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Abstract

This paper presents a method of producing readable proofs for theorems in solid geometry.
The method is for a class of constructive geometry statements about straight lines, planes,
circles, and spheres. The key idea of the method is to eliminate points from the conclusion
of a geometric statement using several (fixed) high level basic propositions about the signed
volumes of tetrahedrons and Pythagoras differences of triangles. We have implemented
the algorithm and more than 80 examples from solid geometry have been used to test the
program. Our program is efficient and the proofs produced by it are generally short and
readable.

Keywords. Automated theorem proving, Euclidean traditional proofs, volume method, con-
structive geometry statements.

1 Introduction

Since the pioneering work of Wen—Tsiin Wu in 1977 [12], highly successful algebraic methods for
automated proving geometry theorems have been developed. Computer programs based on these
methods have been used to prove hundreds of non—trivial geometry theorems [1, 2, 8]. Algebraic
methods, which are very different from the traditional proof methods used by geometers since
Euclid, generally can only tell whether a statement is true or not. If we want to look at the proofs,
we only have to see tedious computations of polynomials. The traditional method usually can
give elegant proofs. Researchers have been studying automated generation of traditional proofs
using computer programs since the work by H. Gelernter, J. R. Hanson, and D. W. Loveland [6].
In spite of the enormous amount of efforts and great improvements, see e.g., [9, 11], the successes
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in this direction have been limited in the sense that no computer program has been developed
which can prove non—trivial geometry theorems efficiently. In spite of the great successes of the
algebraic methods, the research in the automated generation of traditional proofs is still a very
attractive and challenging topic.

Recently, we presented a method which can produce short and readable proofs for a class of
geometric statements in plane Euclidean geometry [15, 3, 4]. [5] is a collection of 400 geometry
theorems proved by our program, including the complete machine proofs of 100 theorems. This
method is based on properties of the signed area and the Pythagoras difference which have been
studied extensively in [14] for the purpose of geometry education.

This paper is an extension of our area method to solid geometry. We present a theorem
proving method for geometry statements whose hypotheses can be described constructively and
whose conclusions are polynomial equations of several geometry quantities, such as volumes,
ratios of line segments, ratios of areas, and Pythagoras differences. We call this method the
volume method which is an extension of the area method. The key idea of the method is to
eliminate points from the conclusion of a geometry statement using several basic propositions
about volumes. The automatically produced proofs are “traditional” in the sense that they are
generally short, readable, and each step of the proof has a clear geometric meaning. The proofs
are of a shape that a student could write with pencil and paper in a few lines.

The volume method is complete for the class of constructive geometry statements which
covers a large portion of the equational geometry theorems about lines, planes, circles, and
spheres. The idea of constructive type and the associated automated proving may be resorted
to Hilbert [7] and was first pointed out by Wu in [13]. The volume method works not only
for Euclidean solid geometries but also for metric solid geometries associated with any number
field with characteristic zero. Certain geometry problems such as those involving inequalities
are beyond the scope of the volume method.

We have implemented the method and our program' has proved more than 80 examples from
solid geometry, including Ceva’s Theorem, Menelaus’ theorem, Desargues’ theorem, Monge’s
theorem, etc. The proofs produced by the program are generally short and readable. The
algorithm is also very efficient. (see the statistic table in Section 6.)

In Section 2, we prove the basic propositions which will serve as the basis of our method. In
Section 3, we define the constructive geometry statements. In Section 4, we present the method
for the Hilbert intersection statements in affine geometry. In Section 5, we present the general
volume method. In Section 6, we give some experiment results.

2 The Signed Volumes

We need some notions and results from plane geometry whose formal definition and proofs can
be found in [3, 15].

We use capital English letters to denote points in the Euclidean space. We denote by AB
the signed length of the oriented segment from A to B; denote by Sapc the signed area of
the oriented triangle ABC. The area of an oriented quadrilateral ABCD is Sapcp = Sapc +

!The prover (euc.tar.Z) is available via ftp at emcity.cs.twsu.edu: pub/geometry/.



Sacp = Sapp — Scpp. When we mention a line AB or a plane PQR, we always assume A # B
or P,Q, and R are not collinear.

Proposition 2.1 (The Co-side Theorem) Let M be the intersection of two non parallel lines

PM _ Spap. PM _ Spap . QM _ SqasB
AB and PQ and Q # M. Then OM = Soan’ PQ — Sraos’ PO — Sraos’

Proposition 2.2 Let R be a point on line PQ. Then for any two points A and B in the same
RQ
PQ

plane Spap = %S@AB + SpaB.

Two lines in the same plane are said to be parallel if they do not have a common point. We
use the notation AB || CD to denote the fact that A, B, C, and D satisfy one of the following
conditions (1) line AB and line C'D are parallel; or (2) A= B or C = D;or (3) A, B, C and D

are collinear.

Proposition 2.3 PQ || AB iff Spap = Sqag, i.e., iff Spagp = 0.

2.1 Co-Face Theorem

In this subsection, we will formally define the signed volume and derive some of its properties
which will serve as the deductive basis of the volume method.

Definition 2.4 For any four points A, B, C, and D in the space, the signed volume Vapcp of
the tetrahedron ABCD is a real number?which satisfies the following properties

V.1 When two neighbor vertices of the tetrahedron are interchanged, the signed volume of the
tetrahedron will change signs, e.g., Vapcp = —VaBbpc-

V.2 Points A, B, C, and D are coplanar iff Vapcp = 0.

V.3 There exist at least four points A, B, C, and D such that Vapcp # 0.

V.4 For five points A, B,C, D, and O, we have Vapcp = Vapco + Vapop + Vaocep + Vosebp-
V.5 If A, B, C, D, E, and F are six coplanar points and Sapc = ASpger then for any point

T we have Vrape = A\Vrper.

Note that we do not use the concept of altitude in the definition of volume.

We denote by PABCQ the polyhedron with faces PAB, PBC, PAC, QAB, QBC, and
QAC. The volume of PABCQ is defined to be

Veapcq = Vrpapc — Vgagc.

By V.4 of definition 2.4, we have Vpapcg = Vrapg + Vrcag + Veeeg-

2Here, we can use any number field and the results in this paper are still valid.



