DS \) and \(i = 1, \ldots, l \), \(prem(d, ASC_i) \neq 0 \).

Proof. See [23]. For our implementation of the algorithm, see [3].

3 The Theory of Resolvents

3.1 Properties of Resolvents

An ideal distinct from (1) and (0) is called *nontrivial.*

Definition 3.1. Let \(ID \) be a nontrivial ideal in \(K[X] \). We can divide the \(x \) into two groups, \(u_1, \ldots, u_q \) and \(y_1, \ldots, y_p, p + q = n \), such that \(ID \cap K[u_1, \ldots, u_q] = \emptyset \), while, for \(i = 1, ..., p \), \(ID \) contains a nonzero polynomial in \(y_i \) and the \(u \) alone. We call the \(u \) a parameter set of \(ID \).

In what follows in this section, we assume that \(ID \) is a non-trivial ideal in \(K[U, Y] \) where the \(u \) consists of a parameter set of \(ID \).

Lemma 3.2. A char set of \(ID \) under the variable order \(u_1 < ... < u_q < y_1 < ... < y_p \) is of the form

\[
ASC = A_1(u, y_1), A_2(u, y_1, y_2), ..., A_p(u, y_1, ..., y_p)
\]

where \(A_i \) is a polynomial involving \(y_i \) effectively. Conversely, for an irreducible asc chain like (3.2.1), the \(u \) consist of a parameter set of the prime ideal \(PD(ASC) \).

Proof. Let \(A_1 \) be a polynomial of \(y_1 \) and the \(u \) in \(ID \) with lowest degree in \(y_1 \), and \(ID_1 \) be the polynomials of \(y_1, y_2 \) and the \(u \) in \(ID \) whose degrees in \(y_1 \) are less than the degree of \(A_1 \) in \(y_1 \). \(ID_1 \) is not empty, because by the definition of the \(u \) there is a polynomial \(P \) of the \(u \) and \(y_2 \) in \(ID \) and \(P \) is obviously in \(ID_1 \). It is also clear that of the polynomials in \(ID_1 \) involving \(y_2 \) effectively, \(A_1 \) is of lowest degree in \(y_1 \). Let \(A_2 \) be a polynomial in \(ID_1 \) with lowest degree in \(y_2 \). Let \(ID_2 \subset K[U, y_1, y_2, y_3] \cap ID \) such that the polynomials in \(ID_2 \) are of lower degrees in \(y_1 \) than \(A_1 \), \(i = 1, 2 \). Continuing this procedure, at last we obtain an asc chain \(ASC \). For any polynomial \(P \in ID \), \(R = prem(P, ASC) \) is of lower degree in \(y_1 \) than the degree of \(y_1 \) in \(A_i \) hence must be zero, i.e. \(ASC \) is a char set of \(ID \). To prove the second part, first let us note it is obvious that \(PD(ASC) \cap K[U] = \emptyset \). For any \(i \leq p \), since \(prem(A_i, A_1, ..., A_{i-1}) = A_i \neq 0 \) by Lemma 2.4 there is a nonzero polynomial \(P \in K[u, x] \) such that \(P \in Ideal(A_1, ..., A_i) \). Thus the \(u \) are a parameter set of \(PD(ASC) \).

Lemma 3.3. The \(u \) are a parameter set of an ideal \(ID \) iff we have a decomposition

\[
Zero(ID) = \bigcup_{i=1}^{t} Zero(PD(ASC_i)) \bigcup Zero(D') \quad (t > 0)
\]

where each \(ASC_i \) is an irreducible asc chain with the \(u \) as a parameter set and \(D' \) is a polynomial set which contains nonzero \(u \)-pols.
Proof. It is a direct consequence of Theorem 4.5 in [4].

Corollary 3.3.1. In terms of ideals, (3.3.1) can be expressed as

$$\text{Radical}(ID) = \bigcap_{i=1}^{t} PD(ASC_i) \cap RD' \quad (t > 0)$$

where ASC_i is the same as in Lemma 3.3 and $RD' = \text{Radical}(D')$ is the radical ideal generated by D'.

The following lemma is crucial to the construction of the resolvents.

Lemma 3.4. Let ID be an ideal in $K[U, X]$ with the u as a parameter set. For a new variable w, there exist integers $M_1, ..., M_p$, and a u-pol G, such that two distinct zeros of ID with the u taking the same values for which G does not vanish give different values for $Q = M_1y_1 + ... + M_py_p$.

Proof. Let ID' be the ideal obtained from ID by replacing each y_i by a new variable z_i. Using p more new indeterminates $\lambda_1, ..., \lambda_p$, we consider the ideal

$$\Delta = \text{Ideal}(ID \cup ID' \cup \left\{ \sum_{i=1}^{p} \lambda_i(y_i - z_i) \right\}).$$

As Δ contains ID, Δ has, for each $j \leq p$, a nonzero polynomial B_j in y_j and the u alone. Similarly, let C_j, $j = 1, ..., p$, be a nonzero polynomial of Δ in z_j and the u alone. Let D be the product of the initials of the B and C. Then D is a u-pol. For a zero of Δ for which $(y_1 - z_1)D \neq 0$, we have

$$\lambda_1 = -\frac{\lambda_2(y_2 - z_2) + ... + \lambda_p(y_p - z_p)}{y_1 - z_1}.$$

