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Abstract

This paper presents a method of producing readable proofs for theorems in solid geometry.
The method is for a class of constructive geometry statements about straight lines, planes,
circles, and spheres. The key idea of the method is to eliminate points from the conclusion
of a geometric statement using several (fixed) high level basic propositions about the signed
volumes of tetrahedrons and Pythagoras differences of triangles. We have implemented
the algorithm and more than 80 examples from solid geometry have been used to test the
program. Our program is efficient and the proofs produced by it are generally short and
readable.

Keywords. Automated theorem proving, Euclidean traditional proofs, volume method, con-
structive geometry statements.

1 Introduction

Since the pioneering work of Wen–Tsün Wu in 1977 [12], highly successful algebraic methods for
automated proving geometry theorems have been developed. Computer programs based on these
methods have been used to prove hundreds of non–trivial geometry theorems [1, 2, 8]. Algebraic
methods, which are very different from the traditional proof methods used by geometers since
Euclid, generally can only tell whether a statement is true or not. If we want to look at the proofs,
we only have to see tedious computations of polynomials. The traditional method usually can
give elegant proofs. Researchers have been studying automated generation of traditional proofs
using computer programs since the work by H. Gelernter, J. R. Hanson, and D. W. Loveland [6].
In spite of the enormous amount of efforts and great improvements, see e.g., [9, 11], the successes
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in this direction have been limited in the sense that no computer program has been developed
which can prove non–trivial geometry theorems efficiently. In spite of the great successes of the
algebraic methods, the research in the automated generation of traditional proofs is still a very
attractive and challenging topic.

Recently, we presented a method which can produce short and readable proofs for a class of
geometric statements in plane Euclidean geometry [15, 3, 4]. [5] is a collection of 400 geometry
theorems proved by our program, including the complete machine proofs of 100 theorems. This
method is based on properties of the signed area and the Pythagoras difference which have been
studied extensively in [14] for the purpose of geometry education.

This paper is an extension of our area method to solid geometry. We present a theorem
proving method for geometry statements whose hypotheses can be described constructively and
whose conclusions are polynomial equations of several geometry quantities, such as volumes,
ratios of line segments, ratios of areas, and Pythagoras differences. We call this method the
volume method which is an extension of the area method. The key idea of the method is to
eliminate points from the conclusion of a geometry statement using several basic propositions
about volumes. The automatically produced proofs are “traditional” in the sense that they are
generally short, readable, and each step of the proof has a clear geometric meaning. The proofs
are of a shape that a student could write with pencil and paper in a few lines.

The volume method is complete for the class of constructive geometry statements which
covers a large portion of the equational geometry theorems about lines, planes, circles, and
spheres. The idea of constructive type and the associated automated proving may be resorted
to Hilbert [7] and was first pointed out by Wu in [13]. The volume method works not only
for Euclidean solid geometries but also for metric solid geometries associated with any number
field with characteristic zero. Certain geometry problems such as those involving inequalities
are beyond the scope of the volume method.

We have implemented the method and our program1 has proved more than 80 examples from
solid geometry, including Ceva’s Theorem, Menelaus’ theorem, Desargues’ theorem, Monge’s
theorem, etc. The proofs produced by the program are generally short and readable. The
algorithm is also very efficient. (see the statistic table in Section 6.)

In Section 2, we prove the basic propositions which will serve as the basis of our method. In
Section 3, we define the constructive geometry statements. In Section 4, we present the method
for the Hilbert intersection statements in affine geometry. In Section 5, we present the general
volume method. In Section 6, we give some experiment results.

2 The Signed Volumes

We need some notions and results from plane geometry whose formal definition and proofs can
be found in [3, 15].

We use capital English letters to denote points in the Euclidean space. We denote by AB
the signed length of the oriented segment from A to B; denote by SABC the signed area of
the oriented triangle ABC. The area of an oriented quadrilateral ABCD is SABCD = SABC +

1The prover (euc.tar.Z) is available via ftp at emcity.cs.twsu.edu: pub/geometry/.
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SACD = SABD−SCBD. When we mention a line AB or a plane PQR, we always assume A 6= B
or P, Q, and R are not collinear.

Proposition 2.1 (The Co-side Theorem) Let M be the intersection of two non parallel lines
AB and PQ and Q 6= M . Then PM

QM
= SPAB

SQAB
; PM

PQ
= SPAB

SPAQB
; QM

PQ
= SQAB

SPAQB
.

Proposition 2.2 Let R be a point on line PQ. Then for any two points A and B in the same
plane SRAB = PR

PQ
SQAB + RQ

PQ
SPAB.

Two lines in the same plane are said to be parallel if they do not have a common point. We
use the notation AB ‖ CD to denote the fact that A,B, C, and D satisfy one of the following
conditions (1) line AB and line CD are parallel; or (2) A = B or C = D; or (3) A, B, C and D
are collinear.

Proposition 2.3 PQ ‖ AB iff SPAB = SQAB, i.e., iff SPAQB = 0.

2.1 Co-Face Theorem

In this subsection, we will formally define the signed volume and derive some of its properties
which will serve as the deductive basis of the volume method.

Definition 2.4 For any four points A, B, C, and D in the space, the signed volume VABCD of
the tetrahedron ABCD is a real number2which satisfies the following properties

V.1 When two neighbor vertices of the tetrahedron are interchanged, the signed volume of the
tetrahedron will change signs, e.g., VABCD = −VABDC .

V.2 Points A,B, C, and D are coplanar iff VABCD = 0.

V.3 There exist at least four points A, B, C, and D such that VABCD 6= 0.

V.4 For five points A,B, C, D, and O, we have VABCD = VABCO + VABOD + VAOCD + VOBCD.

V.5 If A, B, C, D, E, and F are six coplanar points and SABC = λSDEF then for any point
T we have VTABC = λVTDEF .

Note that we do not use the concept of altitude in the definition of volume.

We denote by PABCQ the polyhedron with faces PAB, PBC, PAC, QAB, QBC, and
QAC. The volume of PABCQ is defined to be

VPABCQ = VPABC − VQABC .

By V.4 of definition 2.4, we have VPABCQ = VPABQ + VPCAQ + VPBCQ.

2Here, we can use any number field and the results in this paper are still valid.
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Proposition 2.5 (The Co-face Theorem) A line PQ and a plane ABC meet in M . If Q 6=
M , we have

PM

QM
=

VPABC

VQABC
;

PM

PQ
=

VPABC

VPABCQ
;

QM

PQ
=

VQABC

VPABCQ
.

Proof. Figure 1 shows several possible configurations of this proposition. By V.5 of Definition
2.4 and Proposition 2.1 VPABC

VQABC
= VPABC

VPABM
· VPABM

VQABM
· VQABM

VQABC
= SABC

SABM
· SBPM

SBQM
· SABM

SABC
= SBPM

SBQM
= PM

QM
.

C

P

Q
R

Proposition 2.6 Let R be a point on a line PQ and
ABC be a triangle (Figure 2). Then we have

VRABC =
PR

PQ
VQABC +

RQ

PQ
VPABC .

Proof. By Proposition 2.5, we have

VPRBC

VPQBC
=

PR

PQ
,
VPARC

VPAQC
=

PR

PQ
,
VPABR

VPABQ
=

PR

PQ
.