P

i
|

7T 157 [ad/ ]

Proposition 2.5 (The Co-face Theorem) A line P(Q and a plane ABC meet in M. If Q) #
M, we have
PM  Vpapo. PM  Vpapc QM  Vgasc

QM Voasc' PQ  Vpapcg' PQ  Vpapcq

Proof. Figure 1 shows several possible configurations of this proposition. By V.5 of Definition

P43 Vpapc _ Vpapc  Vpapm  YeaBm _ Sapc  Sppm  Sapum _ Sppm _ PM
2.4 and Proposition 2.1 Voac — VpaBm Voasm Voasc =~ SaBm SBom  Sasc SpoM QM
1

Proposition 2.6 Let R be a point on a line PQ and

ABC be a triangle (Figure 2). Then we have Q
PR
% ==V +
RABC = 5 0 QABC

Proof. By Proposition 2.5, we have [ \X . W_ [

Vprac _ PR Vparc PR Vpapr _ PR

Vpope  PQ’ Vpage PQ’ Vpapg PQ’

By V.4 Vrapc = Vpapc—VpPrBc—VPArRCc—VPABR = VPABC — % (VpgBc+VPage+Vrang) =

Veapc — %VPABCQ = %VQABC + %VPABC- 1



Proposition 2.7 Let R be a point in the plane PQ.S.
Then for three points A, B, and C, we have

SPQr Sros
VrRaBe = ?ZSVSABC‘F SPZS

SpPrs
VPABC"‘SiVQABC‘
PQS

QS (Figure 3). By Proposition 2.6,

PR RM PR QM MS RM

= Vit ——Vp = Vs + =Vo) + =Vp. 1

MM T PM TR 0s ° " Qs Q)+ 5377 (1)
: RM _ S QM _ S MS _ S PR _ S :

By the co-side theorem (2.1), 552 = sﬁgi’ 5 = S;QQ;S, o5~ T g = %QR:. Substi-

tuting these into (1), we obtain the result. I

Vr

2.2 Parallels

Two planes or a straight line and a plane, are said to be parallel if they have no point in common.
The notation PQ || ABC means that A, B,C, P, and @ satisfy one of the following conditions:
(1) P=Q, (2) A, B, and C are collinear, or (3) A, B, C, P, and @ are on the same plane,
or (4) line PQ and plane ABC' are parallel. According to the above definition, if PQ || ABC
then lien PQ and plane ABC have a normal intersection. For six points A, B, C, P,Q, and R,
ABC || PQR iff AB || PQR, BC || PQR, and AC || PQR.

Proposition 2.8 PQ || ABC iff Vpapc = Vgapc or equivalently Vpapcg = 0.

Proof. If Vpapc # Vgapc, let O be a point on line PQ such that 112:8 = &4756%. Thus
0Q _ _ Vgasc

V2ol Vrancg By Proposition 2.6, Voapc = %VQABC + %VPABC = 0. By V.2, point O
is also in plane ABC, i.e., line PQ is not parallel to ABC. Conversely, if PQ || ABC' let O be

the intersection of PQ) and ABC. By Proposition 2.5, % = % =1, ie., P=@Q which is a

contradiction. I

Proposition 2.9 PQR || ABC iff Vpapc = Voapc = Vrapc-
Proof. This is a consequence of Proposition 2.8. I

Proposition 2.10 Let PQTS be a parallelogram. Then for points A, B, and C, we have

Veapc + Vrape = Vgapc + Vsapc or Vepapcq = Vsaper-

Proof. This is a consequence of Proposition 2.6, because both sides of the equation are equal to
2Voapc where O is the intersection of PT and S@Q. I

Proposition 2.11 Let triangle ABC be a parallel translation of triangle DEF. Then for any
point P we have Vpapc = VpperAa.



Proof. By Proposition 2.10, Vpapc = Vrarc —Vrapc = Vpaer —Vraep —Vrapc = VPaAEF —
Veaep — Vpapr = VPDEFA. 1

Proposition 2.12 Let triangle ABC' be a parallel translation of triangle DEF. Then for two
points P and @ we have

Vpasc + Voper = Voae + Veper or Vpapcg = VPDEFQ-

PTOOf. By PI‘OpOSitiOH 2.11, VPABC = VPDEF - VADEF; VQABC = VQDEF - VADEF from which
we obtain the result immediately. I

2.3 Working Examples

Before presenting the method, we use several examples to show how to use the above properties
about volumes to prove theorems. The proofs given below are actually modifications of the
proofs produced by our program.

Example 2.13 (Menelaus’ Theorem) If the sides
AB, BC, CD, and DA of any skew quadrilateﬁﬂ\are
cut by a plane XY Z in the points E, F,G, and il
respectively, then g:g . ?:g . % . % =1

Proof. By the co-face theorem

DH Vpxyz CG  Vexyz BF  Vexyz AE  Vaxyz

AH ~ Vaxyz DG  Vpxvz CF Voxvz BE  Vexvz

s AE BF CG DH _ - iti i
Then it is clear that 55 TC Cb Hi~ 1. For the non-degenerate conditions of this example,

see Section 3.3 1

Example 2.14 Let A1B1Cy be the parallel projec-
tion of any triangle ABC' in any plane. Show that
the tetrahedra ABCA; and A1B1C1A are equal in
volume (Figure 5).

1

Proof. Since C'C] is parallel to plane AA; By, by Proposition 2.8, Vaa,B,c; = Vaa,B,c. Simi-
larly, Vaa,B,c = Vaa, Be- [

3 Constructive Geometry Statements

Our volume method is for constructive geometry statements defined as follows.



3.1 Constructive Geometry Statements

By a geometry quantity, we mean one of the following three quantities: (i) the ratio of the
lengths of two oriented segments on one line or on two parallel lines; (ii)the ratio of the areas of
two oriented triangles in the same plane or in two parallel planes; or (iii) the signed volume of
a tetrahedron.

Definition 3.1 A construction is one of the following ways of introducing new points in the
space.

C1 (POINTS Aj,---,A;). Take arbitrary points Aq,---, A; in the space. Each A; has three
degrees of freedom.

C2 (PRATIO AW U V r). Take a point A on the line passing through W and parallel to line
UV such that WA = rUV, where r could be a rational number, a rational expression in
some geometric quantities, or a variable.

If r is a fixed quantity, A is a fixed point; if r is a variable, A has one degree of freedom.
The non-degenerate (ndg) condition is U # V.

C3 (ARATIO AL M N 1 ry r3), where 1 = SAMN o — SLAN g pq = SLMA are the area
) . ; SLMN LMN SLMN

coordinates of point A with respect to LM N. The 71, ro and r3 could be rational numbers,

rational expressions in geometric quantities, or indeterminates satisfying r; +ro +r3 = 1.

The ndg condition is that L, M, N are not collinear. The degree of freedom of A is equal

to the number of indeterminates in {ry,ra,73}.

C4 (INTER A (LINE U V) (LINE P @Q)). Point A is the intersection of line PQ and line UV
which are in the same plane. The ndg condition is PQ |fUV. Point A is a fixed point.

C5 (INTER A (LINE U V) (PLANE L M N)). Take the intersection of a line UV and a plane
LMN. The ndg condition is that UV |[{ LM N. Point A is a fixed point.