Let m be the maximum of the degrees of the B_i in the y_i and of the degrees of the C_j in the z_j. Let k be any positive integer. We write, for $s = 1, ..., k$ and for the above zero,

$$\lambda_i^s = \frac{E_s}{(y_1 - z_1)^k}$$

where E_s is a polynomial. Using the relations $B_i = 0$ and $C_j = 0$, we can depress the degree of E_s in each y_i and in each z_j to be less than m. The new expression of λ_i^s will be of the form

$$\lambda_i^s = \frac{F_s}{(y_1 - z_1)^kD_s}$$

where D_s is a product of powers of the initials of the B_i and C_j. Let L be the least common multiple of the D_s. We write

$$\lambda_i^s = \frac{H_s}{(y_1 - z_1)^kL}, s = 0, ..., k$$

with each H_s being a polynomial of degree less than m in y and z. The number of power products of the y_i and z_j, of degree less than m in each y and z, is m^{2p}. Consequently, if we take $k \geq m^{2p}$ and treat the power products of the y and z as independent variables, by
eliminating these power products, we can find a nonzero polynomial in \(\lambda_1 \), of degree not greater than \(k \), whose coefficients are polynomials in \(\lambda_2, \ldots, \lambda_p \) and the \(u \), which vanishes for every zero of \(\Delta \) that does not annul \((y_1 - z_1)D\). Let \(K_1 \) be the product of this polynomial by \(D \). Then \(K_1 \) vanishes for every zero of \(\Delta \) that does not annul \(y_1 - z_1 \).

Similarly, for \(i = 2, \ldots, p \), we can find a \(K_i \) which vanishes for every zero of \(\Delta \) that does not annul \(y_i - z_i \). We can find integers \(M_i, i = 1, \ldots, p \), which, when substituted for the \(\lambda_i \) in \(\prod_{1 \leq i \leq p} K_i \), reduce that polynomial to a nonzero polynomial \(G \) in the \(u \). Any such set of \(M_i \) will furnish a \(Q \) as in the lemma. Because if two distinct zeros \((u', y')\) and \((u', y'')\) of \(ID \) give the same value for \(Q \), then \((u', y', y'', M_1, \ldots, M_p)\) is a zero of \(\Delta \). Since \(y'' \neq y' \), \(G(u') \) must be zero.

For a new indeterminate \(w \), let \(ID_1 = \text{Ideal}(ID, w - Q) \) where \(Q \) is the same as in Lemma 3.4. Then \(ID_1 \) is an ideal in \(K[U, w, Y] \) and \(ID_1 \cap K[U, Y] = ID \).

Lemma 3.5. The \(u \) consist of a parameter set of \(ID_1 \).

Proof. Since the \(u \) consist of a parameter set of \(ID \), by Lemma 3.3, we have

\[
\text{Zero}(ID) = \bigcup_{t=1}^{t} \text{Zero}(PD(ASC_i)) \bigcup \text{Zero}(D') \quad (t > 0)
\]

where \(ASC_i \) are asc chains with the \(u \) as parameter set. Since \(ID_1 = \text{Ideal}(ID, w - Q) \),

\[
\text{Zero}(ID_1) = \bigcup_{t=1}^{t} \text{Zero}(PD(ASC_i) \cup \{w - Q\}) \bigcup \text{Zero}(D' \cup \{w - Q\}).
\]

Under the variable order \(u_1 < \ldots < u_p < w \), \(ASC_i, w - Q \) is a (weak) asc chain. It is easy to show that \(\text{Ideal}(PD(ASC_i) \cup \{w - Q\}) = PD(ASC_i, w - Q) \). Using Lemma 3.3 again, we know the \(u \) are a parameter set of \(ID_1 \).

Theorem 3.6. Use the same notations as above. If \(ID \) is a prime ideal then a char set of \(ID_1 \) under the variable order \(u_1 < \ldots < u_q < w < y_1 < \ldots < y_p \) is of the form

\[
A(u, w), A_1(u, w, y_1), \ldots, A_p(u, w, y_p)
\]

where \(A \) is an irreducible polynomial in \(w \) and \(A_i = I_i(u)y_i - V_i(u, w) \).

Proof. By Lemma 3.5, the \(u \) consist of a parameter set of \(ID_1 \). By Lemma 3.2, a char set of \(ID_1 \) is of the form \((3.6.1)\) except that we need to show \(A_i = I_i(u)y_i - V_i(u, w) \). If an \(A_i \) is not linear in \(y_i \), then by the procedure of constructing the generic point, \((3.6.1)\) has two generic points, say \(g_1 \) and \(g_2 \), which have the same value for the \(u \) and \(w \). Since \(g_1 \) and \(g_2 \) do not vanish the \(G \) (because \(G \) is a u-pol and the the value of the \(u \) in \(g_1 \) and \(g_2 \) are indeterminates) in Lemma 3.4 and they have the same value for the \(u \) and \(w \), by Lemma 3.4, they are identical. This is a contradiction. Therefore, \(A_i = I_i(u, w)y_i - V_i(u, w) \). By Lemma 2.5, we can further assume that \(I_i \) are free of the \(w \).