By V.4 VRABC = VPABC−VPRBC−VPARC−VPABR = VPABC− PR
PQ

(VPQBC+VPAQC+VPABQ) =

VPABC − PR
PQ

VPABCQ = PR
PQ

VQABC + RQ

PQ
VPABC .

4



P
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Proposition 2.7 Let R be a point in the plane PQS.
Then for three points A,B, and C, we have

VRABC =
SPQR

SPQS
VSABC+

SRQS

SPQS
VPABC+

SPRS

SPQS
VQABC .

Proof. For any point X, let VX = VXABC . Without
loss of generality, let M be the intersection of PR and
QS (Figure 3). By Proposition 2.6,

VR =
PR

PM
VM +

RM

PM
VP =

PR

PM
(
QM

QS
VS +

MS

QS
VQ) +

RM

PM
VP . (1)

By the co-side theorem (2.1), RM
PM

= SRQS

SPQS
, QM

QS
= SPQR

SPQRS
, MS

QS
= SPRS

SPQRS
, PR

PM
= SPQRS

SPQS
. Substi-

tuting these into (1), we obtain the result.

2.2 Parallels

Two planes or a straight line and a plane, are said to be parallel if they have no point in common.
The notation PQ ‖ ABC means that A,B, C, P, and Q satisfy one of the following conditions:
(1) P = Q, (2) A,B, and C are collinear, or (3) A, B, C, P , and Q are on the same plane,
or (4) line PQ and plane ABC are parallel. According to the above definition, if PQ 6‖ ABC
then lien PQ and plane ABC have a normal intersection. For six points A,B, C, P, Q, and R,
ABC ‖ PQR iff AB ‖ PQR, BC ‖ PQR, and AC ‖ PQR.

Proposition 2.8 PQ ‖ ABC iff VPABC = VQABC or equivalently VPABCQ = 0.

Proof. If VPABC 6= VQABC , let O be a point on line PQ such that PO
PQ

= VPABC
VPABCQ

. Thus
OQ

PQ
= − VQABC

VPABCQ
. By Proposition 2.6, VOABC = PO

PQ
VQABC + OQ

PQ
VPABC = 0. By V.2, point O

is also in plane ABC, i.e., line PQ is not parallel to ABC. Conversely, if PQ 6‖ ABC let O be
the intersection of PQ and ABC. By Proposition 2.5, OP

OQ
= VPABC

VQABC
= 1, i.e., P = Q which is a

contradiction.

Proposition 2.9 PQR ‖ ABC iff VPABC = VQABC = VRABC .

Proof. This is a consequence of Proposition 2.8.

Proposition 2.10 Let PQTS be a parallelogram. Then for points A,B, and C, we have

VPABC + VTABC = VQABC + VSABC or VPABCQ = VSABCT .

Proof. This is a consequence of Proposition 2.6, because both sides of the equation are equal to
2VOABC where O is the intersection of PT and SQ.

Proposition 2.11 Let triangle ABC be a parallel translation of triangle DEF . Then for any
point P we have VPABC = VPDEFA.
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Proof. By Proposition 2.10, VPABC = VPAEC−VPADC = VPAEF −VPAED−VPADC = VPAEF −
VPAED − VPADF = VPDEFA.

Proposition 2.12 Let triangle ABC be a parallel translation of triangle DEF . Then for two
points P and Q we have

VPABC + VQDEF = VQABC + VPDEF or VPABCQ = VPDEFQ.

Proof. By Proposition 2.11, VPABC = VPDEF − VADEF ;VQABC = VQDEF − VADEF from which
we obtain the result immediately.

2.3 Working Examples

Before presenting the method, we use several examples to show how to use the above properties
about volumes to prove theorems. The proofs given below are actually modifications of the
proofs produced by our program.

A
H

Example 2.13 (Menelaus’ Theorem) If the sides
AB, BC, CD, and DA of any skew quadrilateral are
cut by a plane XY Z in the points E, F,G, and H

respectively, then AE
EB

· BF
FC

· CG
GD

· DH
HA

= 1.

Proof. By the co-face theorem

DH

AH
=

VDXY Z

VAXY Z
,
CG

DG
=

VCXY Z

VDXY Z
,
BF

CF
=

VBXY Z

VCXY Z
,
AE

BE
=

VAXY Z

VBXY Z
.

Then it is clear that AE
EB

· BF
FC

· CG
GD

· DH
HA

= 1. For the non-degenerate conditions of this example,
see Section 3.3

A A1

Example 2.14 Let A1B1C1 be the parallel projec-
tion of any triangle ABC in any plane. Show that
the tetrahedra ABCA1 and A1B1C1A are equal in
volume (Figure 5).

Proof. Since CC1 is parallel to plane AA1B1, by Proposition 2.8, VAA1B1C1 = VAA1B1C . Simi-
larly, VAA1B1C = VAA1BC .

3 Constructive Geometry Statements

Our volume method is for constructive geometry statements defined as follows.
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3.1 Constructive Geometry Statements

By a geometry quantity, we mean one of the following three quantities: (i) the ratio of the
lengths of two oriented segments on one line or on two parallel lines; (ii)the ratio of the areas of
two oriented triangles in the same plane or in two parallel planes; or (iii) the signed volume of
a tetrahedron.

Definition 3.1 A construction is one of the following ways of introducing new points in the
space.

C1 (POINTS A1, · · · , Al). Take arbitrary points A1, · · · , Al in the space. Each Ai has three
degrees of freedom.

C2 (PRATIO A W U V r). Take a point A on the line passing through W and parallel to line
UV such that WA = rUV , where r could be a rational number, a rational expression in
some geometric quantities, or a variable.

If r is a fixed quantity, A is a fixed point; if r is a variable, A has one degree of freedom.
The non-degenerate (ndg) condition is U 6= V .

C3 (ARATIO A L M N r1 r2 r3), where r1 = SAMN
SLMN

, r2 = SLAN
SLMN

, and r3 = SLMA
SLMN

are the area
coordinates of point A with respect to LMN . The r1, r2 and r3 could be rational numbers,
rational expressions in geometric quantities, or indeterminates satisfying r1 + r2 + r3 = 1.
The ndg condition is that L,M,N are not collinear. The degree of freedom of A is equal
to the number of indeterminates in {r1, r2, r3}.

C4 (INTER A (LINE U V ) (LINE P Q)). Point A is the intersection of line PQ and line UV
which are in the same plane. The ndg condition is PQ 6‖ UV . Point A is a fixed point.

C5 (INTER A (LINE U V ) (PLANE L M N)). Take the intersection of a line UV and a plane
LMN . The ndg condition is that UV 6‖ LMN . Point A is a fixed point.

C6 (FOOT2LINE A P U V ) Point A is the foot from point P to line UV . The ndg condition
is U 6= V . Point A is a fixed point.

Definition 3.2 A constructive statement is a list S = (C1, C2, . . . , Ck, G) where

1. Each Ci, introduces a new point from the points introduced by the previous constructions.

2. G = (E1, E2) where E1 and E2 are polynomials in some geometric quantities about the
points introduced by the Ci and E1 = E2 is the conclusion of S.