C6 (FOOT2LINE A P U V) Point A is the foot from point P to line UV. The ndg condition
is U # V. Point A is a fixed point.

Definition 3.2 A constructive statement is a list S = (C1,Cy, ..., C, G) where

1. Each C;, introduces a new point from the points introduced by the previous constructions.

2. G = (E1, E3) where E; and Ey are polynomials in some geometric quantities about the
points introduced by the C; and Ey = E5 is the conclusion of S.

The non-degenerate (ndg) condition of S is the set of ndg conditions of the C; plus the condition
that the geometry quantities in Fq and Es have geometry meanings, i.e., their denominators
could not be zero.

The set of all constructive statements is denoted by S¢. If the constructions are limited to
C1-C5, the corresponding statements are called the Hilbert intersection point statements in the
space and is denoted by Sp.



3.2 The Predicate Form

The constructive description of geometry statements can be transformed into the commonly
used predicate form. We first introduce several basic predicates.

1. Point (POINT P): P is a point in the space.

2. Collinear (COLL Py, P», P3): points P;, P», and Ps are on the same line. It is equivalent
to Splp2p3 =0.

3. Co-planar (COPL Py, Py, P3, Py): P1, P», P3, and P, are in the same plane. It is equivalent
to Vp,p,p,p, = 0.

4. Parallel between two lines. (PRLL Py, Py, P3,Py): PP, || PsPy. It is equivalent to
Ve p,pyp, = 0 and Sp p,p,p, = 0.

5. Parallel between a line and a plane. (PRLP Py, Py, P3, Py, P5): P1Ps || PsPyPs. Tt is
equivalent to Vp, PP Pspy = 0.

We first need to transform the constructions into predicate forms.

C2 (PRATIO AW U V 1) is equivalent to (PRLL AW U V), r = ¥4 and U #£ V.

C3 (ARATIO A L M N ry ry r3) is equivalent to (COPL A L M N), r; = g’zﬁ,m =
SLAN. g — SLMA and —=(COLL L M N).

SN’ SLun

C4 (INTER A (LINE U V) (LINE P @Q)) is equivalent to (COLL A U V), (COLL A P Q),
and ~(PRLL U V P Q).

C5 (INTER A (LINE U V) (PLANE L M N)) is equivalent to (COLL A U V), (COPL A L
M N), and ~(PRLP U V L M N).

C6 (FOOT2LINE A P U V) is equivalent to (COLL A U V), (PERP A P U V), and U # V.

Now a constructive statement S = (C1,---,C,, (E, F)) can be transformed into the following

predicate form
VP - VYR ((P(Ci)AN---NP(Cy)) = E=F)

where P; is the point introduced by C; and P(C;) is the predicate form of C;.

3.3 More Constructions

Constructions C1-C6 though simple, can be used to describe almost all the configurations about
lines, planes, circles, and spheres. To see that, we first introduce more geometry objects.

o We consider three kinds of lines: (LINE P @Q); (PLINE R P Q): the line passing through R
and parallel to PQ; (OLINE S P @ R): the line passing through point S and perpendicular
to the plane PQR.



e We consider six kinds of planes: (PLANE L M N); (PPLANE W O U V): the plane
passing through a point W and parallel to the plane OUV; (TPLANE W U V): the
plane passing trough a point W and perpendicular to the line UV; (BPLANE U V): the
perpendicular-bisector of line UV; (CPLANE A B P @Q R): the plane passing through
line AB and perpendicular to plane PQR; and (DPLANE A B P @): the plane passing
through line AB and parallel to line PQ.

Now we can introduce more constructions: taking an arbitrary point on a line or in a plane;
taking the intersections of two lines, the intersections of lines with planes, and the intersections
of three planes. From all possible combinations, we have 41 new constructions. For convenience,
we introduce the following often used constructions.

(MIDPOINT A U V). A is the midpoint of UV, i.e., (PRATIO A U V 1/2).

(LRATIO AU V r),ie., (PRATIO AU U V r).

(ON A In). Take an arbitrary point A on line In. For instance, (ON A (LINE U V)) is
equivalent to (PRATIO A U U V r) for an indeterminate 7.

Example 3.3 Example 2.13 can be described in the following constructive way.

(POINTSABC D XY Z)
(INTER E (LINE 4 B) (PLANE X Y 2))
(INTER F (LINE B C) (PLANE X Y Z2))
( )
)

~— —

(
(INTER G (LINE C D) (PLANE X Y Z
(INTER H (LINE A D) (PLANE X Y 2)

(AE BF CG DH __ 1))

—_—

BE CF DG AH
The ndg conditions: AB |f XY Z, BC || XYZ, CD || XYZ, AD |\ XYZ, B+ E,C # F,
D#G, A#+H.

The predicate form of this example is:
VA,B,--- ,H(HYP = CONC)

where

HYP = ( (COLL E A B)A (COPL E X Y Z)A (COLL F C B)A (COPL F X Y Z)A (COLL
G C D)A (COPL G X Y Z)A (COLL H A D)A (COPL H X Y Z)A =(PRLP A B X Y Z)A
~(PRLP C B X Y Z)A =(PRLP C D X Y Z)A =(PRLP D A X Y Z)A B # EA C # FA
D # GA and A # H);

CONC = (g:g%g:g% = 1)

We may also consider circles and spheres. We define (CIR O P Q) to be the circle in the
plane OP(Q which has O as its center and passes through point P. We define (SPHERE O P)
to be the sphere with center O and passing through point P. Then we can use the following
new constructions

(ON A (CIR O U V)). Take an arbitrary point on the circle.



(ON A (SPHERE O U)). Take an arbitrary point on the sphere.

(INTER A In (CIR O W P)). Take the intersection of line in and circle (CIR O W P) which
is different from W. We assume that line In and the circle are in the same plane. Line In
could be (LINE W V), (PLINE W U V), and (OLINE W L M N).

(INTER A In (SPHERE O W)). Take the intersection of line In and sphere (SPHERE O W)
which is different from W. Line In could be (LINE W V), (PLINE W U V), and (OLINE
W RPQ).

(INTER A (CIR O; W U) (CIR Oy W V)). Take the intersection of circle (CIR O; W U)
and circle (CIR O W V') which is different from W. We assume that the two circles are
in the same plane.

(INTER A (CIR O; U V) (SPHERE O; U)). Take the intersection of circle (CIR O; U V)
and sphere (SPHERE Oy U) which is different from U.

Here, we introduce another 10 new constructions. Thus, totally we have 51 constructions. The
following fact can be proved without much difficult.

Proposition 3.4 All the 51 constructions introduced in this subsection can be reduced to
constructions C1-C6.

