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Abstract

We extend the concept of the resolvent of a prime ideal to the concept of the
resolvent of a general ideal with respect to a set of parameters and propose an algo-
rithm to construct the generalized resolvents based on Wu-Ritt’s zero decomposition
algorithm. Our generalized algorithm has the following applications. (1) For a re-
ducible variety V , we can find a direction on which V is projected birationally to an
irreducible hypersurface. (2) We give a new algorithm to find a primitive element
for a finite algebraic extension of a field of characteristic zero. (3) We present a
complete method of finding parametric equations for algebraic curves. (4) We give
a method of solving a system of polynomial equations to any given precision.

Keywords. Resolvents, parameterization of algebraic curves, primitive elements, poly-
nomial equation solving, Wu-Ritt’s decomposition algorithm.

1 Introduction

Some frequently used algebraic algorithms share the same property that they transform a
set of polynomial equations to a single polynomial equation such that the zero set of the
polynomial set and the hypersurface defined by the single polynomial are equivalent in
certain sense. For algorithms with this property, we may mention: the algorithm to find
a primitive element for a finitely generated algebraic extension field [17], the algorithm
to find a plane curve which is birational to a space algebraic curve [1], etc. In this paper,
we present a general algorithm which can be used to tale care of this kind of problems.

In Ritt’s classical book Differential Algebra [19], an algorithm of constructing resolvents
for a prime ideal is given. The hypersurface defined by a resolvent of a prime ideal
is birational to the irreducible variety defined by the prime ideal. Hence by using Ritt’s
resolvent algorithm some of the problems mentioned in the above paragraph can be solved,
e.g., we can construct a plane curve which is birational to a given irreducible algebraic
curve. But Ritt’s resolvent algorithm can not be used to the problem of finding primitive
elements of a finitely generated algebraic extension field, because the polynomial equations
giving the algebraic numbers generally might not consist of a prime ideal.
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In this paper, we extend Ritt’s concept of resolvent to general ideals with respect to
(abbr. w.r.t) a parameter set. We also give an algorithm to construct a resolvent of
an ideal w.r.t to a parameter set. The algorithm works as follows. We first compute a
resolvent for each of the prime components of the ideal using Wu-Ritt’s decomposition
algorithm or Buchberger’s Gröbner basis algorithm, then obtain the resolvent of the ideal
from the resolvents of its prime components.

The generalized resolvent algorithm has the following applications:

(1) For a reducible variety V which is the union of irreducible varieties with the same
dimension and the same parameter set, we can find a map to transform V into a hyper-
surface which is birational to V .

(2) As a special case of (1), we can find plane curves which are birational to a given
algebraic curve. We also present a new algorithm to construct a set of parametric equa-
tions for a rational plane curve. Hence, we have a complete method to decide whether an
algebraic curve is rational, and if it is, to find parametric equations for it.

(3) We give an algorithm to find a primitive element for a finite algebraic extension field
of a field with characteristic zero. Probabilistic methods to construct a primitive element
for a finitely generated algebraic extension field are given in [17, 25]. Our method in this
paper is deterministic and applicable to more general cases: the generator sequence of the
algebraic elements can be defined successively, i.e., an algebraic element in the sequence
depends on the previous elements.

(4) In the work of solving polynomial equation systems, a typical method is first
transforming the system into a triangular system and then solving the triangular system
iteratively [23, 15]. But when one tries to solve a triangular form using numerical methods,
we meet the following error estimation problem: For a triangular equation system

A1(x1) = 0, A2(x1, x2) = 0, ..., Ap(x1, ..., xp) = 0

we ask what accuracy for x1 is needed if we want a certain accuracy for xp. In [2], this is
considered to be an inherent difficulty of polynomial equation solving. In [14, 11], proba-
bilistic methods based on the Gröbnr basis method to compute the roots of a polynomial
set to any given precision are given. Using the method of resolvents, we can give a de-
terministic method. Since our method is based on the Wu-Ritt’s characteristic method
whose complexity is singly exponential [12], it is generally faster than the previously
known methods based on Gröbner basis method whose complexity is doubly exponential.

The algorithm of constructing resolvents reported in this paper is used to factorize a
polynomial over an algebraic extension field [26]. The factorization algorithm presented
in [22] uses a technique similar to that of computing the resolvents.

The paper is organized as follows. In Section 2, we introduce some notions which are
used in this paper. In Section 3, we prove the existence of the resolvents and present an
algorithm to compute them. In Section 4, we show how to use the theory of resolvents to
various problems.
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2 Preliminaries on Wu-Ritt’s Decomposition Algo-

rithm

In this section, we introduce some concepts which will be used later. A detailed description
of these concepts can be found in [23].

Let K be a computable field of characteristic zero and K[x1, ..., xn] or K[X] be the ring
of polynomials in the indeterminates x1, ..., xn. Unless explicitly mentioned otherwise, all
polynomials in this paper are in K[X]. Since K is of characteristic zero, we can assume
that the field of rational numbers Q is a subfield of K.

For P ∈ K[X], we can write P = cdx
d
p + ... + c1xp + c0, where ci ∈ K[x1, ..., xp−1]. We

call cd 6= 0 the initial of P and p the class of P , or init(P ) = cd and class(P ) = p. If
P ∈ K, class(P ) = 0. For polynomials P and G with class(P ) > 0, let prem(G; P ) be
the pseudo remainder of G w.r.t P .