The non-degenerate (ndg) condition of S is the set of ndg conditions of the Ci plus the condition
that the geometry quantities in E1 and E2 have geometry meanings, i.e., their denominators
could not be zero.

The set of all constructive statements is denoted by SC . If the constructions are limited to
C1–C5, the corresponding statements are called the Hilbert intersection point statements in the
space and is denoted by SH .
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3.2 The Predicate Form

The constructive description of geometry statements can be transformed into the commonly
used predicate form. We first introduce several basic predicates.

1. Point (POINT P ): P is a point in the space.

2. Collinear (COLL P1, P2, P3): points P1, P2, and P3 are on the same line. It is equivalent
to SP1P2P3 = 0.

3. Co-planar (COPL P1, P2, P3, P4): P1, P2, P3, and P4 are in the same plane. It is equivalent
to VP1P2P3P4 = 0.

4. Parallel between two lines. (PRLL P1, P2, P3, P4): P1P2 ‖ P3P4. It is equivalent to
VP1P2P3P4 = 0 and SP1P3P2P4 = 0.

5. Parallel between a line and a plane. (PRLP P1, P2, P3, P4, P5): P1P2 ‖ P3P4P5. It is
equivalent to VP1P3P4P5P2 = 0.

We first need to transform the constructions into predicate forms.

C2 (PRATIO A W U V r) is equivalent to (PRLL A W U V ), r = WA
UV

, and U 6= V .

C3 (ARATIO A L M N r1 r2 r3) is equivalent to (COPL A L M N), r1 = SAMN
SLMN

, r2 =
SLAN
SLMN

, r3 = SLMA
SLMN

, and ¬(COLL L M N).

C4 (INTER A (LINE U V ) (LINE P Q)) is equivalent to (COLL A U V ), (COLL A P Q),
and ¬(PRLL U V P Q).

C5 (INTER A (LINE U V ) (PLANE L M N)) is equivalent to (COLL A U V ), (COPL A L
M N), and ¬(PRLP U V L M N).

C6 (FOOT2LINE A P U V ) is equivalent to (COLL A U V ), (PERP A P U V ), and U 6= V .

Now a constructive statement S = (C1, · · · , Cr, (E, F )) can be transformed into the following
predicate form

∀P1 · · · ∀Pr((P (C1) ∧ · · · ∧ P (Cr)) ⇒ E = F )

where Pi is the point introduced by Ci and P (Ci) is the predicate form of Ci.

3.3 More Constructions

Constructions C1–C6 though simple, can be used to describe almost all the configurations about
lines, planes, circles, and spheres. To see that, we first introduce more geometry objects.

• We consider three kinds of lines: (LINE P Q); (PLINE R P Q): the line passing through R
and parallel to PQ; (OLINE S P Q R): the line passing through point S and perpendicular
to the plane PQR.
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• We consider six kinds of planes: (PLANE L M N); (PPLANE W O U V ): the plane
passing through a point W and parallel to the plane OUV ; (TPLANE W U V ): the
plane passing trough a point W and perpendicular to the line UV ; (BPLANE U V ): the
perpendicular-bisector of line UV ; (CPLANE A B P Q R): the plane passing through
line AB and perpendicular to plane PQR; and (DPLANE A B P Q): the plane passing
through line AB and parallel to line PQ.

Now we can introduce more constructions: taking an arbitrary point on a line or in a plane;
taking the intersections of two lines, the intersections of lines with planes, and the intersections
of three planes. From all possible combinations, we have 41 new constructions. For convenience,
we introduce the following often used constructions.

(MIDPOINT A U V ). A is the midpoint of UV , i.e., (PRATIO A U V 1/2).

(LRATIO A U V r), i.e., (PRATIO A U U V r).

(ON A ln). Take an arbitrary point A on line ln. For instance, (ON A (LINE U V )) is
equivalent to (PRATIO A U U V r) for an indeterminate r.

Example 3.3 Example 2.13 can be described in the following constructive way.

((POINTS A B C D X Y Z)
(INTER E (LINE A B) (PLANE X Y Z))
(INTER F (LINE B C) (PLANE X Y Z))
(INTER G (LINE C D) (PLANE X Y Z))
(INTER H (LINE A D) (PLANE X Y Z))
(AE

BE
BF
CF

CG
DG

DH
AH

= 1))
The ndg conditions: AB 6‖ XY Z, BC 6‖ XY Z, CD 6‖ XY Z, AD 6‖ XY Z, B 6= E, C 6= F ,

D 6= G, A 6= H.

The predicate form of this example is:

∀A,B, · · · ,H(HY P ⇒ CONC)

where

HYP = ( (COLL E A B)∧ (COPL E X Y Z)∧ (COLL F C B)∧ (COPL F X Y Z)∧ (COLL
G C D)∧ (COPL G X Y Z)∧ (COLL H A D)∧ (COPL H X Y Z)∧ ¬(PRLP A B X Y Z)∧
¬(PRLP C B X Y Z)∧ ¬(PRLP C D X Y Z)∧ ¬(PRLP D A X Y Z)∧ B 6= E∧ C 6= F∧
D 6= G∧ and A 6= H);

CONC = (AE
BE

BF
CF

CG
DG

DH
AH

= 1.)

We may also consider circles and spheres. We define (CIR O P Q) to be the circle in the
plane OPQ which has O as its center and passes through point P . We define (SPHERE O P )
to be the sphere with center O and passing through point P . Then we can use the following
new constructions

(ON A (CIR O U V )). Take an arbitrary point on the circle.
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(ON A (SPHERE O U)). Take an arbitrary point on the sphere.

(INTER A ln (CIR O W P )). Take the intersection of line ln and circle (CIR O W P ) which
is different from W . We assume that line ln and the circle are in the same plane. Line ln
could be (LINE W V ), (PLINE W U V ), and (OLINE W L M N).

(INTER A ln (SPHERE O W )). Take the intersection of line ln and sphere (SPHERE O W )
which is different from W . Line ln could be (LINE W V ), (PLINE W U V ), and (OLINE
W R P Q).

(INTER A (CIR O1 W U) (CIR O2 W V )). Take the intersection of circle (CIR O1 W U)
and circle (CIR O2 W V ) which is different from W . We assume that the two circles are
in the same plane.

(INTER A (CIR O1 U V ) (SPHERE O2 U)). Take the intersection of circle (CIR O1 U V )
and sphere (SPHERE O2 U) which is different from U .

Here, we introduce another 10 new constructions. Thus, totally we have 51 constructions. The
following fact can be proved without much difficult.

Proposition 3.4 All the 51 constructions introduced in this subsection can be reduced to
constructions C1-C6.

4 Automated Theorem Proving for Class SH

The volume method is to eliminate points from the conclusion of a geometry statement. More
precisely, we need to eliminate points from geometry quantities.

4.1 Eliminating Points from Volumes

The method of eliminating points from volumes is the basis of the volume method. In this
subsection, we will discuss four constructions C2–C5. C1 will be treated in Section 4.4.

Lemma 4.1 Let Y be introduced by (PRATIO Y W U V r). Then we have

VABCY =

{
(UW

UV
+ r)VABCV + (WV

UV
− r)VABCU if W is on line UV .