4 Automated Theorem Proving for Class Sy

The volume method is to eliminate points from the conclusion of a geometry statement. More
precisely, we need to eliminate points from geometry quantities.

4.1 Eliminating Points from Volumes

The method of eliminating points from volumes is the basis of the volume method. In this
subsection, we will discuss four constructions C2—-C5. C1 will be treated in Section 4.4.

Lemma 4.1 Let Y be introduced by (PRATIOY W U V r). Then we have

Visey — 4 (G +7Vascv + (5 = rVapcu i W is on line UV.
Vapew +r(Vapev — Vaseu) otherwise.

Proof. Let G = Vapey. If W, U,V are collinear, by Proposition 2.6 we have

Uy YV UW wv
G=—=V. —Vapcu = (s + 1)V, —— —r)Vapcv.
T v ABCY + T VABCU (UV +r)Vasev + ( o r)VaBcu

Otherwise, take a point S such that W.S = UV. Then we have
WY YS
Trg VABCS + g Vascw =7 apcs + (1 —7)Vagew

By Proposition 2.10, we have Vapcs = Vapow + Vapov — Vapou. Substituting this into the
above equation, we obtain the result. Note that the ndg condition U # V is needed. I

10



Lemma 4.2 Let Y be introduced by (ARATIOY L M N 1 ry r3). Then we have

Vapocy = rmVapen +r2Vapem + 13Vapor.
Proof. This lemma is a direct consequence of Proposition 2.7. I

Lemma 4.3 Let Y be introduced by (INTERY (LINEU V') (LINE I J)). Then we have

S S
Vapey = 5 Y v apev — g 1y seu.
UIvJ UIv.J
Proof. By Propositions 2.6 and 2.1,
vy Yv SvuriVasev — SvisVascu
V. ==V + =V = .
ABOY = 7 VaBov + == VaBcu [
Since UV |f I.J, we have Syryj # 0. I

Lemma 4.4 Let Y be introduced by (INTERY (LINEU V) (PLANEL M N)). Then

1
Vapey = —— (VurmnVasev — VWimnVasceu)
VurLmnv

Proof. Let G = Vapcy. By Proposition 2.6 and the co-face theorem,

Va _ @VA " @VA _ VormnVasev — WimnVapcu
BOY = F7Vapov + g7 Vascu T )
Since UV [ LM N, we have Viyrayny # 0. I

4.2 Eliminating Points from Area Ratios

Lemma 4.5 Let Y be introduced by (PRATIOY W U V r). Then we have

- T“//UAM if W is not in plane ABY
ABY VvV ODEA ) . . .
—_— = e if W is in plane ABY but line UV is not.
CDE UCDEA
Sapwtrldapy —Sapu) if W,U,V, A, B,Y are coplanar
ScpE s Uy ¥y £, Dy .

Proof. f W & ABY, let RPQ be a parallel trans-
lation of triangle CDFE to plane ABY, and WS be
a parallel translation of UV to line WY (Figure 6).
By V.5, G = ggg; = ‘Z“jVVARf)g. By Proposition 2.12,

Verrow = Vwepea. By Propositions 2.6 agg 2.1\9,

Y
VwaBy = %VWSAB = rVyapwyv. We pfove/the

the first case: just replacing W by
case, see [3].

11



Lemma 4.6 Let Y be introduced by (ARATIOY L M N 1 ry r3). Then we have

ABY TQVLA%‘[C—;”’VLABN if one of L, M, N, say L, is not in ABY
CDE rlSABL+T25~%§é‘”+T3SABN if L, M, N are in plane ABY .

ABY _ V,
Proof. If L is not in ABY, = % Now the result comes from Lemma 4.2. The second

case can be proved similarly as Proposition 2.7. I

Lemma 4.7 Let Y be introduced by (INTERY (LINEU V') (LINE I J)). Then we have

ABY SurVuapy if one of U,V 1,J, say U, is not in ABY .
i gUIVJVUCDIEA s LR ’
CDE IUVSég;SI;iX ABL  4f U V,I,J, A, B,Y are coplanar.
ABY _ Vyapy _ UY Vyapv _ Surs Vuasv
Proof. If U is not in ABY', DR T Vi T T Vi T Si Ve The second case can
be proved similarly as Lemma 4.3. I

Lemma 4.8 Let Y be introduced by C = (INTERY (LINEU V) (PLANE L M N)). Then
we have

ABY { VULMN VUABV if U (or V) is not in ABY .
L]MNV UCD A g
ULMN ABV VLMNROABU ) .
CDE JET va— if U,V are in ABY .
; ; ABY _ Vuapy _ UY Vuvapvy _ Vurmun Vuasv
Pmof. If U is not in ABY., TDE — Vucppa — 0V Vocoea — Vorasy Voopea® The second case
is a consequence of Proposition 2.2 and the co-face theorem. 1

4.3 Eliminating Points from Length Ratios

In the following lemmas, point Y is introduced by construction C.

Lemma 4.9 Let G = 22 C =(PRATIOY W U V r).

EF’
Then
%Jﬂ“ .
o if De WY.
\%

G={ pluu ifDgWyYy,Ué¢DWY.
—ypapwy ifDEWY, E¢ DWY.
S?;Z‘;V“// if all points are coplanar.

Proof. If all points are collinear (the first and the last cases), see |3, 15] If U ¢ DWY, take a
point S such that DS = EF (Figure 7). By the co-face theorem G = X = Yowuyv. — Vowuy

DS = Vowuvs VEwuvr®

If E ¢ DWY, take a point T such that WT = UV. By the co-side and co-face theorems

S \% s
G= g:}; = SDDM‘;VST;“ = VDDV‘(’/V:[T;S. By Propositions 2.10 and 2.12

Vowre = Vowve — Vowuve = —Vuepwv,
Vowres = VEwrer = —Vewre = —Vrwve + Vewve = Vuerwv
which prove the lemma. I

12



Lemma 4.10 Let G = 2L € =(ARATIOY L M N 1y ry r3). Then we have

PRLMN. if D ¢ LMN.

MNF

G=( —{PEE ifDe LMN, E¢ LMN ,and DY | NM.
FMNE

SS;NJYFA;V if all points are coplanar and DY |f NM.

Proof. 1t D ¢ LM N, the result is a direct consequence of Propositions 2.5 and 2.12. For the

second case, take a point S such that DS = EF. Then G = % = glfﬂfsf\l’v = ‘Zf):ﬁf]\][v;s =
Voune — _VDMNE  The third case can be proved similarly. I
VeEMNEF VeMNE

Lemma 4.11 Let G = 2L C =(INTERY (LINEU V) (LINE I J)). Then we have

Youvt. D g UVIJ and ~(COLL U V I).