A sequence of polynomials ASC = A1, ..., Ap is said to be an ascending (abbr. asc)
chain, if either r = 1 and A1 6= 0 or 0 < class(Ai) < class(Aj) for 1 ≤ i < j and Ak is of
higher degree than Am for m > k in xnk

where nk = class(Ak).

For an asc chain ASC = A1, ..., Ap such that class(A1) > 0, we define the pseudo
remainder of a polynomial G w.r.t ASC inductively as

prem(G; ASC) = prem(prem(G; Ap); A1, ..., Ap−1).

Let R = prem(G; ASC). Then from the computation procedure of the pseudo division,
we have the following important remainder formula:

(2.1) JG = B1A1 + . . . + BpAp + R

where J is a product of powers of the initials of the polynomials in ASC and the Bi are
polynomials. For an asc chain ASC, we define

PD(ASC) = {g | prem(g, ASC) = 0}
By (2.1), a zero of ASC which does not annul the initials of the polynomial in ASC is a
zero of PD(ASC).

For an asc chain ASC = A1, ..., Ap, we always make a renaming of the variables. If
Ai is of class mi, we rename xmi

as yi, and the other variables are renamed as u1, ..., uq,
where q = n−p. The variables u1, ..., uq are called a parameter set of ASC. A polynomial
in K[u1, ..., uq] is called a u-pol.

Let ASC = A1, ..., Ap be an asc chain with u1, ..., uq as parameters. We will define
when ASC is irreducible. For indeterminates τ1, ..., τq, let H1 be the polynomial obtained
from A1 by replacing ui by τi, i = 1, ..., q. Then H1 is a polynomial in K1[y1] where
K1 = K(τ). We assume that H1 is irreducible and let η1 be a zero of H1. Now let

(2.1.1) τ1, ..., τq, η1, ..., ηk−1
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be a set of zeros of A1, ..., Ak−1 constructed as above. Let Hk be the polynomial obtained
by replacing u1, ..., uq, y1, ..., yk−1 by (2.1.1). We assume that (2.1.1) is not a zero of the
initial of Ak and Hk is an irreducible polynomial in Kk[yk] where Kk = Kk−1(ηk−1). Let
ηk be a zero of Hk. Finally, we have the following quantities

τ1, ..., τq, η1, ..., ηp−1, ηp

which consist of a solution for the polynomials in ASC. If we can construct such a set of
zeros according to the above procedure then ASC is said to be irreducible and the zero is
called a generic zero of ASC. Since a generic zero of ASC does not annul the initials of
the polynomials in ASC, by (2.1) it is a zero of PD(ASC).

Definition 2.1. The dimension of an irreducible ascending chain ASC = A1, ..., Ap is
defined to be DIM(ASC) = n− p.

Thus DIM(ASC) is equal to the number of parameters of ASC.

Definition 2.2. A characteristic set (abbr. char set) of an ideal ID is an asc chain ASC
in ID such that for all P ∈ D, prem(P,ASC) = 0.

Theorem 2.3. If ASC is an irreducible asc chain then PD(ASC) is a prime ideal with
dimension DIM(ASC). Conversely, each char set of a prime ideal is an irreducible asc
chain.

Proof. See [19] p88.

Lemma 2.4. Let ASC be an irreducible asc chain with parameters u1, ..., uq. If Q
is a polynomial not in PD(ASC), then we can find a nonzero u-pol P such that P ∈
Ideal(ASC, Q) (i.e., the ideal generated by Q and the polynomials in ASC).

Proof. See [23].

Lemma 2.5. Let ASC be an irreducible asc chain with parameters u1, ..., uq. We can
find an irreducible asc chain ASC ′ and such that PD(ASC) = PD(ASC ′) and the initials
of the polynomials in ASC ′ are u-pols.

Proof. See [8].

Let PS be a polynomial set. For an algebraic closed extension field E of K, let

Zero(PS) = {x = (x1, ..., xn) ∈ En | ∀P ∈ PS, P (x) = 0}.
For two polynomial sets PS and DS, we define

Zero(PS/DS) = Zero(PS)− ∪d∈DSZero(d).

Then we have the following Wu-Ritt’s decomposition algorithm.

Theorem 2.6. For finite polynomial sets PS and DS, we can either detect the emptiness
of Zero(PS/DS) or find irreducible asc chains ASCi, i = 1, ..., l, such that

Zero(PS/DS) = ∪l
i=1Zero(PD(ASCi)/DS)
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and that (a) there exist no i, j, i 6= j such that PD(ASCi) ⊂ PD(ASCj); (b) for all
d ∈ DS and i = 1, ..., l, prem(d,ASCi) 6= 0.

Proof. See [23]. For our implementation of the algorithm, see [3].

3 The Theory of Resolvents

3.1 Properties of Resolvents

An ideal distinct from (1) and (0) is called nontrivial.

Definition 3.1. Let ID be a nontrivial ideal in K[X]. We can divide the x into two
groups, u1, ..., uq and y1, ..., yp, p + q = n, such that ID ∩ K[u1, · · · , uq] = ∅, while, for
i = 1, ..., p, ID contains a nonzero polynomial in yi and the u alone. We call the u a
parameter set of ID.

In what follows in this section, we assume that ID is a non-trivial ideal in K[U, Y ]
where the u consists of a parameter set of ID.

Lemma 3.2. A char set of ID under the variable order u1 < ... < uq < y1 < ... < yp is
of the form

(3.2.1) ASC = A1(u, y1), A2(u, y1, y2), ..., Ap(u, y1, ..., yp)

where Ai is a polynomial involving yi effectively. Conversely, for an irreducible asc chain
like (3.2.1), the u consist of a parameter set of the prime ideal PD(ASC).