VABCW + r(VABCV − VABCU ) otherwise.

Proof. Let G = VABCY . If W,U, V are collinear, by Proposition 2.6 we have

G =
UY

UV
VABCV +

Y V

UV
VABCU = (

UW

UV
+ r)VABCV + (

WV

UV
− r)VABCU .

Otherwise, take a point S such that WS = UV . Then we have

G =
WY

WS
VABCS +

Y S

WS
VABCW = rVABCS + (1− r)VABCW .

By Proposition 2.10, we have VABCS = VABCW + VABCV − VABCU . Substituting this into the
above equation, we obtain the result. Note that the ndg condition U 6= V is needed.
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Lemma 4.2 Let Y be introduced by (ARATIO Y L M N r1 r2 r3). Then we have

VABCY = r1VABCN + r2VABCM + r3VABCL.

Proof. This lemma is a direct consequence of Proposition 2.7.

Lemma 4.3 Let Y be introduced by (INTER Y (LINE U V ) (LINE I J)). Then we have

VABCY =
SUIJ

SUIV J
VABCV − SV IJ

SUIV J
VABCU .

Proof. By Propositions 2.6 and 2.1,

VABCY =
UY

UV
VABCV +

Y V

UV
VABCU =

SUIJVABCV − SV IJVABCU

SUIV J
.

Since UV 6‖ IJ , we have SUIV J 6= 0.

Lemma 4.4 Let Y be introduced by (INTER Y (LINE U V ) (PLANE L M N)). Then

VABCY =
1

VULMNV
(VULMNVABCV − VV LMNVABCU )

Proof. Let G = VABCY . By Proposition 2.6 and the co-face theorem,

VABCY =
UY

UV
VABCV +

Y V

UV
VABCU =

VULMNVABCV − VV LMNVABCU

VULMNV
.

Since UV 6‖ LMN , we have VULMNV 6= 0.

4.2 Eliminating Points from Area Ratios

Lemma 4.5 Let Y be introduced by (PRATIO Y W U V r). Then we have

ABY

CDE
=





rVUABWV
VWCDEA

if W is not in plane ABY
VUABW +rVUABV

VUCDEA
if W is in plane ABY but line UV is not.

SABW +r(SABV −SABU )
SCDE

if W,U, V, A, B, Y are coplanar.

Y
P Q

R

W

S

U

V

Proof. If W 6∈ ABY , let RPQ be a parallel trans-
lation of triangle CDE to plane ABY , and WS be
a parallel translation of UV to line WY (Figure 6).
By V.5, G = SABY

SRPQ
= VWABY

VWRPQ
. By Proposition 2.12,

VRPQW = VWCDEA. By Propositions 2.6 and 2.10,
VWABY = WY

WS
VWSAB = rVUABWV . We prove the

first case. The second case can be proved similarly as
the first case: just replacing W by U . For the third
case, see [3].
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Lemma 4.6 Let Y be introduced by (ARATIO Y L M N r1 r2 r3). Then we have

ABY

CDE
=

{
r2VLABM+r3VLABN

VLCDEA
if one of L,M,N , say L, is not in ABY

r1SABL+r2SABM+r3SABN
SCDE

if L,M,N are in plane ABY .

Proof. If L is not in ABY , ABY
CDE

= VLABY
VLCDEA

. Now the result comes from Lemma 4.2. The second
case can be proved similarly as Proposition 2.7.

Lemma 4.7 Let Y be introduced by (INTER Y (LINE U V ) (LINE I J)). Then we have

ABY

CDE
=

{
SUIJVUABV

SUIV JVUCDEA
if one of U, V, I, J , say U , is not in ABY .

SIUV SABJ−SJUV SABI
SCDESIUJV

if U, V, I, J,A, B, Y are coplanar.

Proof. If U is not in ABY , ABY
CDE

= VUABY
VUCDEA

= UY
UV

VUABV
VUCDEA

= SUIJ
SUIV J

VUABV
VUCDEA

. The second case can
be proved similarly as Lemma 4.3.

Lemma 4.8 Let Y be introduced by C = (INTER Y (LINE U V ) (PLANE L M N)). Then
we have

ABY

CDE
=

{
VULMN

VULMNV

VUABV
VUCDEA

if U (or V ) is not in ABY .
VULMNSABV −VV LMNSABU

SCDEVULMNV
if U, V are in ABY .

Proof. If U is not in ABY , ABY
CDE

= VUABY
VUCDEA

= UY
UV

VUABV
VUCDEA

= VULMN
VULMNV

VUABV
VUCDEA

. The second case
is a consequence of Proposition 2.2 and the co-face theorem.

4.3 Eliminating Points from Length Ratios

In the following lemmas, point Y is introduced by construction C.

Lemma 4.9 Let G = DY
EF

, C =(PRATIO Y W U V r).
Then

G =





DW

UV
+r

EF

UV

if D ∈ WY .

VDWUV
VEWUV F

if D 6∈ WY , U 6∈ DWY .
−VUEDWV

VUEFWV
if D 6∈ WY , E 6∈ DWY .

SDUWV
SEUFV

if all points are coplanar.

Proof. If all points are collinear (the first and the last cases), see [3, 15]. If U 6∈ DWY , take a
point S such that DS = EF (Figure 7). By the co-face theorem G = DY

DS
= VDWUV

VDWUV S
= VDWUV

VEWUV F
.

If E 6∈ DWY , take a point T such that WT = UV . By the co-side and co-face theorems
G = DY

DS
= SDWT

SDWST
= VDWTE

VDWTES
. By Propositions 2.10 and 2.12

VDWTE = VDWV E − VDWUE = −VUEDWV ,

VDWTES = VEWTEF = −VFWTE = −VFWV E + VFWUE = VUEFWV

which prove the lemma.
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Lemma 4.10 Let G = DY
EF

, C =(ARATIO Y L M N r1 r2 r3). Then we have

G =





VDLMN
VELMNF

if D 6∈ LMN .
−VDMNE

VFMNE
if D ∈ LMN , E 6∈ LMN ,and DY 6‖ NM .

SDMN
SEMFN

if all points are coplanar and DY 6‖ NM .

Proof. If D 6∈ LMN , the result is a direct consequence of Propositions 2.5 and 2.12. For the
second case, take a point S such that DS = EF . Then G = DY

DS
= SDMN

SDMSN
= VDMNE

VDMNES
=

VDMNE
VEMNEF

= −VDMNE
VFMNE

. The third case can be proved similarly.

Lemma 4.11 Let G = DY
EF

, C =(INTER Y (LINE U V ) (LINE I J)). Then we have

G =





VDUV I
VEUV IF

D 6∈ UV IJ and ¬(COLL U V I).
VEDUV
VEFV U

D ∈ UV IJ , EF 6∈ UV IJ , and D 6∈ UV .
SDUV
SEUFV

D, E, F are in UV IJ , and D 6∈ UV .

Proof. The first case is a consequence of the co-face theorem. For the second case, we assume
D ∈ UV IJ . Take a point S such that DS = EF . Then we have

G =
DY

DS
=

SDUV

SDUV − SSUV
=

VDUV E

VDUV ES
=

VDUV E

VEUV EF
= −VDUV E

VFUV E
.

