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Abstract. A method is proposed to generate an isolation for a plane curve, which is a
set of boxes covering the curve, having the same topology as the curve, and approximating
the curve to any given precision. The method uses symbolic computation to guarantee
correctness and uses interval analysis whenever possible to enhance efficiency. This leads
to a quite effective hybrid method for plane curve isolation.
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1. Introduction

Let Cf : f(x, y) = 0 be a real plane curve defined by a bivariate polynomial f(x, y)
with rational number as coefficients. Determining the topology of Cf is a basic problem in
computational geometry and geometric modeling.
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Fig. 1. Different types of approximations to a curve.

Depending on the applications, three types of output could be given. The simplest one
is a plane graph which has the same topology as Cf . The diagram in Fig. 1(b) is such a
graph for the curve in Fig. 1(a). Another output is a certified meshing to Cf , which is
a topologically correct piecewise linear approximation with any given precision, as shown
in Fig. 1(c). The third output is an isolation for Cf , which is a set of boxes covering Cf

and having the same topology as Cf . An example of an isolation is given in Fig. 1(d).
The isolation is more difficult to compute but has better properties and more applications.
For instance, an isolation separates two curve branches close to each other, while a certified
meshing cannot do this if the precision is not small enough (See Fig. 2). This separation
property is useful in collision detection between two curves and motion planning.
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Fig. 2. (a): Two circles (x2 + y2− 25) ∗ ((x− 6)2 + (y− 8)2− 20) = 0, (b): isolating boxes,
(c): meshing.

There exist many approaches in the literature to determine the topology for plane curves
[1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22]. Two main approaches are the
subdivision approach and the cylindrical algebraic decomposition (CAD) approach.

The subdivision approach uses interval analysis to check the valuation range of f(x, y)
on a box B, denoted as f(B). If 0 6∈ f(B), then B ∩ Cf = ∅ and we can discard B. Oth-
erwise, subdivide B until certain termination condition is satisfied. This approach has two
ingredients: the method to compute f(B) and the termination condition. Many interesting
methods are proposed to compute f(B) and an excellent survey is given in [16]. For the
termination condition, the simplest one is to give a threshold, say, the size of a pixel. And if
the box is smaller than the threshold, the algorithm will terminate. Advanced termination
criteria are proposed by Snyder and Plantinga-Vegter [21, 18]. The main drawback of the
subdivision approach is that it does not guarantee correctness near a singular point of Cf .
In [6], a complete subdivision method is proposed. But, the method is not practical due to
worst case estimation of zero bounds.

The CAD approach is based on the pioneering work of Collins, which can be used to divide
the plane into cylindrical cells such that f(x, y) has the same sign on each of the cells. Then to
determine the topology of the curve, we need only to give the adjacency information between
the cells [3, 4]. The CAD based methods have two major ingredients. First, determine the x-
critical points of the curve, that is, points P satisfying f(P ) = fy(P ) = 0. Second, determine
how these points are connected. CAD based methods are complete in the sense that it always
computes the correct topology. On the other hand, it is generally slower than the subdivision
method due to symbolic computation.

Most subdivision methods give certified meshing as the output. Most CAD based meth-
ods compute a topological graph for the curve. The methods in [1, 6, 11] can also give a
certified meshing for a curve.

In this paper, we emphasize on computing an isolation for a given curve. We use sym-
bolic computation to guarantee the correctness near singularities and use interval analysis
whenever possible to enhance the efficiency. Such a hybrid approach is also used in [1]. Such
a hybrid approach is also used in [1]. Our method is new in the following aspects. First,
the idea of segregating boxes for critical points of curves proposed in [3] and improved in
[15, 20] is extended to isolating boxes for curve segments. We also propose an interval based
method to compute such isolating boxes. Second, we introduce a new subdivision method
to generate isolating boxes for curve without critical points. The methods are implemented
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in Maple and extensive experiments show that our approach is very efficient.
The rest of this paper is organized as follows. In Section 2., we give an overview of our

method. In Section 3., we show how to compute an isolation for the curve near a singularity
point. In Section 4., we show how to compute an isolation for curves without critical points.
In Section 6., we conclude the paper.