Proof. Let A1 be a polynomial of y1 and the u in ID with lowest degree in y1, and ID1

be the polynomials of y1, y2 and the u in ID whose degrees in y1 are less than the degree
of A1 in y1. ID1 is not empty, because by the definition of the u there is a polynomial P
of the u and y2 in ID and P is obviously in ID1. It is also clear that of the polynomials
in ID1 involving y2 effectively, A1 is of lowest degree in y1. Let A2 be a polynomial in
ID1 with lowest degree in y2. Let ID2 ⊂ K[U, y1, y2, y3] ∩ ID such that the polynomials
in ID2 are of lower degrees in yi than Ai , i = 1, 2. Continuing this procedure, at last we
obtain an asc chain ASC. For any polynomial P ∈ ID, R = prem(P,ASC) is of lower
degree in yi than the degree of yi in Ai hence must be zero, i.e. ASC is a char set of
ID. To prove the second part, first let us note it is obvious that PD(ASC) ∩K[U ] = ∅.
For any i ≤ p, since prem(Ai, A1, · · · , Ai−1) = Ai 6= 0 by Lemma 2.4 there is a nonzero
polynomial P ∈ K[u, xi] such that P ∈ Ideal(A1, · · · , Ai). Thus the u are a parameter
set of PD(ASC).

Lemma 3.3. The u are a parameter set of an ideal ID iff we have a decomposition

(3.3.1) Zero(ID) = ∪t
i=1Zero(PD(ASCi))

⋃
Zero(D′) (t > 0)

where each ASCi is an irreducible asc chain with the u as a parameter set and D′ is a
polynomial set which contains nonzero u-pols.
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Proof. It is a direct consequence of Theorem 4.5 in [4].

Corollary 3.3.1. In terms of ideals, (3.3.1) can be expressed as

Radical(ID) = ∩t
i=1PD(ASCi) ∩RD′ (t > 0)

where ASCi is the same as in Lemma 3.3 and RD′ = Radical(D′) is the radical ideal
generated by D′.

The following lemma is crucial to the construction of the resolvents.

Lemma 3.4. Let ID be an ideal in K[U,X] with the u as a parameter set. For a new
variable w, there exist integers M1, ..., Mp, and a u-pol G, such that two distinct zeros of
ID with the u taking the same values for which G does not vanish give different values
for Q = M1y1 + ... + Mpyp.

Proof. Let ID′ be the ideal obtained from ID by replacing each yi by a new variable zi.
Using p more new indeterminates λ1, ..., λp, we consider the ideal

∆ = Ideal(ID ∪ ID′ ∪ {
p∑

i=1

λi(yi − zi)}).

As ∆ contains ID, ∆ has, for each j ≤ p, a nonzero polynomial Bj in yj and the u alone.
Similarly, let Cj, j = 1, ..., p, be a nonzero polynomial of ∆ in zj and the u alone. Let D
be the product of the initials of the B and C. Then D is a u-pol. For a zero of ∆ for
which (y1 − z1)D 6= 0, we have

λ1 = −λ2(y2 − z2) + ... + λp(yp − zp)

y1 − z1

.

Let m be the maximum of the degrees of the Bi in the yi and of the degrees of the Cj in
the zj. Let k be any positive integer. We write, for s = 1, ..., k and for the above zero,

λs
1 =

Es

(y1 − z1)k

where Es is a polynomial. Using the relations Bi = 0 and Cj = 0, we can depress the
degree of Es in each yi and in each zj to be less than m. The new expression of λs

1 will
be of the form

λs
1 =

Fs

(y1 − z1)kDs

where Ds is a product of powers of the initials of the Bi and Cj. Let L be the least
common multiple of the Ds. We write

λs
1 =

Hs

(y1 − z1)kL
, s = 0, ..., k

with each Hs being a polynomial of degree less than m in y and z. The number of power
products of the yi and zj, of degree less than m in each y and z, is m2p. Consequently, if
we take k ≥ m2p and treat the power products of the y and z as independent variables, by
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eliminating these power products, we can find a nonzero polynomial in λ1, of degree not
greater than k, whose coefficients are polynomials in λ2, ..., λp and the u, which vanishes
for every zero of ∆ that does not annul (y1 − z1)D. Let K1 be the product of this
polynomial by D. Then K1 vanishes for every zero of ∆ that does not annul y1 − z1.

Similarly, for i = 2, ..., p, we can find a Ki which vanishes for every zero of ∆ that does
not annul yi− zi. We can find integers Mi, i = 1, ..., p, which, when substituted for the λi

in
∏

1≤i≤p Ki, reduce that polynomial to a nonzero polynomial G in the u. Any such set
of Mi will furnish a Q as in the lemma. Because if two distinct zeros (u′, y′) and (u′, y′′)
of ID give the same value for Q, then (u′, y′, y′′,M1, ..., Mp) is a zero of ∆. Since y′′ 6= y′

G(u′) must be zero.

For a new indeterminate w, let ID1 = Ideal(ID, w − Q) where Q is the same as in
Lemma 3.4. Then ID1 is an ideal in K[U,w, Y ] and ID1 ∩K[U, Y ] = ID.

Lemma 3.5. The u consist of a parameter set of ID1.