The third case can be proved similarly.

Lemma 4.12 Let G = DY
EF

, C =(INTER Y (LINE U V ) (PLANE L M N)). Then we have

G =

{
VDLMN

VELMN−VFLMN
If D is not in plane LMN .

VDUV L
VEUV L−VFUV L

If D ∈ LMN and one of L,M, N , say L 6∈ DUV .

Proof. If D is not in plane LMN , the result is a direct consequence of the co-face theorem.
For the second case, take a point S such that DS = EF . Then we have G = DY

DS
= VDUV L

VDUV LS
=

VDUV L
VEUV LF

.

4.4 Free Points and Volume Coordinates

After applying the above lemmas to any rational expression E of geometric quantities, we can
eliminate the non-free points introduced by all constructions from E. Now the new E is a
rational expression of indeterminates and volumes of free points in space. For more than five
free points in the space, the volumes of the tetrahedra formed by them are not independent,
e.g., see V.4 of Definition 2.4. To deal with this problem, we introduce the concept of volume
coordinates.

Definition 4.13 Let X be a point in the space. For four noncoplanar points O, W,U, and V ,
the volume coordinates of X w.r.t. OWUV are

r1 =
VOWUX

VOWUV
, r2 =

VOWXV

VOWUV
, r3 =

VOXUV

VOWUV
, r4 =

VXWUV

VOWUV
.

It is clear that r1 + r2 + r3 + r4 = 1.
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The points in the space are in a one to one correspondence with the four-tuples (x, y, z, w) such
that x + y + z + w = 1.

Lemma 4.14 Let G = VABCY , and O, W,U, V be four noncoplanar points. Then we have

G = VABCO +
VOABCV VOWUY + VOABCUVOV WY + VOABCW VOUV Y

VOWUV

Proof. We have
VABCY = VABCO + VABOY + VAOCY + VOBCY . (1)

Without loss of generality, we assume that Y O meets plane WUV in X. (Otherwise, let Y W
meet plane OUV in X, and so on.) By Proposition 2.5, we have

VOABY =
OY

OX
VOABX =

VOWUV Y VOABX

VOWUV
(2)

By Proposition 2.7,

VOABX =
SWUX

SWUV
VOABV +

SWXV

SWUV
VOABU +

SXUV

SWUV
VOABW (3)

By Lemma 4.8, we have
SWUX

SWUV
=

VOWUY

VOWUV Y
;
SWXV

SWUV
=

VOV WY

VOWUV Y
;
SXUV

SWUV
=

VOUV Y

VOWUV Y
.

Substituting them into (3) and (2), we have

VOABY =
VOWUY VOABV + VOV WY VOABU + VOUV Y VOABW

VOWUV
(4)

Similarly, we have

VOBCY =
VOWUY VOBCV + VOV WY VOBCU + VOUV Y VOBCW

VOWUV

VOCAY =
VOWUY VOCAV + VOV WY VOCAU + VOUV Y VOCAW

VOWUV

Substituting them into (1) and noticing that VOABV + VOBCV + VOCAV = VOABCV , VOABU +
VOBCU +VOCAU = VOABCU , and VOABW +VOBCW +VOCAW = VOABCW , we obtain the result.

Now we can describe the volume method as follows: for a geometry statement in SH : S =
(C1, · · · , Cr, (E1, E2)), let the point introduced by Ci be Pi. Then we can use the above lemmas
to eliminate points Pr, Pr−1, · · · , P1 respectively from E1 and E2. At last, we obtain two rational
expressions R1 and R2 respectively. S is a correct geometry statement if R1 is identical to R2.
For the formal description of the algorithm, see the next section.

5 Automated Theorem Proving for Class SC

5.1 The Pythagorean Difference

The Pythagoras difference PABC is defined as

PABC = AB
2 + CB

2 −AC
2
.

It is easy to check that

14



1. PAAB = 0; PABC = PCBA; PABC + PACB = 2BC
2 = PBCB.

2. If A,B, and C are collinear, PABC = 2BA ·BC.

For four points A,B, C, and D, we define

PABCD = PABD − PCBD = AB
2 + CD

2 −BC
2 −DA

2
.

Then PABCD = −PADCB = PBADC = −PBCDA = PCDAB = −PCBAD = PDCBA = −PDABC .

The following properties of Pythagoras differences are taken for granted in our volume
method.

Proposition 5.1 (1) (Pythagorean theorem) AB⊥BC iff PABC = 0.

(2) If OW⊥OU , OW⊥OV , and OU⊥OV , then V 2
OWUV = 1

36OW
2
OU

2
OV

2.

In (2), we use the square of the volume, because the sign of the volume cannot be determined
by the signs of the edges of the tetrahedron.

Proposition 5.2 AB⊥CD iff PACD = PBCD or PACBD = 0.

Proof. Let M and N be the orthogonal projections of A and B upon CD respectively. Then
AC

2 = AM
2+CM

2, AD
2 = AM

2+DM
2, BC

2 = BN
2+CN

2, BD
2 = BN

2+DN
2. Therefore

PACBD = CM
2 −DM

2 + DN
2 − CN

2 = 2CD(DM −DN).

Hence PACBD = 0 iff DM = DN , i.e., iff M = N . It is clear that N = M iff AB⊥CD.

Proposition 5.3 Let D be the foot of the perpendicular from point P to a line AB. Then we
have

AD

AB
=

PPAB

2AB
2 ,

DB

AB
=

PPBA

2AB
2 .

Proof. By Proposition 5.2, PPAB = PDAB = 2AB ·AD. The result is clear now.

Proposition 5.4 Let R be a point on line PQ with position ratio r1 = PR
PQ

, r2 = RQ

PQ
w.r.t. PQ.

Then for any points A and B, we have

PRAB = r1PQAB + r2PPAB

PARB = r1PAQB + r2PAPB − r1r2PPQP .

Proof. We first assume

RA
2 = r1QA

2 + r2PA
2 − r1r2PQ

2 (1)
RB

2 = r1QB
2 + r2PB

2 − r1r2PQ
2
. (2)
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Then PRAB = RA
2 + AB

2 − RB
2 = r1(QA

2 + AB
2 − QB

2) + r2(PA
2 + AB

2 − PB
2) =

r1PQAB + r2PPAB. The second one can be proved similarly. To prove (1), let us first notice that
by Proposition 5.2,

PAPR

PAPQ
=

PR

PQ
= r1.

Then r1QA
2 + r2PA

2 − r1r2PQ
2 = PA

2 + PR
2 − r1PAPQ = PA

2 + PR
2 − PAPR = AR

2.

Proposition 5.5 Let ABCD be a parallelogram. Then for points P and Q in the same plane,
we have

PAPQ + PCPQ = PBPQ + PDPQ or PAPBQ = PDPCQ

PPAQ + PPCQ = PPBQ + PPDQ + 2PBAD

Proof. Let O be the intersection of AC and BD. By the first equation of Proposition 5.4,
2POPQ = PAPQ + PCPQ = PBPQ + PDPQ. By the second equation of Proposition 5.4,

2PPOQ = PPAQ + PPCQ − 1
2
PACA = PPBQ + PPDQ − 1

2
PBDB.

We only need to show 2PBAD = 1
2(PACA − PBDB) which comes from Proposition 5.4.