We call \(A = 0 \) a *resolvent* of the prime ideal \(ID \). For the general case, we have

Theorem 3.7. Let \(ID \) be an ideal in \(K[U, X] \) with the \(u \) as a parameter set and \(ID_1 \) be defined as above. A char set of \(\text{Radical}(ID_1) \) under the variable order \(u_1 < \ldots < u_q < w < y_1 < \ldots < y_p \) is of the form

\[
A(u, w), A_1(u, w, y_1), \ldots, A_p(u, w, y_p)
\]
where $A_i = I_i(u)y_i - V_i(u, w)$.

Proof. By Lemma 3.5, the u consist of a parameter set of ID_1. Then they also consist of a parameter set of $\text{Radical}(ID_1)$. By Lemma 3.2, a char set of $\text{Radical}(ID_1)$ under the variable order $u < w < y_1 < ... < y_p$ is of form (3.7.1) except that we need to prove that A_i is linear in y_i. By Corollary 3.3.1,

$$
(3.7.2) \quad \text{Radical}(ID_1) = \bigcap_{i=1}^{t} PD(ASC_i) \cap RD'
$$

where $PD(ASC_i)$ are prime ideals with the u as parameter sets and RD' is a radical ideal containing a u-pol. We can further assume that there exist no $i \neq j$ such that $PD(ASC_i) \subset PD(ASC_j)$. By the selection of the M_i in Lemma 3.4, different zeros of $PD(ASC_i)$ with the same u which do not annul G give distinct values for Q. Thus by Theorem 3.6, a char set of $\text{Ideal}(PD(ASC_i), \{w - Q\})$ under the variable order $u < w < y_1 < ... < y_p$ is of the form $R_i(u, w), R_{i,1}(u, w, y_1), ..., R_{i,p}(u, w, y_p)$ where each R_i is an irreducible polynomial and $R_{i,j} = I_{i,j}(u)y_j + V_{i,j}(u, w)$. We shall prove that $R_i \neq R_j$ for $i \neq j$. If this is not true, say $R_1 = R_2$, then by the selection of the M_i, a generic zero of ASC_1 must be the same as a generic zero of ASC_2 if they have the same value for w. Therefore $PD(ASC_1) = PD(ASC_2)$, which is impossible.

Let H be a u-pol in RD'. From (3.7.1) and (3.7.2), it is clear that $A = H \prod_{i=1}^{t} R_i$. We shall prove that there is a polynomial $A_i = I_i(u)y_i - V_i(u, w)$ in $\text{Radical}(ID_1)$. If this is true then $A, A_1, ..., A_p$ is a char set of $\text{Radical}(ID_1)$ and we have proved the theorem. We need only to show the case for $t = 2$. The general case can be proved similarly. Without loss of generality, we assume $I_{1,i} = I_{2,i}$. (Otherwise we may consider $I_{2,i}'R_{1,i}$ and $I_{1,i}'R_{2,i}$ instead of $R_{1,i}$ and $R_{2,i}$.) If $V_{1,i} = V_{2,i}$, then $A_i = HR_{1,i} = HR_{2,i}$ are in $\text{Radical}(ID_1)$. We have completed the proof. Otherwise, let R be the resultant of R_1 and R_2 w.r.t w. Then R is a nonzero u-pol and there exist polynomials B_1 and B_2 in $K[U, w]$ such that $R = B_1R_1 - B_2R_2$. Let

$$
R_1' = U(R(J_1y_1 + V_1) - B_1R_1(V_1 - V_2)), \quad R_2' = U(R(J_2y_1 + V_2) - B_2R_2(V_1 - V_2))
$$

where U is a u-pol in RD'. Then $R_1' - R_2' = H(R(V_1 - V_2) - (Y_1 - Y_2)(B_1R_1 - B_2R_2)) = 0$, i.e., $R_1' = R_2'$ are in $PD(ASC_1) \cap PD(ASC_2)$. Since $H \in RD'$, R_1' is in $\text{Radical}(ID_1)$ by (3.7.2). We have completed the proof.

We call the equation $A = 0$ a **resolvent** of ID w.r.t the u. Note that the proof of Theorem 3.7 actually provides more information:

Corollary 3.7.1. For an irredundant decomposition (3.3.1) of ID, we have

1. For the same Q, the resolvents of $PD(ASC_i)$ are mutually different and the resolvent of ID w.r.t the u is the product of the resolvents of $PD(ASC_i)$, $i = 1, ..., t$, and an appropriate u-pol.

2. We have a method to construct a char set of $\text{Radical}(ID)$ if char sets for $PD(ASC_i)$, $i = 1, \cdots, t$ are known.
3.2 Methods of Constructing Resolvents

To find a resolvent of an ideal ID w.r.t a set of parameters, we first express $\text{Radical}(ID)$ as intersection of prime ideals, then find the resolvent for each prime ideal, finally construct a resolvent for ID from these resolvents.

Algorithm 3.8. Let PS be a finite set of polynomials in $K[u_1, ..., u_q, y_1, ..., y_p]$. The algorithm decides whether the u are a parameter set of $ID = \text{Ideal}(PS)$, and if it is, finds a resolvent of ID w.r.t the u.