VEUuVIF
G=4{ 2% DeUVIJ,EF ¢UVIJ, and D ¢ UV.
SEDUUF\?/ D,E,F are in UVIJ, and D ¢ UV'.

Proof. The first case is a consequence of the co-face theorem. For the second case, we assume
D € UVIJ. Take a point S such that DS = EF. Then we have

_ DY _ Spuv _ Vouve _ Vpuve _ Vpuve
DS  Spuv —Ssuv  Vbuves Veuver Vruve
The third case can be proved similarly. I

Lemma 4.12 Let G = 2X ¢ =(INTERY (LINEU V) (PLANE L M N)). Then we have

ﬁ:
G % If D is not in plane LM N .
N % If De LMN and one of L,M,N, say L ¢ DUV .

Proof. If D is not in plane LM N, the result is a direct consequence of the co-face theorem.

For the second case, take a point S such that DS = EF. Then we have G = 2% = ‘YD% =
DS DUVLS

Vbuve I
VeuvLF

4.4 Free Points and Volume Coordinates

After applying the above lemmas to any rational expression E of geometric quantities, we can
eliminate the non-free points introduced by all constructions from E. Now the new FE is a
rational expression of indeterminates and volumes of free points in space. For more than five
free points in the space, the volumes of the tetrahedra formed by them are not independent,
e.g., see V.4 of Definition 2.4. To deal with this problem, we introduce the concept of volume
coordinates.

Definition 4.13 Let X be a point in the space. For four noncoplanar points O, W, U, and V,
the volume coordinates of X w.r.t. OWUV are
_ Yowux ry = Vowxv ry = Voxuv Y = Vxwuv
Vowuv'’ Vowuv'’ Vowuv’ Vowuv
It is clear that r1 + 79 +r3 + 174 = 1.

™1
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The points in the space are in a one to one correspondence with the four-tuples (x,y, z, w) such
that z +y +2+w = 1.

Lemma 4.14 Let G = Vapeoy, and O, W, U,V be four noncoplanar points. Then we have

VoacvVowuy + VoascuVovwy + Voasew Vouvy
Vowuv

G = Vapco +

Proof. We have
Vagecy = Vapco + Vapoy + Vaocy + Vopcy - (1)

Without loss of generality, we assume that YO meets plane WUV in X. (Otherwise, let YW
meet plane OUV in X, and so on.) By Proposition 2.5, we have

oYy VowuvyVoapx
Voapy = ==VoaBx = 2
0X Vowuv @
By Proposition 2.7,
Swux Swxv Sxuv
Voapx = w——Voasv + Voasu + Voasw (3)
Swuv Swuv Swuv
By Lemma 4.8, we have
Swux _ Vowuvy Swxv _ Vovwy Sxuvv _ Vouvy

Swov — Vowuovy Swouv  Vowovy Swov  Vowuvy '
Substituting them into (3) and (2), we have

v _ VowuyVoasv + VovwyVoasu + VouvyVoasw
OABY = Vowoy (4)

Similarly, we have

VowuvyVosev + Vovwy Voseu + Vouvy Vosew

Vowuv
VowuvyVocav + VovwyVocau + Vouvy Vocaw

Vowuv

Substituting them into (1) and noticing that Voapy + Vopov + Vocav = Voasev, Voasu +
Voseu +Vocau = Voascu, and Voapw + Vosew +Vocaw = Voapcw, we obtain the result.|

Vopey =

Vocay =

Now we can describe the volume method as follows: for a geometry statement in Sg: S =
(C1,--+,Cr, (E1, E2)), let the point introduced by C; be P;. Then we can use the above lemmas
to eliminate points P, P._1, - - -, Py respectively from Fy and Es. At last, we obtain two rational
expressions R; and Rs respectively. S is a correct geometry statement if R; is identical to Ras.
For the formal description of the algorithm, see the next section.

5 Automated Theorem Proving for Class S¢

5.1 The Pythagorean Difference

The Pythagoras difference Papc is defined as
Papc = AB* + CB* — AC".
It is easy to check that

14



— 2
1. Paap = 0; Papc = Popa; Papc + Pacs = 2BC” = Ppep.
2. If A, B, and C are collinear, Papc = 2BA - BC.
For four points A, B, C, and D, we define
-2 2 —2 —
Papcp = Papp — Pcpp = AB™+ CD” — BC™ — DA™,

Then Papcp = —PapcB = Peapc = —Ppcpa = PecpaB = —FPeap = Poepa = —Ppagce-

The following properties of Pythagoras differences are taken for granted in our volume
method.

Proposition 5.1 (1) (Pythagorean theorem) ABLBC iff P4pc = 0.

T2 A2 AT 2
(2) If OWLOU, OW LOV, and OULOV, then V3,1, = 5:OW OU OV .

In (2), we use the square of the volume, because the sign of the volume cannot be determined
by the signs of the edges of the tetrahedron.

Proposition 5.2 AB1CD iff Pxcp = Pgep or Pacgp = 0.

Proof. Let M and N be the orthogonal projections of A and B upon CD respectively. Then
AC® =AM’ +CM*, AD° = AM°+DM’, BC® = BN’ +CN’, BD> = BN+ DN". Therefore

Pacpp = CM’ — DM’ + DN° — CN° = 2CD(DM — DN).

Hence Pacpp =0iff DM = DN, ie., iff M = N. It is clear that N = M iff ABL1CD. |

Proposition 5.3 Let D be the foot of the perpendicular from point P to a line AB. Then we

have _ _
AD  Ppap DB  Pppa

AB  9AB> AB 94AB*

Proof. By Proposition 5.2, Ppap = Ppag = 2AB - AD. The result is clear now. 1

Proposition 5.4 Let R be a point on line PQ with position ratio r; = g;g, ro = % w.r.t. PQ.
Then for any points A and B, we have
Prap = rm1Pga+1m2Ppap
Parp = r1PagB +12Papp — r1m2Ppgp.
Proof. We first assume
RA* = QA + roPA” —111,PQ° (1)
RB® =1QB’ + rPB° —rraPQ . (2)
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Then Prap = RA° + AB° — BB’ = r(QA’ + AB° — QB°) + ry(PA” + AB° — PB°) =
r1PgaB +1r2Ppap. The second one can be proved similarly. To prove (1), let us first notice that

by Proposition 5.2, L
Papr _ PR

Papg  PQ
2 — —==2 =2 =9 =2 | =2 ——=2
Then 1 QA" + roPA” —rryPQ" = PA" + PR — 1 Papg = PA"+ PR" — Papr = AR™. |

=rl.