5.2 Methods of Eliminating Points

Since we have a new geometry quantity, the constructive statements can be enlarged in the
following way: the conclusion of a statement can be the equation of two polynomials of length
ratios, area ratios, volumes and Pythagoras differences. The class of the enlarged constructive
statements is still denoted by SC .

Now we have five constructions C2–C6 and four geometry quantities. We need to give a
method to eliminate a point introduced by each of the five constructions from each of the four
quantities. This section deals with the cases which are not discussed in Section 4.

Let Y be introduced by one of the constructions C2-C6. By Proposition 5.4, to eliminate
point Y from PABY or PAY B we only need to find the position ratios UY

UV
and Y V

UV
, and this has

been done in Section 4.1. (for C6, see Proposition 5.3.) Now there are only three cases left.

Lemma 5.6 If Y is introduced by (FOOT2LINE Y P U V ) then

VABCY =
PPUV

PUV U
VABCQ +

PPV U

PUV U
VABCP .

Proof. This is a consequence of Propositions 2.6 and 5.3.

Lemma 5.7 Let Y be introduced by (FOOT2LINE Y P U V ). Then

DY

EF
=





DU
EF

PPDU
PDUD

if D ∈ UV and D 6= U .
VDPUV
VEPUV F

D 6∈ PUV
VDUV E
VEUV F

if D ∈ PUV and E 6∈ PUV
SDUV
SEUFV

if all points are coplanar
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In all cases, we assume P is not on line UV ; otherwise P = Y and DY
EF

= DP
EF

.

Proof. For the first and last cases, see [3]. The second case is a consequence of the co-face
theorem. For the third case, let T be a point such that DT = EF . Then DY

EF
= DY

DT
= SDUV

SDUTV
=

VDUV E
VDUV ET

= VDUV E
VEUV EF

= −VDUV E
VFUV E

.

Lemma 5.8 Let Y be introduced by (FOOT2LINE Y P U V ). Then

SABY

SCDE
=





PPUV VPABV +PPV UVPABU

2UV
2
VPCDEA

if P is not in ABY .
PPUV VUABV

2UV
2
VUCDEA

if U is not in ABY .
PPV UVV ABU

2UV
2
VV CDEA

if V is not in ABY .
PPUV SABV +PPV USABU

2UV
2
SCDE

if P, U, V are in ABY .

Proof. If P is not in ABY , by V.5, SABY
SCDE

= VPABY
VPCDEA

. Now the result comes from Lemma 5.6.
The second and third cases can be proved similarly. For the last case, see [3].

5.3 The Algorithm

In the preceding subsection, we gave elimination methods for points introduced by constructions
C2–C6. Now we give the elimination method for free points. By Lemma 4.14, volumes of
tetrahedrons can be reduced to volume coordinates w.r.t to four given points. The following
lemma will also reduce the Pythagoras difference to volume coordinates.

Lemma 5.9 Let O, W , U , and V be four points not on the same plane such that OW⊥OUV ,
OU⊥OWV , and OV⊥OWU . Then

(1) PABC = AB
2 + CB

2 −AC
2.

(2) AB
2 = OW

2(VAOUV B
VOWUV

)2 + OU
2(VAOWV B

VOWUV
)2 + OV

2(VAOWUB
VOWUV

)2.

(3) V 2
OWUV = 1

36OW
2
OU

2
OV

2.

Proof. (1) is the definition. (3) is from Proposition 5.1. For (2), let R, P , and Q be the
orthogonal projections from the point B to the planes OUV , OWV , and OWU respectively,
and D, E, and F be the orthogonal projections from the point A to the lines BR, BP , and BQ
respectively. By the Pythagorean theorem

AB
2 = OW

2(
BD

OW
)2 + OU

2(
BE

OU
)2 + OV

2(
BF

OV
)2.

Now the result comes from Lemma 4.9.

Algorithm 5.10 (Volume)

INPUT: S = (C1, C2, . . . , Ck, (E, F )) is a constructive geometric statement.
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OUTPUT: The algorithm tells whether S is true or not, and if it is true, produces a proof for
S.

S1. For i = k, · · · , 1, do S2, S3, S4 and finally do S5.

S2. Check whether the ndg conditions of Ci are satisfied. The ndg condition of a construction
has three forms: A 6= B, PQ 6‖ UV , PQ 6‖ WUV . For the first case, we check whether
PABA = 2AB

2 = 0. For the second case, we check whether VOQUV = 0 and SPUV = SQUV .
For the third case, we check whether VPWUV = VQWUV . If a ndg condition for a geometry
statement is not satisfied, the statement is trivially true. The algorithm terminates.

S3. Let G1, · · · , Gs be the geometric quantities occurring in E and F . For j = 1, · · · , s do S4

S4. Let Hj be the result obtained by eliminating the point introduced by construction Ci from
Gj using the lemmas in Sections 4 and 5. Replace Gj by Hj in E and F to obtain the
new E and F .

S5. At last, E and F are rational expressions in independent variables. Hence if E = F , S is
true under the ndg conditions. Otherwise S is false in the Euclidean plane geometry.

Proof. The last E and F are rational expressions in free parameters. If E = F , the statement is
obviously true. Otherwise, we can find specific values for the free parameters in E and F such
that when substituting them into E and F , we obtain two different values of E and F , i.e., we
have found a counterexample. The ndg conditions of the statement ensures the validity of each
step, because all the geometric quantities occurring in the proof have geometric meaning, i.e.,
their denominators will not vanish.

For the complexity of the algorithm, let m and n be the number of free and non-free points
in a statement respectively. Then we will use the lemmas (except 4.14 and 5.9) for at most n
times. Also note that each lemma will replace a geometric quantity by a rational expression
with degree less than or equal to three. Then if the conclusion of the geometry statement is of
degree d, the result after eliminating the nonfree points is at most degree 3nd. To eliminate the
free points using Lemmas 4.14 and 5.9, the final result is at most degree 4 · 3nd.

Remark 5.11 In the development of the volume method, no special property of the real number
field has been used. As a result, the volume method works not only for Euclidean geometry but
also for metric solid geometries associated with any field with characteristic zero.

6 Experiment Results and Comparisons

We have implemented the algorithm in Common Lisp on a NeXT workstation. The following is
the machine produced proof for Example 2.13

Example 6.1 For the input like Example 3.3, our program produces the following machine
proof (in Latex form) automatically.
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The machine proof
DH

AH
·CG

DG
·BF

CF
·AE

BE

H= VDXY Z
VAXY Z

· CG

DG
·BF

CF
·AE

BE

G= VDXY Z ·VCXY Z
VAXY Z ·VDXY Z

· BF

CF
·AE

BE

simplify
= VCXY Z

VAXY Z
· BF

CF
·AE

BE

F= VCXY Z ·VBXY Z
VAXY Z ·VCXY Z

· AE

BE

simplify
= VBXY Z

VAXY Z
· AE

BE

E= VBXY Z ·VAXY Z
VAXY Z ·VBXY Z

simplify
= 1

The eliminants

DH

AH

H
=

VDXY Z
VAXY Z

CG

DG

G
=

VCXY Z
VDXY Z

BF

CF

F
=

VBXY Z
VCXY Z

AE

BE

E
=

VAXY Z
VBXY Z

In the above proof, the symbol H= means to eliminate point H. The eliminants are the
separate elimination results by using the lemmas in Sections 4 and 5.