Step 1. By Theorem 2.6, under the variable order $u < y_1 < ... < y_p$, we have

$$\text{Zero}(PS) = \cup_{i=1}^l \text{Zero}(PD(ASC_i)) \cup \cup_{j=1}^t \text{Zero}(PD(ASC_j'))$$

where the $ASC_i, i = 1, ..., l$, are all the asc chains in the decomposition which have the u as their parameter sets. Then by Lemma 3.3, the u are a parameter set of ID iff $l > 0$ and there exist at least one u-pol in each ASC_j'. If this is the case, go to Step 2. Otherwise the algorithm stops.

Step 2. Let $\lambda_1, ..., \lambda_p, w$ be new indeterminates and let $ID_1 = \text{Ideal}(PS, w - Q)$ be an ideal in $K[U, \lambda, w, Y]$, where $Q = \lambda_1y_1 + ... + \lambda_py_p$. By Lemma 3.5, ID_1 is an ideal with the u and the λ as a parameter set.

Step 3. For each $i = 1, ..., l$, by Algorithm 3.10, we find a char set

$$A_i(\lambda, u, w), A_i(\lambda, u, w, y_1), ..., A_i(\lambda, u, w, y_p)$$

for the prime ideal $\text{Ideal}(PD(ASC_i), w - Q)$ under the variable order $l < u < w < y_1 < ... < y_p$. As the λ are arbitrary indeterminates, by the proof of Lemma 3.4 and Theorem 3.6, $A_{i,j}$ are linear in y_j. By (1) of Corollary 3.7.1, $A_i \neq A_j$ for $i \neq j$.

Step 4. By (2) of Corollary 3.7.1, we can construct a char set for $\text{Radical}(ID_1)$

$$(3.8.1) \quad R(l, u, w), R_1(l, u, w, y_1), ..., R_p(l, u, w, y_p)$$

where $R_i = I_i(l, u)y_i - V_i(l, u, w)$. Let $D = I \prod_{i=1}^p I_p$ where I is the initial of R. Then D is a polynomial of the u and the λ.

Step 5. Let $a_1, ..., a_p$ be integers, for which D becomes a nonzero polynomial in the u and $A_i \neq A_j$ is still true, when each λ_i is replaced by a_i. For $\lambda_i = a_i, i = 1, ..., p$, (3.8.1) becomes

$$(3.8.2) \quad R'(u, w), R'_1(u, w, y_1), ..., R'_p(u, w, y_p)$$

We assume that the u-pol factors of R' have been removed.

Step 6. By Lemma 3.9, R' is a resolvent of $\text{Ideal}(PS)$.

Lemma 3.9. (3.8.2) is a char set of $\text{Radical}(ID_2)$ where $ID_2 = \text{Ideal}(PS \cup \{w - \sum_i a_iy_i\})$.

Proof. If (3.8.2) is not a char set of $\text{Radical}(ID_2)$, $\text{Radical}(ID_2)$ will have a char set $T, T_1, ..., T_p$ with T of lower degree g in w than R' and T_i are linear in y_i. We
can assume that the initials of the T_i are free of w since such polynomials exist in $\text{Radical}(ID_2)$ (i.e., R_i'). If D is the product of those initials, we have, for a zero of ID_2 in which the values of the u are independent indeterminates,

$$y_i = \frac{C_{i,g-1}w^{g-1} + \ldots + C_{i,0}}{D}$$

(3.9.1)

where the C are u-pols. Let us consider the ideal $ID_3 = \text{Ideal}(PS, v - \lambda_1y_1 - \ldots - \lambda_py_p)$ in $K[U, \lambda, v, Y]$ for a new indeterminate v. We will show that ID_3 contains a nonzero polynomial P, free of the y, which is of degree no more than g in v. This polynomial is also in $\text{Radical}(ID_3)$. Noting that $\text{Radical}(ID_1)$ and $\text{Radical}(ID_3)$ should have char sets in which the first polynomials of both char sets have the same degree. We thus get a contradiction.

We consider the relations

$$v^i = (\lambda_1y_1 + \ldots + \lambda_py_p)^i, \quad i = 1, \ldots, g.$$

We replace the y by their expression in (3.9.1) and depress the degrees in w of the polynomials on the right side to less than g, using the relation $T = 0$. We have such get a set PS of g polynomials of the u, the λ, v, and w such that the polynomials in PS are of degree less than g in w and of degree no more than g in v. Treating w, w^2, ..., w^{g-1} as independent variables in the polynomials in PS, we eliminate them and get a nonzero polynomial Q in v, the u and the λ. Note that the special position of the v^i in the polynomials of PS, Q is of degree no more than g in v. We have completed the proof.

Algorithm 3.10. Let $ASC = A_1, \ldots, A_p$ be an irreducible asc chain in $K[U,Y]$ where the u are a parameter set of ASC. The algorithm finds a char set for the prime ideal $D = \text{Ideal}(PD(ASC) \cup \{w - Q\})$ under the variable order $l < u < w < y_1 < \ldots < y_p$, where $Q = \lambda_1y_1 + \ldots + \lambda_py_p$.