Proof. Since the u consist of a parameter set of ID, by Lemma 3.3, we have

Zero(ID) = ∪t
i=1Zero(PD(ASCi))

⋃
Zero(D′) (t > 0)

where ASCi are asc chains with the u as parameter set. Since ID1 = Ideal(ID, w −Q),

Zero(ID1) = ∪t
i=1Zero(PD(ASCi) ∪ {w −Q}) ⋃

Zero(D′ ∪ {w −Q}).
Under the variable order u1 < . . . < yp < w, ASCi, w − Q is a (weak) asc chain. It is
easy to show that Ideal(PD(ASCi) ∪ {w −Q}) = PD(ASCi, w −Q). Using Lemma 3.3
again, we know the u are a parameter set of ID1.

Theorem 3.6. Use the same notations as above. If ID is a prime ideal then a char set
of ID1 under the variable order u1 < ... < uq < w < y1 < ... < yp is of the form

(3.6.1) A(u,w), A1(u,w, y1), ..., Ap(u,w, yp)

where A is an irreducible polynomial in w and Ai = Ii(u)yi − Vi(u,w).

Proof. By Lemma 3.5, the u consist of a parameter set of ID1. By Lemma 3.2, a char set
of ID1 is of the form (3.6.1) except that we need to show Ai = Ii(u)yi−Vi(u,w). If an Ai

is not linear in yi, then by the procedure of constructing the generic point, (3.6.1) has two
generic points, say g1 and g2, which have the same value for the u and w. Since g1 and
g2 do not vanish the G (because G is a u-pol and the the value of the u in g1 and g2 are
indeterminates) in Lemma 3.4 and they have the same value for the u and w, by Lemma
3.4, they are identical. This is a contradiction. Therefore, Ai = Ii(u,w)yi − Vi(u,w). By
Lemma 2.5, we can further assume that Ii are free of the w.

We call A = 0 a resolvent of the prime ideal ID. For the general case, we have

Theorem 3.7. Let ID be an ideal in K[U,X] with the u as a parameter set and ID1

be defined as above. A char set of Radical(ID1) under the variable order u1 < ... < uq <
w < y1 < ... < yp is of the form

(3.7.1) A(u,w), A1(u,w, y1), ..., Ap(u,w, yp)
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where Ai = Ii(u)yi − Vi(u,w).

Proof. By Lemma 3.5, the u consist of a parameter set of ID1. Then they also consist of
a parameter set of Radical(ID1). By Lemma 3.2, a char set of Radical(ID1) under the
variable order u < w < y1 < ... < yp is of form (3.7.1) except that we need to prove that
Ai is linear in yi. By Corollary 3.3.1,

(3.7.2) Radical(ID1) = ∩t
i=1PD(ASCi) ∩RD′

where PD(ASCi) are prime ideals with the u as parameter sets and RD′ is a radical
ideal containing a u-pol. We can further assume that there exist no i 6= j such that
PD(ASCi) ⊂ PD(ASCj). By the selection of the Mi in Lemma 3.4, different zeros of
PD(ASCi) with the same u which do not annul G give distinct values for Q. Thus by
Theorem 3.6, a char set of Ideal(PD(ASCi), {w−Q}) under the variable order u < w <
y1 < ... < yp is of the form

Ri(u,w), Ri,1(u,w, y1), ..., Ri,p(u,w, yp)

where each Ri is an irreducible polynomial and Ri,j = Ii,j(u)yj +Vi,j(u,w). We shall prove
that Ri 6= Rj for i 6= j. If this is not true, say R1 = R2, then by the selection of the Mi, a
generic zero of ASC1 must be the same as a generic zero of ASC2 if they have the same
value for w. Therefore PD(ASC1) = PD(ASC2), which is impossible.

Let H be a u-pol in RD′. From (3.7.1) and (3.7.2), it is clear that A = H
∏t

i=1 Ri. We
shall prove that there is a polynomial Ai = Ii(u)yi − Vi(u,w) in Radical(ID1). If this is
true then A,A1, ..., Ap is a char set of Radical(ID1) and we have proved the theorem. We
need only to show the case for t = 2. The general case can be proved similarly. Without
loss of generality, we assume I1,i = I2,i. (Otherwise we may consider I2,iR1,i and I1,iR2,i

instead of R1,i and R2,i.) If V1,i = V2,i, then Ai = HR1,i = HR2,i are in Radical(ID1).
We have completed the proof. Otherwise, let R be the resultant of R1 and R2 w.r.t w.
Then R is a nonzero u-pol and there exist polynomials B1 and B2 in K[U,w] such that
R = B1R1 −B2R2. Let

R′
1 = U(R(J1yi + V1)−B1R1(V1 − V2)), R′

2 = U(R(J2yi + V2)−B2R2(V1 − V2))

where U is a u-pol in RD′. Then R′
1−R′

2 = H(R(V1− V2)− (V1− V2)(B1R1−B2R2)) =
0, i.e., R′

1 = R′
2 are in PD(ASC1) ∩ PD(ASC2). Since H ∈ RD′, R′

1 is in Radical(ID1)
by (3.7.2). We have completed the proof.

We call the equation A = 0 a resolvent of ID w.r.t the u. Note that the proof of
Theorem 3.7 actually provides more information:

Corollary 3.7.1. For an irredundant decomposition (3.3.1) of ID, we have

(1) For the same Q, the resolvents of PD(ASCi) are mutually different and the resol-
vent of ID w.r.t the u is the product of the resolvents of PD(ASCi), i = 1, ..., t, and an
appropriate u-pol.