The following table contains the timing and proof-length statistics for the 80 examples proved
by our program. Maxterm means the number of terms of the maximal polynomial occurring in
a proof.

The Proof-Length The Proving Time
Maxterm No. of Theorems Time (secs) No. of Theorems
m = 1 18 t ≤ 0.05 28
m = 2 25 0.05 < t ≤ 0.1 19

2 < m ≤ 5 24 0.1 < t ≤ 0.5 27
5 < m ≤ 10 9 0.5 < t ≤ 1 3

10 < m ≤ 140 4 1 < t ≤ 100 3

The key to the volume method presented here is a collection of powerful, high level theorems,
such as the Co-face theorems about the signed volumes. This method can be contrasted with
the earlier algebraic methods, which also proved astonishingly difficult theorems in geometry,
but with low-level, mind-numbing polynomial manipulations. For more than eighty percent of
the 80 theorems proved by the volume method, the maximal polynomials in their proofs have
less than six terms. The maxterms of the proofs produced using algebraic methods are rarely
less than six. On the other hand, the algebraic methods are more general, e.g., they can be used
to prove theorems involving inequalities and theorems in differential geometry. Also see [10] for
an interesting method based the vector version of the Gröbner basis.

The previous methods based on the AI approach can also produce readable proofs for sim-
ple geometry theorems [6, 9]. The key tool in these methods are the congruent of triangles
which prevents these method from going very far for two reasons. First, the congruent triangle
techniques are used to prove some basic geometry facts and the proofs for most of the high
level geometry theorems using other concepts besides the congruent triangles. Second, even in
those proofs based on congruent triangles, auxiliary points or lines are often needed to form
the required congruent triangles and these auxiliary points or lines are often added by the user
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instead of the computer program.
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Appendix. Machine Produced Proofs for Several Examples The proofs (in LaTeX
form) of the following examples are produced entirely automatically by a program based on the
Algorithm 5.10.

Example 1 (Ceva’s Theorem for Skew Quadrilaterals) The planes passing through a point
O and the sides AB, BC, CD, and DA of any skew quadrilateral meet the opposite sides of the
quadrilateral in G,H, E, and F respectively (Figure 8). Show that AE

EB
· BF

FC
· CG

GD
· DH

HA
= 1.

The input
(( POINTS A B C D O)

( INTER E ( LINE A B) ( PLANE O C D))

( INTER F ( LINE B C) ( PLANE O A D))

( INTER G ( LINE C D) ( PLANE O A B))

( INTER H ( LINE D A) ( PLANE O B C))

(DH

AH
·CG

DG
·BF

CF
·AE

BE
= 1) )

The machine proof.
DH

AH
·CG

DG
·BF

CF
·AE

BE

H= VBCDO
VABCO

· CG

DG
·BF

CF
·AE

BE

G= VBCDO·VABCO
VABCO·VABDO

· BF

CF
·AE

BE

simplify
= VBCDO

VABDO
· BF

CF
·AE

BE

F= VBCDO·(−VABDO)
VABDO·(−VACDO) · AE

BE

simplify
= VBCDO

VACDO
· AE

BE

E= VBCDO·VACDO
VACDO·VBCDO

simplify
= 1

The eliminants
DH

AH

H
=

VBCDO
VABCO

CG

DG

G
=

VABCO
VABDO

BF

CF

F
=

VABDO
VACDO

AE

BE

E
=

VACDO
VBCDO

The ndg conditions are AB 6‖ OCD; BC 6‖ OAD; CD 6‖ OAB; AD 6‖ OBC; B 6= E; C 6= F ;
D 6= G, A 6= H.

D

Example 2 (Centroid of a Tetrahedron) The
four medians of a tetrahedron meet in a point which
divides each median in the ratio 3:1. The longer seg-
ment being on the side of the vertex of the tetrahedron
(Figure 9).
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The input
(( POINTS A B C D)

( MIDPOINT S B C)

( LRATIO Z A S 2/3)

( LRATIO Y D S 2/3)

( INTER G ( LINE D Z) ( LINE A Y ))

( AG

GY
= 3) )

The machine proof
1
3(AG

GY
)

G=
− SADZ

SDZY
3

Y=
−SADZ

SDSZ

(3)·(− 2
3
)

Z=
2
3

(2)·( 1
3
)

simplify
= 1

The eliminants
AG

Y G

G
=

SADZ
SDZY

SADZ
SDZY

Y
=− 3

2(SADZ
SDSZ

)
SADZ
SDSZ

Z
=2(1)

The ndg conditions are B 6= C, A 6= S, D 6= S, DZ 6‖ AY , G 6= Y .

Example 3 If P, Q, R, and S are the feet of four cevains having the point O in common, we
have OP

AP
+ OQ

BQ
+ OR

CR
+ OS

DS
= 1 (Figure 10).

The input
(( POINTS A B C D O)

( INTER P ( LINE A O) ( PLANE B C D))

( INTER Q ( LINE B O) ( PLANE A C D))

( INTER R ( LINE C O) ( PLANE A B D))

( INTER S ( LINE D O) ( PLANE A B C))

( OS

DS
+OR

CR
+ OQ

BQ
+OP

AP
= 1) )

The eliminants
OS

DS

S
=

VABCO
VABCD

OR

CR

R
=
−VABDO
VABCD

OQ

BQ

Q
=

VACDO
VABCD

OP

AP

P
=
−VBCDO
VABCD

VBCDO=VACDO−VABDO+VABCO−VABCD

The machine proof
OS

DS
+OR

CR
+ OQ

BQ
+OP

AP

S=
−VABCO−VABCD·OR

CR
−VABCD·OQ

BQ
−VABCD·OP

AP

−VABCD

R=
−VABDO·VABCD+VABCO·VABCD+V 2

ABCD·OQ

BQ
+V 2

ABCD·OP

AP

(VABCD)2

simplify
=

−(VABDO−VABCO−VABCD·OQ

BQ
−VABCD·OP

AP
)

VABCD

Q
=

−(VACDO·VABCD−VABDO·VABCD+VABCO·VABCD+V 2
ABCD·OP

AP
)

VABCD·(−VABCD)

simplify
=

VACDO−VABDO+VABCO+VABCD·OP

AP
VABCD

P= −VBCDO·VABCD+VACDO·VABCD−VABDO·VABCD+VABCO·VABCD
(VABCD)2

simplify
= −(VBCDO−VACDO+VABDO−VABCO)

VABCD

= −(−VABCD)
VABCD

simplify
= 1
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The ndg conditions are AO 6‖ BCD, BO 6‖ ACD, CO 6‖ ABD, DO 6‖ ABC, A 6= P , B 6= Q,
C 6= R, D 6= S.

A line joining the midpoints of two opposite edges of a tetrahedron will be called a bimedian
of the tetrahedron relative to the pair of edges considered. The common perpendicular to the
two opposite edges of a tetrahedron is called the bialtitude of the tetrahedron relative to these
edges.