Step 1. By Theorem 2.6, under the variable order $u < \lambda < w < y_1 < \ldots < y_p$ we have

$$(3.10.1) \quad \text{Zero}(ASC \cup \{w - Q\}) = \cup_{i=1}^p \text{Zero}(PD(ASC'_{i}))$$

Step 2. By (2.1), we have

$$\text{Zero}(ASC) = \text{Zero}(PD(ASC)) \cup \cup_{i=1}^p \text{Zero}(ASC \cup \{\text{init}(A_i)\})$$

By Lemma 2.4, there is a polynomial $U_i \in \text{Ideal}(ASC \cup \{\text{init}(A_i)\})$ which involves the u and the λ alone. Thus, there is only one irreducible component in $\text{Zero}(ASC \cup \{w - Q\})$, i.e., $\text{Zero}(D)$, on which the u and l are algebraically independent.

Step 3. Therefore only one component in (3.10.1), say $\text{Zero}(PD(ASC'_{i}))$, with the u and l as a parameter set and ASC'_{i} is a char set of D.

Step 4. By Lemma 2.5, we can assume that the initials of the polynomials in ASC'_{i} involve the u alone.
We have the following variations for Algorithm 3.8 and Algorithm 3.10.

Modification 3.11. For Algorithm 3.10, we can use the Gröbner basis method instead of Theorem 2.6 to compute a char set of D as follows. Let GB be a Gröbner basis of $\text{Ideal}(PS)$ ($PS = ASC \cup \{w - Q\}$) in $K(l, U)[w, Y]$ in purely lexicographic order $w < y_1 < \ldots < y_p$ (for the Gröbner basis method, see [2]). As in $K(l, U)[w, Y]$, $\text{Ideal}(ASC_1 \cup \{w - q\})$ defines a zero dimensional prime ideal, then GB is also a char set of $\text{Ideal}(PS')$ (see [8] or [5]).

Modification 3.12. In practice, Algorithm 3.8 may be very slow, because by introducing new variables λ_i, large polynomials could be produced in the procedure. An idea to improve the efficiency is that we can randomly select p integers $a_1, ..., a_p$ and use $Q' = w - a_1y_1 - \ldots - a_py_p$ instead of $Q = w - \lambda_1y_1 - \ldots - \lambda_py_p$ to compute the resolvent, i.e., we compute char sets of $\text{Radical}(PS, w - Q')$ directly by using methods similar to those in Algorithm 3.8. The success probability of the selection of the integers should be one, because by Step 5 of Algorithm 3.8, the integers which do not suit for the above purpose consist of an algebraic set of lower dimension than q.

4 Applications of the Resolvents

4.1 A Hypersurface Birational to a Variety

It is well known in algebraic geometry [13] that:

Theorem 4.1. Any irreducible variety of dimension r is birational to a hypersurface in E^{r+1}.

We will prove the following more general result.

Theorem 4.2. Let PS be a finite polynomial set in $K[U, Y]$ such that the u are a parameter set of $\text{Ideal}(PS)$ and no prime component of $\text{Radical}(PS)$ contains a nonzero u-pol. Then we can find a polynomial R of w and the u such that $\text{Zero}(PS)$ is birational to $\text{Zero}(R)$. The birational maps can also be found.

Proof. By Algorithm 3.8, we can find integers $M_1, ..., M_p$ such that a char set of $RD = \text{Radical}(PS \cup \{w - (M_1y_1 + \ldots + M_py_p)\})$ is of the form

$$R(u, w), R_1(u, w, y_1), ..., R_p(u, w, y_p)$$

where $R_i = I_iy_i - U_i$ (I_i are u-pols) and $R = 0$ is a resolvent for $\text{Ideal}(PS)$. We define a morphism

$$MP_1 : \text{Zero}(PS) \to \text{Zero}(R)$$

by setting $MP_1(u_1, ..., u_q, y_1, ..., y_p) = (u_1, ..., u_q, M_1y_1 + \ldots + M_py_p)$. We define another morphism

$$MP_2 : \text{Zero}(R) \to \text{Zero}(PS)$$
by setting \(MP_2(u_1, \ldots, u_q, w) = (u_1, \ldots, u_q, U_1/I_1, \ldots, U_p/I_p) \). Let \(I = \prod_{i=1}^{p} I_i \). Then \(MP_2 \) is well defined on \(D_1 = \text{Zero}(R) - \text{Zero}(I) \). Since no component of \(\text{Radical}(PS) \) contains a nonzero \(u \)-pol, \(\text{Radical}(PS) = \cap PS_i \) where \(PS_i \) are prime ideals whose parameter sets are the \(u \). By Corollary 3.7.1, \(R \) is a polynomial with no factor involving the \(u \) alone. Therefore \(MP_2 \) is well defined on \(\text{Zero}(R) \) except a part \(\text{Zero}(I) \) with lower dimension than \(q \). We may check that \(MP_1(MP_2) \) and \(MP_2(MP_1) \) are identity maps. Therefore, \(\text{Zero}(R) \) and \(\text{Zero}(PS) \) are birational. The birational maps between them are \(MP_1 \) and \(MP_2 \).

Corollary 4.3. Let \(PS \) be a finite polynomial set in \(K[U, Y] \) such that the \(u \) are a parameter set of \(\text{Ideal}(PS) \). Then we can find a polynomial \(R \) of \(w \) and the \(u \) and a \(u \)-pol \(H \) such that \(\text{Zero}(PS/H) \) is birational to \(\text{Zero}(R/H) \).