2. Overview of our algorithm

Let Cf : f(x, y) = 0 be a plane curve where f(x, y) ∈ Q[x, y] is a square-free polynomial.
We further assume that f(x, y) has no factors of the form u(x) ∈ Q[x] or v(y) ∈ Q[y], which
means that the curve has no horizontal or vertical line components. Otherwise, we may
consider the curve f(x, y)/(u(x)v(y)) and then add the information about u(x) = 0 and
v(y) = 0 later, which is easy.

We use intervals to isolate real numbers: let Q denote the set of intervals of the form
[a, b] where a < b ∈ Q. The length of an interval box B = [a1, b1]× [a2, b2] ∈ Q2 is defined
to be |B| = maxi(bi − ai). The edges of a box B is denoted by ∂B.

We will consider the part of Cf in a bounding box

B = [X1,X2]× [Y1,Y2] ∈ Q2 (1)

which is denoted as CB = C ∩ B. In this paper, B is always assumed to be of this form.
For given f and B, we will compute a set BS of boxes satisfying the following properties.

C1 BS covers CB. That is, CB ⊂ R(BS) = ∪B∈BSB.

C2 Two boxes B1 and B2 in BS are either disjoint or overlap at one of their edges, and in
the later case, Cf meets the overlapping part in one point, that is, |∂B1∩∂B2∩Cf | = 1.

C3 The region covered by the boxes, that is R(BS), has the same topology as CB.
A set of boxes BS satisfying the above conditions is called a set of isolating boxes, or
simply an isolation, for CB (See Fig. 1 and Fig. 2). Furthermore, if each box in BS has size
smaller than a give precision ε, then BS is called an ε-isolation for CB.

The first step of our algorithm is to isolate the critical points of Cf . A point P is an
x-critical (y-critical) point of Cf if f(P ) = fy(P ) = 0 (f(P ) = fx(P ) = 0). A critical
point is either an x-critical point or a y-critical point. If P is both x-critical and y-critical,
then it is a singular point of Cf .

For purposes that will be explained in the second step, we will isolate the critical points,
not the x-critical points as in most previous work. Let g(x) = Resy(f, ∂f

∂y ),h(x) = Resy(f, ∂f
∂x ).

Then, we use the method given in [7] to isolate the real zeros for the triangular system
Σ = {g(x)h(x), f(x, y)}.

Following the idea proposed in [3, 15, 20], we require that the isolating box for a critical
point to be segregating in the sense that the top and bottom edges of the box do not meet
the curve (Fig. 5). We extend the concept of segregating boxes to isolating boxes for curve
segments and propose an interval analysis method to compute such boxes.

After the first step, all critical points of CB are contained in a set of boxes SB. Then Cf

has no critical points in the region RN = B \∪S∈SBS. In our case, RN is the union of boxes.
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Fig. 3. Generating isolating boxes.

The second step of our algorithm is to isolate Cf in a box B where CB has no critical
points. We propose two methods to do this.

The first method is conceptually simple. Let B = [a, b] × [c, d] ∈ Q2. Then we divide
[a, b] into smaller intervals a0 = a < a1 < · · · < am = b and isolate the roots of f(ai, y) = 0.
Since there exist no critical points in B, f(ai, y) has a fixed number of real roots, say m. Let
[ci,j , di,j ], j = 1, . . . , m be the isolating intervals for these roots. Since B contains no critical
points,

Bi,j = [ai, ai+1]× [min{ci,j , ci+1,j},max{di,j , di+1,j}]
cover the curve, as shown by Fig. 3(a). If B contains a y-critical point, then Bi,j do not
necessarily cover the curve, as shown by Fig. 3(b). We prove that when [a, b] is sufficiently
subdivided, Bi,j will form an isolation for CB. The drawback of this method is that it needs
to isolate the roots of many univariate polynomial equations.