Example 4 The bialtitude relative to one pair of opposite edges of a tetrahedron is perpendic-
ular to the two bimedians relative to the two other pairs of opposite edges (Figure 11).

The input to the program is

Y

The input
(( POINTS X Y A C)

( FOOT2LINE S A X Y )

( ON B ( LINE S A))

( FOOT2LINE T C X Y )

( ON D ( LINE T C))

( MIDPOINT M A B)

( MIDPOINT N B C)

( MIDPOINT P D C)

( MIDPOINT Q A D)

( PERPENDICULAR N Q X Y ) )

The ndg conditions: X 6= Y , A 6= S, C 6= T , C 6= B, D 6= A.

The machine proof
PY XN
PY XQ

Q
= PY XN

1
2
PY XD+ 1

2
PY XA

P= (2)·PY XN

PY XD+PY XA

N= (2)·( 1
2
PY XB+ 1

2
PY XC)

PY XD+PY XA

M= PY XB+PY XC
PY XD+PY XA

D= PY XB+PY XC

−PY XT ·TD

TC
+PY XT +PY XC ·TD

TC
+PY XA

= −(PY XB+PY XC)
−PY XC−PY XA

B=
−PY XS ·SB

SA
+PY XS+PY XC+PY XA·SB

SA
PY XC+PY XA

= −(−PY XC−PY XA)
PY XC+PY XA

simplify
= 1

The eliminants
PY XQ

Q
=

1
2(PY XD+PY XA)

PY XN
N
=

1
2(PY XB+PY XC)

PY XD
D
=− (PY XT ·TD

TC
−PY XT−PY XC ·TD

TC
)

PY XT =PY XC

PY XB
B
=− (PY XS ·SB

SA
−PY XS−PY XA·SB

SA
)

PY XS=PY XA
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C
D

G

P

R

Q

Example 5 3 Let ABCD be a tetrahedron and G
the centroid of triangle ABC. The lines passing
through points A, B, and C and parallel to line DG
meet their opposite face in P , Q, and R respectively.
Show that VGPQR = 3VABCD (Figure 12).

The input
(( POINTS A B C D)

( CENTROID G A B C)

( INTER P ( PLINE A D G) ( PLANE B C D))

( INTER Q ( PLINE B D G) ( PLANE A C D))

( INTER R ( PLINE C D G) ( PLANE A B D))

(3VABCD = VGPQR))

The eliminants
VCDGP =−VACDG

VBDGP =−VABDG

VBCGP =VABCD

VDGPQ=−VBDGP

VCGPQ=
VCDGP ·VABCD−VBCGP ·VACDG

VACDG

VGPQR=
VDGPQ·VABCD−VCGPQ·VABDG

VABDG

The machine proof
(3)·VABCD

VGPQR

R= (3)·VABCD·VABDG

VDGPQ·VABCD−VCGPQ·VABDG

Q
= (3)·VABCD·VABDG·(VACDG)2

−VCDGP ·VACDG·VABDG·VABCD−VBDGP ·V 2
ACDG·VABCD+VBCGP ·V 2

ACDG·VABDG

simplify
= (−3)·VABCD·VABDG·VACDG

VCDGP ·VABDG·VABCD+VBDGP ·VACDG·VABCD−VBCGP ·VACDG·VABDG

P= (−3)·VABCD·VABDG·VACDG·(VBCDG)3

−3V 3
BCDG·VACDG·VABDG·VABCD

simplify
= 1

In the above proof the fact that G is the centroid of triangle ABC is not used. We thus have
the following extension of Example 5.

Example 6 Continue from Example 5, The result of Example 5 is still true if point G is any
point in plane ABC.

We further ask whether the result of Example 5 is true or not if point G is an arbitrary point.

The input
(( POINTS A B C D G)

( INTER P ( PLINE A D G) ( PLANE B C D))

( INTER Q ( PLINE B D G) ( PLANE A C D))

( INTER R ( PLINE C D G) ( PLANE A B D))

(
VGPQR
3VABCD

))

The eliminants
VGPQR

R
=

VDGPQ·VABCD−VCGPQ·VABDG

VABDG

VCGPQ
Q
=

VCDGP ·VABCD−VBCGP ·VACDG
VACDG

VDGPQ
Q
=−VBDGP

VBCGP
P
=−(VABCG−VABCD)

VBDGP
P
=−VABDG

VCDGP
P
=−VACDG

The machine proof
VGPQR

(3)·VABCD

R= VDGPQ·VABCD−VCGPQ·VABDG

(3)·VABCD·VABDG

3This is a problem from the 1964 International Mathematical Olympiad.
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Q
= −VCDGP ·VACDG·VABDG·VABCD−VBDGP ·V 2

ACDG·VABCD+VBCGP ·V 2
ACDG·VABDG

(3)·VABCD·VABDG·(VACDG)2

simplify
= −(VCDGP ·VABDG·VABCD+VBDGP ·VACDG·VABCD−VBCGP ·VACDG·VABDG)

(3)·VABCD·VABDG·VACDG

P= −(V 3
BCDG·VACDG·VABDG·VABCG−3V 3

BCDG·VACDG·VABDG·VABCD)

(3)·VABCD·VABDG·VACDG·(VBCDG)3

= −(VABCG−3VABCD)
(3)·VABCD

We thus obtain the following extension of Example 6:

Example 7 VGPQR = 3VABC iff G is in plane ABC.

Example 8 The sides AB and DC of a skew quadrilateral are cut into 2n + 1 equal segments
by points P1, · · · , P2n and Q1, · · · , Q2n respectively (Figure 13). Show that VPnPn+1Qn+1Qn =

1
(2n+1)2

VABCD.

The following figure shows the case n = 2. Note that in the following machine proof for (1), we
use some different names for points Pn, Pn+1, Qn+1, Qn.

Constructive description
(( POINTS A B C D)

( LRATIO X A B n
2n+1

)

( LRATIO Y A B n+1
2n+1

)

( LRATIO U D C n
2n+1

)

( LRATIO V D C n+1
2n+1

)

(
VXY V U
VABCD

))

The eliminants
VXY UV

V
=
−(VDXY U ·n+VCXY U ·n+VCXY U )

2n+1

VCXY U
U
=

(n+1)·VCDXY

2n+1

VDXY U
U
=
−VCDXY ·n

2n+1

VCDXY
Y
=
−(VBCDX ·n+VBCDX+VACDX ·n)

2n+1

VACDX
X
=

VABCD·n
2n+1

VBCDX
X
=
−(n+1)·VABCD

2n+1

B
P

P 4

The machine proof
−VXY UV
VABCD

V= −(−VDXY U ·n−VCXY U ·n−VCXY U )
VABCD·(2n+1)

U= 4VCDXY ·n2+4VCDXY ·n+VCDXY
VABCD·(2n+1)3

simplify
= VCDXY

VABCD·(2n+1)

Y= −VBCDX ·n−VBCDX−VACDX ·n
VABCD·(2n+1)2

X= −(−4VABCD·n2−4VABCD·n−VABCD)
VABCD·(2n+1)4

simplify
= 1

(2n+1)2
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