Proof. By Lemma 3.3, \(\text{Zero}(PS) = \cup_i \text{Zero}(PS_i) \cup \text{Zero}(D) \) where \(PS_i \) are prime ideals whose parameter sets are the \(u \) and \(D \) is an ideal containing a nonzero \(u \)-pol, say \(H \). Then \(\text{Zero}(PS/H) = \cup_i \text{Zero}(PS_i/H) \). Then the result can be proved similarly as Theorem 4.2.

4.2 Parameterization of Algebraic Curves

An irreducible algebraic curve is an irreducible variety of dimension one. Let \(C = \text{Zero}(PS) \) be an irreducible algebraic curve where \(PS \subset K[X] \). Then \(C \) is called rational if there exist polynomials \(u_1, \ldots, u_n, w \) of an indeterminate \(t \) such that \(\gcd(u_1, \ldots, u_n, w) = 1 \) and \(\forall P \in PS, P(u_1/w, \ldots, u_n/w) \equiv 0 \). We call

\[
 x_1 = u_1/w, \ldots, x_n = u_n/w
\]

a set of parametric equations for the curve. The maximum of the degrees of \(u_i \) and \(w \) is called the degree of the parametric equations.

In this section, we give a decision method to find whether an algebraic curve is rational, and if it is, to find a set of parametric equations for it. See [10] for more details. For other methods of parameterizing curves, see [1] and [20].

As a special case of constructing resolvents, we have

Theorem 4.4. For an irreducible algebraic curve \(C = \text{Zero}(PS) \) in \(A^n \), we can find an irreducible polynomial of two variables \(f(x, y) \) such that \(C \) is birational to \(\text{Zero}(f) \). The birational maps between \(C \) and \(\text{Zero}(f) \) can also be obtained.

It is obvious that \(C \) is rational iff \(f(x, y) = 0 \) is rational. Furthermore, using the birational transformations between \(C \) and \(f = 0 \), we can find a set of parametric equations for \(C \) (or \(f = 0 \)) if a set of parametric equations of \(f = 0 \) (or \(C \)) is given. Hence, we need only to find a set of parametric equations for \(f(x, y) = 0 \).

Definition 4.5. A set of parametric equations \(x = u_i/w \) for a curve \(C \) is called proper if, except for a finite number of points, for each point \((x'_1, \ldots, x'_n)\) on \(C \) there only exists one value \(t_0 \) for \(t \) such that \(x'_i = u_i(t_0)/w(t_0), i = 1, \ldots, n \).
A rational curve always has a set of proper parametric equations [21].

Theorem 4.6. Let \(x = u(t)/w(t), y = v(t)/w(t) \) be a set of proper parametric equations for a plane curve \(f(x, y) = 0 \). We assume \(\gcd(u, v, w) = 1 \). Then the degree of \(f \) is the same as the degree of the parametric equations.

Proof. Let \(f \) be of degree \(d \) and the parametric equations be of degree \(d' \). By Bezout’s theorem [21], the degree of \(f = 0 \) equals the number of the intersection points between \(f = 0 \) and a generic straight line. Let \(ax + by - 1 = 0 \) be the equation of a generic line where \(a \) and \(b \) are indeterminates. The parametric values corresponding to the intersection points are the roots of the equation \(P(t) = au(t) + bv(t) - w(t) = 0 \). Then \(d \leq d' \). Since \(\gcd(u, v, w) = 1 \), \(P(t) \) is irreducible. Thus \(P(t) = 0 \) has \(d' \) distinct roots. Since the parametric equations are proper, we have \(d' \leq d \).

Algorithm 4.7. Let \(PS \) be a finite set of polynomials in \(K[X] \). The algorithm decides whether \(C = \text{Zero}(PS) \) is a rational irreducible algebraic curve, and if it is, finds a set of parametric equations for \(C \).

Step 1. By Theorem 2.6, we have an irredundant decomposition

\[
\text{Zero}(PS) = \bigcup_{i=1}^{m} \text{Zero}(PD(ASC_i)).
\]

\(C \) is an irreducible algebraic curve if and only if \(m = 1 \) and \(ASC_1 \) contains \(n - 1 \) polynomials. If this is the case, go to Step 2. Otherwise, the algorithm terminates.

Step 2. We rename the parameter of \(ASC_1 \) as \(u_1 \). Other variables are also renamed so that \(ASC_1 = A_1(u_1, y_1), ..., A_p(u_1, y_1, ..., y_p), p = n - 1 \).

Step 3. By Algorithm 3.8, we can find a resolvent \(f(x, y) = 0 \) of degree \(d \) for \(PD(ASC_1) \) and birational transformations between \(\text{Zero}(f) \) and \(\text{Zero}(PD(ASC_1)) \).

Step 4. Let

\[
(4.7.1) \quad x = u(t)/w(t), y = v(t)/w(t)
\]

where \(u(t) = u_d t^d + ... + u_0, v(t) = v_d t^d + ... + v_0, \) and \(w(t) = w_d t^d + ... + w_0 \) for indeterminates \(u_i, v_i, \) and \(w_i \).

Step 5. Replacing \(x \) and \(y \) by \(u(t)/w(t) \) and \(v(t)/w(t) \) in \(f(x, y) = 0 \) and clearing the denominators, we obtain a polynomial \(Q \) of \(t \) whose coefficients are polynomials of \(u_i, v_i \), and \(w_i \). Let the set of coefficients of \(Q \) as a polynomial of \(t \) be \(HS = \{P_1, ..., P_h\} \).