Proposition 5.5 Let ABCD be a parallelogram. Then for points P and @ in the same plane,
we have

Pypg +FPcpg = Pppg+Pppg or Pappg = Pprcqg

Ppag + Ppcg = Pppg+ Pppg +2PpaD

Proof. Let O be the intersection of AC' and BD. By the first equation of Proposition 5.4,
QPOPQ = PAPQ + PCPQ = PBPQ + PDPQ' By the second equation of Proposition 5.4,

1 1
2Ppog = Ppag + Ppcg — §PACA = Pppg + Pppg — §PBDB-

We only need to show 2Pgap = %(PAC A — Pppp) which comes from Proposition 5.4. I

5.2 Methods of Eliminating Points

Since we have a new geometry quantity, the constructive statements can be enlarged in the
following way: the conclusion of a statement can be the equation of two polynomials of length
ratios, area ratios, volumes and Pythagoras differences. The class of the enlarged constructive
statements is still denoted by S¢.

Now we have five constructions C2-C6 and four geometry quantities. We need to give a
method to eliminate a point introduced by each of the five constructions from each of the four
quantities. This section deals with the cases which are not discussed in Section 4.

Let Y be introduced by one of the constructions C2-C6. By Proposition 5.4 4 to eliminate

point Y from Pspy or P4y p we only need to find the position ratios W Y and XY UV and this has
been done in Section 4.1. (for C6, see Proposition 5.3.) Now there are only three cases left.

Lemma 5.6 IfY is introduced by (FOOT2LINEY P U V) then

Ppyy Ppyy
Vapey = Vapcg + Vagcp.
Pyvu Puvu
Proof. This is a consequence of Propositions 2.6 and 5.3. 1

Lemma 5.7 Let Y be introduced by (FOOT2LINEY P U V). Then

DUFrpu it D e UV and D # U.

. l~\7/F Ppup

g = DPFI)JUVVF D ¢ PUV

EF % if De PUV and E ¢ PUV
% if all points are coplanar
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I
&N

In all cases, we assume P is not on line UV ; otherwise P =Y and

Proof. For the first and last cases, see [3]. The second case is a consequence of the co-face

theorem. For the third case, let T be a point such that DT = EF. Then DY _ DY _ SSD¢ =
EF DT DUTV

Vouve — Vpuve _— _ Vpuve I
VbuvETr VeuvEF VruvE

Lemma 5.8 Let Y be introduced by (FOOT2LINEY P U V). Then

PPUVVPAB2V+PPVUVPABU if P is not in ABY .
2UV " VpecpEa

S LeuyVuapy. if U is not in ABY .
ABY _ ) 20V Vycoppa

ScpE LevuVvapy if V is not in ABY .
20V V, CDE

PeuvSabviFevudany if P,U,V are in ABY.
UV Sope

Proof. If P is not in ABY, by V.5, ggg; = V‘;PCA;;A. Now the result comes from Lemma 5.6.

The second and third cases can be proved similarly. For the last case, see [3]. I

5.3 The Algorithm

In the preceding subsection, we gave elimination methods for points introduced by constructions
C2-C6. Now we give the elimination method for free points. By Lemma 4.14, volumes of
tetrahedrons can be reduced to volume coordinates w.r.t to four given points. The following
lemma will also reduce the Pythagoras difference to volume coordinates.

Lemma 5.9 Let O, W, U, and V be four points not on the same plane such that OW LOUV
OULOWYV, and OV LOWU. Then

(1) Papc = AB* + CB° — AC".

(2) AB - oW (VAOUVB> +0U (VAOWVB) +0V (VAOWUB )2.

owuv owu Vowuv

(3) Vewuy = 5OW 000V,

Proof. (1) is the definition. (3) is from Proposition 5.1. For (2), let R, P, and @ be the
orthogonal projections from the point B to the planes OUV, OWYV, and OWU respectively,
and D, FE, and F be the orthogonal projections from the point A to the lines BR, BP, and BQ
respectively. By the Pythagorean theorem

_ . __, BD BE., - BF
AB = OW’ (o= )2 + OU (== )2 + OV (o=
ow oU oV

Now the result comes from Lemma 4.9. I

)%

Algorithm 5.10 (Volume)

INPUT: S =(C1,Cy,...,Ck, (E,F)) is a constructive geometric statement.
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OUTPUT: The algorithm tells whether S is true or not, and if it is true, produces a proof for
S.

S1. Fori=k,---,1, do S2, S3, S4 and finally do S5.

S2. Check whether the ndg conditions of C; are satisfied. The ndg condition of a construction
has three forms: A # B, PQ |f UV, PQ [f WUV. For the first case, we check whether
Pipa = 2@2 = 0. For the second case, we check whether Voguy = 0 and Spyyv = Squv.
For the third case, we check whether Vpy v = Vowpyy. If a ndg condition for a geometry
statement is not satisfied, the statement is trivially true. The algorithm terminates.

S3. Let G, -+, Gy be the geometric quantities occurring in £ and F. For j =1,---,s do S4

S4. Let H; be the result obtained by eliminating the point introduced by construction C; from
G using the lemmas in Sections 4 and 5. Replace G; by H; in E and F' to obtain the
new F and F.

S5. At last, E and F are rational expressions in independent variables. Hence if £ = F, S is
true under the ndg conditions. Otherwise S is false in the Euclidean plane geometry.

Proof. The last F and F' are rational expressions in free parameters. If £ = F, the statement is
obviously true. Otherwise, we can find specific values for the free parameters in £ and F' such
that when substituting them into £ and F', we obtain two different values of F and F, i.e., we
have found a counterexample. The ndg conditions of the statement ensures the validity of each
step, because all the geometric quantities occurring in the proof have geometric meaning, i.e.,
their denominators will not vanish. I

For the complexity of the algorithm, let m and n be the number of free and non-free points
in a statement respectively. Then we will use the lemmas (except 4.14 and 5.9) for at most n
times. Also note that each lemma will replace a geometric quantity by a rational expression
with degree less than or equal to three. Then if the conclusion of the geometry statement is of
degree d, the result after eliminating the nonfree points is at most degree 3"d. To eliminate the
free points using Lemmas 4.14 and 5.9, the final result is at most degree 4 - 3"d.

Remark 5.11 In the development of the volume method, no special property of the real number
field has been used. As a result, the volume method works not only for Euclidean geometry but
also for metric solid geometries associated with any field with characteristic zero.

6 Experiment Results and Comparisons

We have implemented the algorithm in Common Lisp on a NeXT workstation. The following is
the machine produced proof for Example 2.13

Example 6.1 For the input like Example 3.3, our program produces the following machine
proof (in Latex form) automatically.
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The machine proof The eliminants

DH COG BF AE DHHVDxYZ
AH DG CF BE AH Vaxvz
H Vpxvz . ©é BF AE ccGVoxyz
Vaxyz DG CF BE DG VDpxvz
G Vpxyz-Voxyz .| BF.AE BFFVBxvz
Vaxyz'Vpxyz <CF BE cr Vexvyz
simplify Voxyy | BF AE ABEVaxvz
Vaxyz CF BE BE VBXxyz

F VoxyzVexyz | B

VaxyzVoxyz BE

simglify Vexyz . AB

Vaxyz BE

E VexvzVaxvz
VaxvzVexyz

simplify 1

In the above proof, the symbol B means to eliminate point H. The eliminants are the
separate elimination results by using the lemmas in Sections 4 and 5.