(2) We have a method to construct a char set of Radical(ID) if char sets for PD(ASCi),
i = 1, · · · , t are known.
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3.2 Methods of Constructing Resolvents

To find a resolvent of an ideal ID w.r.t a set of parameters, we first express Radical(ID) as
intersection of prime ideals, then find the resolvent for each prime ideal, finally construct
a resolvent for ID from these resolvents.

Algorithm 3.8. Let PS be a finite set of polynomials in K[u1, ..., uq, y1, ..., yp]. The
algorithm decides whether the u are a parameter set of ID = Ideal(PS), and if it is,
finds a resolvent of ID w.r.t the u.

Step 1. By Theorem 2.6, under the variable order u < y1 < ... < yp, we have

Zero(PS) = ∪l
i=1Zero(PD(ASCi))

⋃∪t
j=1Zero(PD(ASC∗

j ))

where the ASCi, i = 1, ..., l, are all the asc chains in the decomposition which have the u
as their parameter sets. Then by Lemma 3.3, the u are a parameter set of ID iff l > 0 and
there exist at least one u-pol in each ASC∗

j . If this is the case, go to Step 2. Otherwise
the algorithm stops.

Step 2. Let λ1, ..., λp, w be new indeterminates and let ID1 = Ideal(PS, w − Q) be an
ideal in K[U, λ, w, Y ], where Q = λ1y1 + ... + λpyp. By Lemma 3.5, ID1 is an ideal with
the u and the λ as a parameter set.

Step 3. For each i = 1, ..., l, by Algorithm 3.10, we find a char set

Ai(λ, u, w), Ai,1(λ, u, w, y1), ..., Ai,p(λ, u, w, yp)

for the prime ideal Ideal(PD(ASCi), w −Q) under the variable order l < u < w < y1 <
... < yp. As the λ are arbitrary indeterminates, by the proof of Lemma 3.4 and Theorem
3.6, Ai,j are linear in yj. By (1) of Corollary 3.7.1, Ai 6= Aj for i 6= j.

Step 4. By (2) of Corollary 3.7.1, we can construct a char set for Radical(ID1)

(3.8.1) R(l, u, w), R1(l, u, w, y1), ..., Rp(l, u, w, yp)

where Ri = Ii(l, u)yi − Vi(l, u, w). Let D = I
∏p

i=1 Ip where I is the initial of R. Then D
is a polynomial of the u and the λ.

Step 5. Let a1, ..., ap be integers, for which D becomes a nonzero polynomial in the u
and Ai 6= Aj is still true, when each λi is replaced by ai. For λi = ai, i = 1, ..., p, (3.8.1)
becomes

(3.8.2) R′(u,w), R′
1(u,w, y1), ..., R

′
p(u,w, yp)

We assume that the u-pol factors of R′ have been removed.

Step 6. By Lemma 3.9, R′ is a resolvent of Ideal(PS).

Lemma 3.9. (3.8.2) is a char set of Radical(ID2) where ID2 = Ideal(PS∪{w−∑
i aiyi}).

Proof. If (3.8.2) is not a char set of Radical(ID2), Radical(ID2) will have a char
set T, T1, ..., Tp with T of lower degree g in w than R′ and Ti are linear in yi. We
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can assume that the initials of the Ti are free of w since such polynomials exist in
Radical(ID2)(i.e., R

′
i). If D is the product of those initials, we have, for a zero of ID2 in

which the values of the u are independent indeterminates,

(3.9.1) yi =
Ci,g−1w

g−1 + ... + Ci,0

D

where the C are u-pols. Let us consider the ideal ID3 = Ideal(PS, v − λ1y1 − ...− λpyp)
in K[U, λ, v, Y ] for a new indeterminate v. We will show that ID3 contains a nonzero
polynomial P , free of the y, which is of degree no more than g in v. This polynomial
is also in Radical(ID3). Noting that Radical(ID1) and Radical(ID3) should have char
sets in which the first polynomials of both char sets have the same degree. We thus get
a contradiction.

We consider the relations

vi = (λ1y1 + ... + λpyp)
i, i = 1, ..., g.

We replace the y by their expression in (3.9.1) and depress the degrees in w of the
polynomials on the right side to less than g, using the relation T = 0. We have such
get a set PS of g polynomials of the u, the λ, v, and w such that the polynomials in
PS are of degree less than g in w and of degree no more than g in v. Treating w, w2,
..., wg−1 as independent variables in the polynomials in PS, we eliminate them and get
a nonzero polynomial Q in v, the u and the λ. Note that the special position of the vi

in the polynomials of PS, Q is of degree no more than g in v. We have completed the
proof.

Algorithm 3.10. Let ASC = A1, ..., Ap be an irreducible asc chain in K[U,Y] where
the u are a parameter set of ASC. The algorithm finds a char set for the prime ideal
D = Ideal(PD(ASC) ∪ {w − Q}) under the variable order l < u < w < y1 < · · · < yp,
where Q = λ1y1 + ... + λpyp.

Step 1. By Theorem 2.6, under the variable order u < λ < w < y1 < . . . < yp we have

(3.10.1) Zero(ASC ∪ {w −Q}) = ∪t
i=1Zero(PD(ASC ′

i)).

Step 2. By (2.1), we have

Zero(ASC) = Zero(PD(ASC))
⋃∪p

i=1Zero(ASC ∪ {init(Ai)})

By Lemma 2.4, there is a polynomial Ui ∈ Ideal(ASC ∪ {init(Ai)}) which involves the u
and the λ alone. Thus, there is only one irreducible component in Zero(ASC ∪{w−Q}),
i.e., Zero(D), on which the u and l are algebraically independent.