Step 6. \((4.7.1) \) is a set of parametric equations for \(f = 0 \) iff \(HS \) has a set of zeros such that when the coefficients of \(u, v, \) and \(w \) are replaced by these zeros, \(u(t)/w(t) \) and \(v(t)/w(t) \) are not numbers in \(K \).

Step 7. Let \(DS_1 = \{u_i w_j - u_j w_i \mid i, j = 1, ..., d\} \), \(DS_2 = \{v_i w_j - v_j w_i \mid i, j = 1, ..., d\} \). Then \(f = 0 \) is rational if \(HD = \text{Zero}(HS) - (\text{Zero}(DS_1) \cup \text{Zero}(DS_2)) \) is not empty, and if it is not empty, each zero of \(HD \) provides a set of parametric equations for \(f = 0 \).

In the above algorithm, we have to solve a system of algebraic equations. We can use the method based on Wu-Ritt’s decomposition algorithm [24]. This method is complete in
the field of complex numbers. If one wants to find real coefficients parametric equations,
we have to find the real zeros of a set of polynomials, which can be done by Collin’s CAD
method [6].

4.3 The Primitive Elements of Algebraic Extension Fields

A basic result in algebraic extension theory is that there exists a primitive element in
each finite algebraic extension of a field of characteristic zero. Precisely, we have

Theorem 4.8. Let \(\eta_1, \ldots, \eta_m \) be algebraic over \(K \). Then there exist \(f_i \in K, i = 1, \ldots, m \),
such that \(K(\zeta) = K(\eta_1, \ldots, \eta_m) \) where \(\zeta = \sum_{i=1}^{m} f_i \eta_i \).

We consider the following more general problem.

Theorem 4.9. Let \(\eta_1 \) be algebraic over \(K \) and for \(i = 2, \ldots, m \), \(\eta_i \) be algebraic over
\(K_{i-1} = K(\eta_1, \ldots, \eta_{i-1}) \). Then we can find integers \(f_i, i = 1, \ldots, m \), such that if
\(\zeta = \sum_{i=1}^{m} f_i \eta_i \) then \(K(\zeta) = K_m \).

Proof. We assume that the \(\eta_i \) are given by the following sequence of polynomials
\[A_1(x_1), A_2(x_1, x_2), \ldots, A_m(x_1, \ldots, x_m) \]
i.e., \(A_i(\eta_1, \ldots, \eta_i) = 0, i = 1, \ldots, m \). Without loss of generality, we assume the initial of
each \(A_i \) is a nonzero number in \(K \). In this case, \(ID = Ideal(A_1, \ldots, A_m) \) defines a zero
dimensional variety, i.e. the parameter set of \(ID \) is empty. Then by Algorithm 3.8, we can find integers \(f_i, i = 1, \ldots, m \), such that a char set of \(Radical(ID, w - \sum_{i=1}^{m} f_i x_i) \) under
the variable order \(w < x_1 < \ldots < x_m \) is of the form
\[R(w), R_1(w, x_1), \ldots, R_m(w, x_m) \]
where \(R_i = x_i - U_i(w) \). Replacing \(x_i \) by \(\eta_i \) in \(R_i \), we have \(\eta_i = U(\zeta) \), i.e., \(K(\zeta) = K_m \).

4.4 Solving Systems of Polynomial Equations

Let \(PS \) be a finite polynomial set in \(K[X] \) with a finite number of zeros for the \(x \). Then
\(Ideal(PS) \) is of dimension zero and has an empty parameter set. Thus, by Algorithm 3.8,
we can find integers \(m_1, \ldots, m_n \) such that a char set of \(Radical(PS \cup \{w-m_1 x_1 - \ldots - m_n x_n\}) \)
under the variable order \(w < x_1 < \ldots < x_n \) is of the form
\[R(w), R_1 = x_1 - U_1(w), \ldots, R_n = x_n - U_n(w) \]
where \(U_i \) are univariate polynomials with degree less than \(degree(R(w)) \). Then the distinct
zeros of \(Ideal(PS) \) can be obtained as follows
\[Zero(PS) = \{(x_1, \ldots, x_n) : x_i = U_i(w), i = 1, \ldots, n, R(w) = 0\} \]
Conversely,
\[\text{Zero}(R(w)) = \{ \sum_{i=1}^{n} m_i x_i : (x_1, \cdots, x_n) \in \text{Zero}(PS) \} \]

As a conclusion, there is a one to one correspondence between the real (complex) roots of \(R(w) \) and the real (complex) distinct zeros of \(PS \).

Let \(R(w) \) be of degree \(N \). Then \(U_i \) must be of degree less than \(N \). To find the zeros of \(PS \), we need only to find the roots of \(R(w) \) and solvers for univariate polynomials are widely available [7]. Now we have the following result on error estimation.

Lemma 4.10. If \(w_0 \) is a root of \(R(w) = 0 \) and \(w' \) is a number such that \(|w_0 - w'| < \epsilon < 1 \), we have \(|U_i(w_0) - U_i(w')| < \epsilon \frac{(M+2m)^{N+1}}{m^N} \), where \(M \) and \(m \) are the maximal and minimal absolute values of the coefficients of \(R(w) \) and \(U_i, i = 1, \ldots, n \).