The following table contains the timing and proof-length statistics for the 80 examples proved
by our program. Maxterm means the number of terms of the maximal polynomial occurring in

a proof.

The Proof-Length The Proving Time
Maxterm No. of Theorems | Time (secs) | No. of Theorems

m=1 18 t <0.05 28

m =2 25 0.06<t<0.1 19

2<m<5H 24 0.1<t<0.5 27

5<m< 10 9 06<t<1 3

10 <m < 140 4 1 <t<100 3

The key to the volume method presented here is a collection of powerful, high level theorems,
such as the Co-face theorems about the signed volumes. This method can be contrasted with
the earlier algebraic methods, which also proved astonishingly difficult theorems in geometry,
but with low-level, mind-numbing polynomial manipulations. For more than eighty percent of
the 80 theorems proved by the volume method, the maximal polynomials in their proofs have
less than six terms. The maxterms of the proofs produced using algebraic methods are rarely
less than six. On the other hand, the algebraic methods are more general, e.g., they can be used
to prove theorems involving inequalities and theorems in differential geometry. Also see [10] for
an interesting method based the vector version of the Grobner basis.

The previous methods based on the Al approach can also produce readable proofs for sim-
ple geometry theorems [6, 9]. The key tool in these methods are the congruent of triangles
which prevents these method from going very far for two reasons. First, the congruent triangle
techniques are used to prove some basic geometry facts and the proofs for most of the high
level geometry theorems using other concepts besides the congruent triangles. Second, even in
those proofs based on congruent triangles, auxiliary points or lines are often needed to form
the required congruent triangles and these auxiliary points or lines are often added by the user
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instead of the computer program.
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Appendix. Machine Produced Proofs for Several Examples The proofs (in LaTeX
form) of the following examples are produced entirely automatically by a program based on the

Algorithm 5.10.

Example 1 (Ceva’s Theorem for Skew Quadrilaterals) The planes passing through a point

O and the sides AB, BC, CD, and DA of any skew quadrilateral meet the opposite sides of the
quadrilateral in G, H, E, and F respectively (Figure 8). Show that gg ?g gg : Zg =1

The input The machine proof.
( POINTS 4 B ¢ D 0) B ©G BF iF
(INTER E ( LINE 4 B) ( PLANE o &Ppe cr &
(INTER r (LINE B ¢) ( PLANE 0 ADy), ., =5 57
( (

( (

(

.’"J
E‘éHé\

PLANE 0 4 BYasco DG cF
PLANE 0 BV po-Vagco | BF AB

INTER ¢ ( LINE ¢ D)
INTER # ( LINE D 4)

DH . CG BE AB_ 1)) Vapco-VaBpo CF BE
H DG CF BE
simplify  Vpcpo | BF AE
VaBpo CF BE
F Vecpo(=Vaspo) . a8
Vaepo(—Vacpo) BE
S’mellfy Vecpo . AE
Vacpo BE

E Veopo-Vacno
Vacpo-Vecpo

simplify 1
The eliminants

DHHVBCDO
AH VaBco

cG GVasco
DG~ VaBpo
BFFVappo
cr  Vacpo

AE EVacpo
BE VBCDO

The ndg conditions are AB [ OCD; BC |fOAD; CD |fOAB; AD |fOBC; B # E; C # F,
D#G, A#+H.

Example 2 (Centroid of a Tetrahedron) The

four medians of a tetrahedron meet in a point which
divides each median in the ratio 3:1. The longer seg-
ment being on the side of the vertex of the tetrahedron

(Figure 9).
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The input The machine proof The eliminants

( POINTS 4 B ¢ D) e AGSG SApz
( MIDPOINT s 5 ¢) 5(5%) 28 BT s ina
( LRATIO z A s 2/3) _SADz Spzy §(SDSZ)
( LRATIO v D s 2/3) g —Spzy. SapzZ3(1)
(INTER ¢ (LINE D z) (LINEAY))s,,, sz
(58 =3)) Y “Spsy
ey ®3)-(=3)

z 3

T @@

simglify 1

The ndg conditions are B# C, A# S, D# S, DZ |JAY, G #Y.

Example 3 If P,Q, R, and S are the feet of four cevains having the point O in common, we

have O—P + gg + % + (Figure 10).
The input The eliminants
(POINTS A B C D 0O) 05 8 Vapco

(INTER P ( LINE 4 0)
(INTER ¢ ( LINE B 0)
(INTER & ( LINE ¢ 0)
(INTER s ( LINE b 0)
(2

os OR 10Q OP _
DS CR BQ+AP_1))

PLANE B ¢ py) b5 Vapco

oRER—=VaBDO

PLANE A ¢ D)) Gr~ Vascp
PLANE 4 B D)) 2@ QM
PLANE 4 B 0)) 22, /4P

oP P —VBcpo
AP Vapcp
Veepo=Vacpo—VaBpo+Vasco—Vascp

~ o~~~

The machine proof

05 , OR, 0Q , OP
Ds cr Bo AP

55 _
s —Vapco—Vasco: &*VABCD %*VABCD %
—Vasep
55 _

R _VABDO'VABCD+VABCO'VABCD"'VEBCD'%"'VEBCD'%
B (Vapcp)?

50 _
simplify —(Vappo—Vasco—Vascp: BfQ*VABCD &)

B Vasep

Q —(Vacpo-Vapecp—VaBpo-Vapcp+Vasco-Vapep+Vigep: gg)
- Vascp(=Vascb)

szmplzfy Vacpo— VABDO+VABCO+VABCD%
Vascp

P —Vpopo-Vapep+Vacpo-Vapep—Vaspo-Vapep+Vapco-Vasep
Vapcp)?

simplify  —(Vpcpo—Vacpo+Vappo—Vasco)
Vabep

—(=VaBcb)
Vasep

simpli fy 1
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The ndg conditions are AO |f BCD, BO || ACD, CO | ABD, DO || ABC, A+ P, B # Q,
C#R,D+#S.

A line joining the midpoints of two opposite edges of a tetrahedron will be called a bimedian
of the tetrahedron relative to the pair of edges considered. The common perpendicular to the
two opposite edges of a tetrahedron is called the bialtitude of the tetrahedron relative to these
edges.