Step 3. Therefore only one component in (3.10.1), say Zero(PD(ASC ′
1)), with the u and

l as a parameter set and ASC ′
1 is a char set of D.

Step 4. By Lemma 2.5, we can assume that the initials of the polynomials in ASC ′
1 involve

the u alone.
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We have the following variations for Algorithm 3.8 and Algorithm 3.10.

Modification 3.11. For Algorithm 3.10, we can use the Gröbner basis method instead
of Theorem 2.6 to compute a char set of D as follows. Let GB be a Gröbner basis of
Ideal(PS ′) (PS ′ = ASC ∪ {w − Q}) in K(l, U)[w, Y ] in purely lexicographic order w <
y1 < . . . < yp (for the Gröbner basis method, see [2]). As in K(l, U)[w, Y ], Ideal(ASC1 ∪
{w− q}) defines a zero dimensional prime ideal, then GB is also a char set of Ideal(PS ′)
(see [8] or [5]).

Modification 3.12. In practice, Algorithm 3.8 may be very slow, because by in-
troducing new variables λi, large polynomials could be produced in the procedure. An
idea to improve the efficiency is that we can randomly select p integers a1, ..., ap and use
Q′ = w − a1y1 − ...− apyp instead of Q = w − λ1y1 − ...− λpyp to compute the resolvent,
i.e., we compute char sets of Radical(PS, w − Q′) directly by using methods similar to
those in Algorithm 3.8. The success probability of the selection of the integers should
be one, because by Step 5 of Algorithm 3.8, the integers which do not suit for the above
purpose consist of an algebraic set of lower dimension than q.

4 Applications of the Resolvents

4.1 A Hypersurface Birational to a Variety

It is well known in algebraic geometry [13] that:

Theorem 4.1. Any irreducible variety of dimension r is birational to a hypersurface in
Er+1.

We will prove the following more general result.

Theorem 4.2. Let PS be a finite polynomial set in K[U, Y ] such that the u are a
parameter set of Ideal(PS) and no prime component of Radical(PS) contains a nonzero
u-pol. Then we can find a polynomial R of w and the u such that Zero(PS) is birational
to Zero(R). The birational maps can also be found.

Proof. By Algorithm 3.8, we can find integers M1, ..., Mp such that a char set of RD =
Radical(PS ∪ {w − (M1y1 + ... + Mpyp)}) is of the form

(4.2.1) R(u,w), R1(u,w, y1), ..., Rp(u,w, yp)

where Ri = Iiyi − Ui (Ii are u-pols) and R = 0 is a resolvent for Ideal(PS). We define a
morphism

MP1 : Zero(PS) → Zero(R)

by setting MP1(u1, ..., uq, y1, ..., yp) = (u1, ..., uq,M1y1 + ... + Mpyp). We define another
morphism

MP2 : Zero(R) → Zero(PS)
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by setting MP2(u1, ..., uq, w) = (u1, ..., uq, U1/I1, ..., Up/Ip). Let I =
∏p

i=1 Ii. Then MP2 is
well defined on D1 = Zero(R) − Zero(I). Since no component of Radical(PS) contains
a nonzero u-pol, Radical(PS) = ∩PSi where PSi are prime ideals whose parameter sets
are the u. By Corollary 3.7.1, R is a polynomial with no factor involving the u alone.
Therefore MP2 is well defined on Zero(R) except a part Zero(I) with lower dimension
than q. We may check that MP1(MP2) and MP2(MP1) are identity maps. Therefore,
Zero(R) and Zero(PS) are birational. The birational maps between them are MP1 and
MP2.

Corollary 4.3. Let PS be a finite polynomial set in K[U, Y ] such that the u are a
parameter set of Ideal(PS). Then we can find a polynomial R of w and the u and a u-pol
H such that Zero(PS/H) is birational to Zero(R/H).

Proof. By Lemma 3.3, Zero(PS) = ∪iZero(PSi) ∪ Zero(D) where PSi are prime ideals
whose parameter sets are the u and D is an ideal containing a nonzero u-pol, say H. Then
Zero(PS/H) = ∪iZero(PSi/H). Then the result can be proved similarly as Theorem
4.2.

4.2 Parameterization of Algebraic Curves

An irreducible algebraic curve is an irreducible variety of dimension one. Let C =
Zero(PS) be an irreducible algebraic curve where PS ⊂ K[X]. Then C is called rational
if there exist polynomials u1, ..., un, w of an indeterminate t such that gcd(u1, ..., un, w) = 1
and ∀P ∈ PS, P (u1/w, ..., un/w) ≡ 0. We call

x1 = u1/w, · · · , xn = un/w

a set of parametric equations for the curve. The maximum of the degrees of ui and w is
called the degree of the parametric equations.

In this section, we give a decision method to find whether an algebraic curve is rational,
and if it is, to find a set of parametric equations for it. See [10] for more details. For
other methods of parameterizing curves, see [1] and [20].

As a special case of constructing resolvents, we have

Theorem 4.4. For an irreducible algebraic curve C = Zero(PS) in An, we can find an
irreducible polynomial of two variables f(x, y) such that C is birational to Zero(f). The
birational maps between C and Zero(f) can also be obtained.