Proof. Since \(R(w_0) = 0, ||w_0|| < C = 1 + M/m \) [18]. Let \(\delta = w' - w_0 \). Since \(|w_0 - w'| < \epsilon < 1 \), we have \(\delta \leq 1 \). We have \(|w^k - w_0^k| = |(w_0 + \delta)^k - w_0^k| \leq \delta \cdot |k w_0^{k-1} + \cdots + \delta^k| \leq \delta \cdot ((C+1)^k - C^k) \leq (C+1)^k < \epsilon (C+1)^k \). Then \(|U_i(w_0) - U_i(w')| \leq M(|w'^N - w_0^N| + \cdots + |w' - w_0|) \leq \epsilon M(C+1)^N + \cdots + (C+1) < \epsilon M(C+1)^N/(C-1) \leq \epsilon M(C+1)^N = \epsilon M(M + 2m)^N/m^N \leq \epsilon (M + 2m)^{N+1}/m^N \).

As a conclusion, we have

Theorem 4.11. Let \(e_1, \cdots, e_n \) be rational approximate roots of \(R(w) = 0 \) with accuracy \(\epsilon < \delta \frac{m^N}{M+2m} \) for a positive number \(\delta < 1 \). Then \((U_1(e_i), \cdots, U_n(e_i)), i = 1, \cdots, n \), are \(\delta \) approximations of the zeros of \(PS \).

Proof. Let \(w_1, \cdots, w_n \) be the roots of \(R(w) = 0 \) corresponding to \(e_1, \cdots, e_n \). By Lemma 4.10,

\[\sqrt{\sum_{k=1}^{n} (U_k(w_i) - U_k(e_i))^2} < \epsilon \frac{M + 2m}{m^N} \frac{N+1}{m^N} \leq \delta. \]

We will go further to isolate the real (complex) zeros of \(PS \), i.e., we need to find disjoint regions in \(R^n \) (or \(C^n \) in the case of finding the complex zeros), each containing exactly one real (complex) zero of \(PS \).

Let us assume that we have obtained the asc chain (4.8). We always exclude the trivial case whose \(R(w) \) is linear. We also exclude the trivial case where \(U_i \) is a constant. Let \(V_i(x_i), i = 1, \cdots, n \), be the resultant of \(A(w) \) and \(U_i(w) - x_i \) for the variable \(w \). Then it is clear that the zeros of \(V_i(x_i) = 0 \) are the projections of \(\text{Zero}(PS) \) upon the \(i \)-th axis of \(R^n \). Since (4.8) is the characteristic set of a radical ideal, \(V_i \) must be square free. We also assume that \(R(w) \) and \(V_i \) are integral, i.e., their coefficients are integers.

Theorem 4.12. Let \(e_1, \cdots, e_n \) be rational approximate roots of \(R(w) = 0 \) with accuracy \(\epsilon < s \frac{m^N}{s(M+2m)^{N+1}} \), where \(M \) and \(m \) are the maximal and minimal absolute values of the coefficients of \(R(w) \) and \(U_i, i = 1, \ldots, n \); \(s = s \sqrt{2^{\frac{1-N}{2}}} N^{-N} T^{1-N} \); and \(T \) is the maximal absolute value of the coefficients of \(V_i(x_i) \). Then the spheres with \((U_1(e_i), \cdots, U_n(e_i)), i = 1, \cdots, t \), as centers and with radius \(s/8 \) are disjoint and each contains exactly one zero
of PS.

Proof. First, let us note that $1 \leq \text{degree}(V_i(x_i)) \leq N$, because PS has only N different zeros. Since $R(w)$ and $V_i(x_i)$ are integral and $\text{degree}(R(w)) \geq 2$, from (p.362, [18]), we know that a lower bound for the distances among the roots of V_i is

$$s_i = \sqrt{3d_i^{-\frac{1}{2}}} \left(\sum_{i=0}^{d_i} c_i^2 \right)^{\frac{1}{2}} \geq \sqrt{3d_i^{-\frac{1}{2}}} \left((d_i + 1)T^2 \right)^{\frac{1-d_i}{3}}$$

$$\geq \sqrt{32 \frac{1-d_i}{2} d_i^{-d_i} T^{1-d_i}} \geq \sqrt{32 \frac{1-N}{2} N^{-N} T^{1-N}}$$

where $c_i, i = 1, \cdots, d_i$ are the coefficients for $V_i(x_i)$. Then $s = \sqrt{32 \frac{1-N}{2} N^{-N} T^{1-N}}$ is a lower bound for the distances among the distinct zeros of PS. By Theorem 4.11, $Z_i = (U_1(e_i), \cdots, U_n(e_i)), i = 1, \cdots, t$, are the approximate zeros of PS with accuracy $\frac{s}{8}$. Therefore, each sphere with Z_i as center and with radius $\frac{s}{8}$ contains a zero of PS. Distinct spheres thus obtained are disjoint because the distance between two $\frac{s}{8}$-approximate zeros of PS must be $> \frac{s}{4}$ and the distance between two distinct spheres must be $> \frac{s}{2}$.

It is easy to rationalize the bounds in Theorems 4.11 and 4.12.

References