Example 4 The bialtitude relative to one pair of opposite edges of a tetrahedron is perpendic-
ular to the two bimedians relative to the two other pairs of opposite edges (Figure 11).

The input to the program is

sy
The input

(POINTS x v A ©)

( FOOT2LINE s A X v)

( ON B ( LINE s a))
(FOOT2LINE T ¢ X 1)

( ON b ( LINE T ©))

( MIDPOINT M A B)

( MIDPOINT N B ©)

( MIDPOINT P D ©)

( MIDPOINT @ 4 D)

( PERPENDICULAR N Q X v))

The ndg conditions: X #Y, A# S, C#T,C# B, D # A.

The machine proof The eliminants

Q1
I;YXN PYXQ=§(PYXD+PYXA)
Y X N1
0 © PYXN=§(PYXB+PYXC)
b1 Py xn D TD
= Pyxp2 — (Pyxr-Z2 — Py xr—Py xo-
TPy xp+iPrxa Y X D ( Y XT yxT—Pyxc

TC
(2)-Pyxn

_\“)IYXN B 5B —_—
Py xp+Pyxa Py xp=— (PYXS'g—PYXS—PYXA':B)

ke
3
N—

Pyxr=Pyxc

Thes!
1951195}

1=

(2)-(3PyxB+3Pyxc) Pyxs=Pyxa
Pyxp+Pyxa

II=

Py xp+Pyxc
Pyxp+Pyxa

is

___ Pyxp+Prxc

—Pyxr- % +Pyxr+Pyxc: %+PYXA

_ —(PyxB+Pvxc)
—Pyxc—Pyxa

*Pyxs-g:}j+Pyxs+Pyxc +Pyx4-2B

ey

Pyxc+Pyxa

_ —(=Pvxc—Prxa)
Pyxc+Pyxa

simplify 1
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Example 5 2 Let ABCD be a tetrahedron and G
the centroid of triangle ABC} R The lines passing
through poin‘%s A, B, and g aﬁ parallel to line DG
meet their ofpasite face in l;' Q,\and R respectively.

The input The eliminants
( POINTS 4 B ¢ D)

( CENTROID ¢ A B ©) v v
(INTER p ( PLINE 4 D ¢) (PLANE B ¢ p)) PPer™—74Bpe
(INTER @ ( PLINE B D ¢) ( PLANE a ¢ p)) VBoer=Vascp
(
(

Vepep=—Vacpac

INTER r ( PLINE ¢ D ¢) (PLANE A B D)) Vbere=-Vepcr

Vepep-Vasep—Veeepr-Vacpe

3VaBcp = VaprQr)) Veapq= Vacpa
_Vbeprg-Vapcp—VeerqVaspa
Vapqr= VaBpa
The machine proof
(3)-VaBcp
Vergr
R (3)-Vascp-Vaspa

Voeprq-VaBep—Veaprq-VaBpa

Q (3)-VaepVaepa (Vacpa)?
—Vepap-Vacpa-Vappa-Vapep—VeparVicpaVaBecp+VecarVicpa VaBDG
simplify (=3)-Vacp-Vaepa-Vacpa

Vepepr-VaBpa'VaBep+VeparVacpaVapep—VBocarVacpa-Vaepa

P (=3)-Vapcp-Vaspa-Vacpe (Vecpa)?
—3V3opaVacpa-Vaepa-Vapep

simpli fy 1

In the above proof the fact that G is the centroid of triangle ABC' is not used. We thus have
the following extension of Example 5.

Example 6 Continue from Example 5, The result of Example 5 is still true if point G is any
point in plane ABC.

We further ask whether the result of Example 5 is true or not if point G is an arbitrary point.

The input The eliminants

(POINTS A BC D @)
(INTER P ( PLINE 4 b ¢) ( PLANE B ¢ D))

RVberg-Vapcp—Veerq Vaspa
- Vaepc

Vaprgr
QVeper-Vaep—Veecapr-Vacpa

(INTER ¢ ( PLINE B D ¢) ( PLANE 4 ¢ p)) Voera= e
(INTER r (PLINE ¢ D 6) (PLANE A B D)) Vpepo2-Veper
) d

3VABCD Vecap=—(VaBca—VaBcD)

I
Vepapr=—VaBDG

P
. Vepapr=—Vacpa
The machine proof
Veror
(3)-VaBcp
R Vperq-Vascp—Voarq-Vaspc
(3)-VaBcp-VaBpa

3This is a problem from the 1964 International Mathematical Olympiad.
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Q —Veper-Vacng-Vaspe-Vasop—Vepar: V2.pa'Vaep+Vecar VicpaVaBpa

(3)-Vapcp-VaBpa-(Vacpa)?

simplify  —(Vepap-Vappa-Vasep+Veper-VacpaVasep=Veccp-Vacpa-Vappe)

(3)-VaBcp-Vaspa-Vacpa

P - (VEcopaVacpaVaspaVasca—3ViopaVacpaVaspaVasep)

(3)-VaBcp:

_ —(Vapcg—3Vapcp)
(3)-Vagcp

Vaspa-Vacpa-(VeBepa)?

We thus obtain the following extension of Example 6:

Example 7 Vgpgor = 3Vapc iff G is in plane ABC'.

Example 8 The sides AB and DC' of a skew quadrilateral are cut into 2n 4+ 1 equal segments
by points Py,---, P, and Q1,---,Q2, respectively (Figure 13). Show that Vp, p, 10,10, =

1
@i VaBeD.

The following figure shows the case n = 2. Note that in the following machine proof for (1), we
use some different names for points P, P41, Qn+1, @n-

Constructive description
(POINTS 4 B C D)
(LRATIO x A B
(LRATIO v 4 B ”
(

(

(Frir

+
+1

7)
+ )
1)

)

LRATIO v p ¢ 5

Vxyvvu )
VaBcD

The machine proof

V. —(=Vpxyun—Vexyun—

The eliminants
v —(Vbxyunt+VexyuntVoxyu)

Vxyuys Il
v U (n+1)-Vepxy
CXYU— o2n+1
—Vepxyn

Vbxyus Sntl

v —(VBepx n+Veepx+Vacpxn)
CDXY 2n+1

% XVapcpn
ACDX = 2n+1

% X =(nt+1)-Vapcp
BCDX = on+1

PA JB

Vexyu)

Vapcp-(2n+1)

U 4Vepxy n?+4Vepxy n+Vepxy

Vapep-(2n+1)3

simglify Vepxy
Vapcp-(2n+1)

Y —Vpopxn—Veopx—Vacpxn
Vapcp-(2n+1)?
X —(—4Vapcpn?—4Vagepn—Vapcp)
Vapcp-(2n+1)4
simplify 1

(2n+1)2
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