It is obvious that C is rational iff f(x, y) = 0 is rational. Furthermore, using the
birational transformations between C and f = 0, we can find a set of parametric equations
for C (or f = 0) if a set of parametric equations of f = 0 (or C) is given. Hence, we need
only to find a set of parametric equations for f(x, y) = 0.

Definition 4.5. A set of parametric equations x = ui/w for a curve C is called proper
if, except for a finite number of points, for each point (x′1, ..., x

′
n) on C there only exists

one value t0 for t such that x′i = ui(t0)/w(t0), i = 1, ..., n.
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A rational curve always has a set of proper parametric equations [21].

Theorem 4.6. Let x = u(t)/w(t), y = v(t)/w(t) be a set of proper parametric equations
for a plane curve f(x, y) = 0. We assume gcd(u, v, w) = 1. Then the degree of f is the
same as the degree of the parametric equations.

Proof. Let f be of degree d and the parametric equations be of degree d′. By Bezout’s
theorem [21], the degree of f = 0 equals the number of the intersection points between
f = 0 and a generic straight line. Let ax + by − 1 = 0 be the equation of a generic line
where a and b are indeterminates. The parametric values corresponding to the intersection
points are the roots of the equation P (t) = au(t) + bv(t)− w(t) = 0. Then d ≤ d′. Since
gcd(u, v, w) = 1, P (t) is irreducible. Thus P (t) = 0 has d′ distinct roots. Since the
parametric equations are proper, we have d′ ≤ d.

Algorithm 4.7. Let PS be a finite set of polynomials in K[X]. The algorithm decides
whether C = Zero(PS) is a rational irreducible algebraic curve, and if it is, finds a set of
parametric equations for C.

Step 1. By Theorem 2.6, we have an irredundant decomposition

Zero(PS) = ∪m
i=1Zero(PD(ASCi)).

C is an irreducible algebraic curve iff m = 1 and ASC1 contains n − 1 polynomials. If
this is the case, go to Step 2. Otherwise, the algorithm terminates.

Step 2. We rename the parameter of ASC1 as u1. Other variables are also renamed so
that ASC1 = A1(u1, y1), ..., Ap(u1, y1, ..., yp), p = n− 1.

Step 3. By Algorithm 3.8, we can find a resolvent f(x, y) = 0 of degree d for PD(ASC1)
and birational transformations between Zero(f) and Zero(PD(ASC1)).

Step 4. Let

(4.7.1) x = u(t)/w(t), y = v(t)/w(t)

where u(t) = udt
d + ... + u0, v(t) = vdt

d + ... + v0, and w(t) = wdt
d + ... + w0 for

indeterminates ui, vi, and wi.

Step 5. Replacing x and y by u(t)/w(t) and v(t)/w(t) in f(x, y) = 0 and clearing the
denominators, we obtain a polynomial Q of t whose coefficients are polynomials of ui, vi

and the wi. Let the set of coefficients of Q as a polynomial of t be HS = {P1, ..., Ph}.
Step 6. (4.7.1) is a set of parametric equations for f = 0 iff HS has a set of zeros such that
when the coefficients of u, v, and w are replaced by these zeros, u(t)/w(t) and v(t)/w(t)
are not numbers in K.

Step 7. Let DS1 = {uiwj − ujwi | i, j = 1, ..., d}, DS2 = {viwj − vjwi | i, j = 1, ..., d}.
Then f = 0 is rational iff HD = Zero(HS) − (Zero(DS1) ∪ Zero(DS2)) is not empty,
and if it is not empty, each zero of HD provides a set of parametric equations for f = 0.

In the above algorithm, we have to solve a system of algebraic equations. We can use
the method based on Wu-Ritt’s decomposition algorithm [24]. This method is complete in

13



the field of complex numbers. If one wants to find real coefficients parametric equations,
we have to find the real zeros of a set of polynomials, which can be done by Collin’s CAD
method [6].

4.3 The Primitive Elements of Algebraic Extension Fields

A basic result in algebraic extension theory is that there exists a primitive element in
each finite algebraic extension of a field of characteristic zero. Precisely, we have

Theorem 4.8. Let η1, ..., ηm be algebraic over K. Then there exist fi ∈ K, i = 1, ..., m,
such that K(ζ) = K(η1, ..., ηm) where ζ =

∑m
i=1 fiηi.

We consider the following more general problem.

Theorem 4.9. Let η1 be algebraic over K and for i = 2, ..., m, ηi be algebraic over
Ki−1 = K(η1, ..., ηi−1). Then we can find integers fi, i = 1, ..., m, such that if ζ =

∑m
i=1 fiηi

then K(ζ) = Km.

Proof. We assume that the ηi are given by the following sequence of polynomials

A1(x1), A2(x1, x2), ..., Am(x1, ..., xm)

i.e., Ai(η1, ..., ηi) = 0, i = 1, ..., m. Without loss of generality, we assume the initial of
each Ai is a nonzero number in K. In this case, ID = Ideal(A1, ..., Am) defines a zero
dimensional variety, i.e. the parameter set of ID is empty. Then by Algorithm 3.8, we
can find integers fi, i = 1, ..., m, such that a char set of Radical(ID, w−∑m

i=1 fixi) under
the variable order w < x1 < ... < xm is of the form

R(w), R1(w, x1), ..., Rm(w, xm)

where Ri = xi − Ui(w). Replacing xi by ηi in Ri, we have ηi = U(ζ), i.e., K(ζ) = Km.

4.4 Solving Systems of Polynomial Equations

Let PS be a finite polynomial set in K[X] with a finite number of zeros for the x. Then
Ideal(PS) is of dimension zero and has an empty parameter set. Thus, by Algorithm 3.8,
we can find integers m1, ..., mn such that a char set of Radical(PS∪{w−m1x1−...−mnxn})
under the variable order w < x1 < ... < xn is of the form

(4.8) R(w), R1 = x1 − U1(w), ..., Rn = xn − Un(w)

where Ui are univariate polynomials with degree less than degree(R(w)). Then the distinct
zeros of Ideal(PS) can be obtained as follows

Zero(PS) = {(x1, · · · , xn) : xi = Ui(w), i = 1, · · · , n, R(w) = 0}.
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Conversely,

Zero(R(w)) = {
n∑

i=1

mixi : (x1, · · · , xn) ∈ Zero(PS)}.

As a conclusion, there is a one to one correspondence between the real (complex) roots
of R(w) and the real (complex) distinct zeros of PS.

Let R(w) be of degree N . Then Ui must be of degree less than N . To find the zeros
of PS, we need only to find the roots of R(w) and solvers for univariate polynomials are
widely available [7]. Now we have the following result on error estimation.

Lemma 4.10. If w0 is a root of R(w) = 0 and w′ is a number such that |w0−w′| < ε < 1,

we have |Ui(w0) − Ui(w
′)| < ε (M+2m)N+1

mN , where M and m are the maximal and minimal
absolute values of the coefficients of R(w) and Ui, i = 1, ..., n.

Proof. Since R(w0) = 0, ‖w0‖ < C = 1 + M/m [18]. Let δ = w′ − w0. Since |w0 − w′| <
ε < 1, we have δ ≤ 1. We have |w′k − wk

0 | = |(w0 + δ)k − wk
0 | ≤ δ · |kwk−1

0 + ... + δk| ≤
δ ·((C +1)k−Ck) ≤ δ(C +1)k < ε(C +1)k. Then |Ui(w0)−Ui(w

′)| ≤ M(|w′N−1−wN−1
0 |+

...+ |w′−w0|) ≤ εM((C +1)N−1 + ...+(C +1)) < εM(C +1)N/(C− 1) ≤ εM(C +1)N =
εM(M + 2m)N/mN ≤ ε(M + 2m)N+1/mN .

As a conclusion, we have

Theorem 4.11. Let e1, · · · , es be rational approximate roots of R(w) = 0 with accuracy

ε < δ mN√
n(M+2m)N+1 for a positive number δ < 1. Then (U1(ei), · · · , Un(ei)), i = 1, · · · , n,

are δ approximations of the zeros of PS.

Proof. Let w1, · · · , ws be the roots of R(w) = 0 corresponding to e1, · · · , es. By Lemma
4.10, √√√√

n∑

k=1

(Uk(wi)− Uk(ei))2 < ε
√

n
(M + 2m)N+1

mN
< δ.

We will go further to isolate the real (complex) zeros of PS, i.e., we need to find disjoint
regions in Rn (or Cn in the case of finding the complex zeros), each containing exactly
one real (complex) zero of PS.

Let us assume that we have obtained the asc chain (4.8). We always exclude the trivial
case whose R(w) is linear. We also exclude the trivial case where Ui is a constant. Let
Vi(xi), i = 1, · · · , n, be the resultant of A(w) and Ui(w)− xi for the variable w. Then it
is clear that the zeros of Vi(xi) = 0 are the projections of Zero(PS) upon the i-th axis
of Rn. Since (4.8) is the characteristic set of a radical ideal, Vi must be square free. We
also assume that R(w) and Vi are integral, i.e., their coefficients are integers.

Theorem 4.12. Let e1, · · · , et be rational approximate roots of R(w) = 0 with accuracy

ε < s mN

8
√

n(M+2m)N+1 where M and m are the maximal and minimal absolute values of the

coefficients of R(w) and Ui, i = 1, ..., n; s =
√

32
1−N

2 N−NT 1−N ; and T is the maximal
absolute value of the coefficients of Vi(xi). Then the spheres with (U1(ei), · · · , Un(ei)),
i = 1, · · · , t, as centers and with radius s

8
are disjoint and each contains exactly one zero
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of PS.

Proof. First, let us note that 1 ≤ degree(Vi(xi)) ≤ N , because PS has only N different
zeros. Since R(w) and Vi(xi) are integral and degree(R(w)) ≥ 2, from (p.362, [18]), we
know that a lower bound for the distances among the roots of Vi is

si =
√

3d
− di+1

2
i (

di∑

i=0

c2
i )

1−di
2 ≥

√
3d

− di+1

2
i ((di + 1)T 2)

1−di
2

≥
√

32
1−di

2 d−di
i T 1−di ≥

√
32

1−N
2 N−NT 1−N

where ci, i = 1, · · · , di are the coefficients for Vi(xi). Then s =
√

32
1−N

2 N−NT 1−N is
a lower bound for the distances among the distinct zeros of PS. By Theorem 4.11,
Zi = (U1(ei), · · · , Un(ei)), i = 1, · · · , t, are the approximate zeros of PS with accuracy s

8
.

Therefore, each sphere with Zi as center and with radius s
8

contains a zero of PS. Distinct
spheres thus obtained are disjoint because the distance between two s

8
-approximate zeros

of PS must be > 3s
4

and the distance between two distinct spheres must be > s
2
.

It is easy to rationalize the bounds in Theorems 4.11 and 4.12.
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