The second method is based on the idea of marching cube. Since box B = [a, b] × [c, d]
contains no critical points of Cf , after sufficient subdivision, B can satisfy the following
condition

0 6∈ fy(a, [c, d]), 0 6∈ fy(b, [c, d]), 0 6∈ fx([a, b], c), and 0 6∈ fx([a, b], c)

where fx([a, b], c) is the range function [16]. If the above condition is satisfied, then f(x, y)
is monotone on each edge of B. As a consequence, for an edge PQ of B, if f(P )f(Q) > 0
AB ∩ Cf = ∅, otherwise PQ intersects Cf at one point. From this, we can obtain boxes each
of which contains only one curve segment of Cf and these boxes form an isolation for the
curve. The method is inspired by the work of Snyder [21], but is more efficient, because we
need only to compute the range function on the edges of the boxes.

A B

D
C

O

Fig. 4. Meshing the curve

Finally, the boxes generated from the above two steps form an isolation for the curve. If
needed, we can easily obtain a certified meshing to Cf . This meshing generation is easy
due to condition C2 in the definition of isolating boxes. We first construct the auxiliary
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points. If two boxes B and S overlap, ∂B ∩ ∂S must be a line segment PQ. Let M be the
midpoint of PQ, which is an auxiliary point. The second step is to connect the auxiliary
points. If box B contains a critical point, we will add the line segments OP where O is the
center of B and P an auxiliary point on ∂B. If box B does not contain a critical point,
due to the isolating property, B must have two auxiliary points P and Q. We just need to
add PQ. In Fig. 4, the dotted lines are the lines segments generated in this way. Also see
Fig. 1(d) and Fig. 2(c) for illustrations.

A distinctive feature of our approach is that we do not need to compute the number of
curve branches connecting to a singular point. This information is implicitly given in our
output, that is, the number of curve branches connecting to a singular point S is the number
of boxes overlapping with the isolation box of P . See Fig. 4 for an illustration.

3. Isolate the curve near critical points

Let Cf : f(x, y) = 0 be a curve defined by a square-free polynomial f(x, y). In this
section, we will show how to compute isolating boxes for Cf near its critical points.

3.1. Three types of isolating boxes
Let BS be an isolation for Cf . Then each box B ∈ BS must be an isolating box for

Cf in the sense that B and CB have the same topology. In this section, we will define these
isolating boxes used in our algorithm.

P1
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(a) (b)
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(d)

Fig. 5. Isolating boxes. (a) type one, (b) not isolating, (c) type two, (d) type three.

A box B = [a, b]× [c, d] ∈ Q2 is called segregating w.r.t Cf if

Cf ∩ [a, b]× [c, c] = Cf ∩ [a, b]× [d, d] = ∅.

A box B is called an isolating box for Cf if it satisfies one of the following conditions.

• CB is a single curve segment whose end points are on the edges of B. Furthermore, CB
can be considered as a monotone function in x: y = θ(x), as shown in Fig. 5(a). Such
a curve segment of Cf is called a monotone segment and B is called a type one
isolating box of Cf . The box in Fig. 5(b) is not an isolating box, because y = θ(x) is
not a monotone function in x.

• B contains an isolated point of Cf , as shown in Fig. 5(c). B is called a type two
isolating box of C.

• CB consists of a critical point P of Cf and several monotone curve segments connecting
P and points on the left or right edges of B, as shown in Figure 5(d). B is called a
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type three isolating box of C. Note that a type three isolating box is segregating
w.r.t Cf .

Type three isolating boxes are used in [3, 15, 20] to count curve branches connecting to
a critical point.

We will give a criterion for a box to be isolating. A point is called an x- or y-extremal
point of curve Cf if Cf achieves a local extremum value at this point in the x- or y-direction.
We have

Lemma 3.1 Let B ∈ Q2 be a box containing no critical points of Cf . Then CB consists
of disjoint monotone curve segments with end points on the edges of B (See Fig. 6(a) for
an illustration). Furthermore, if C ∩ B contains only one curve segment, B is a type one
isolating box for C.
Proof. Let {C1, . . . Ct} be the connected curve segments in CB. Then Ci ∩ Cj = ∅ for i 6= j,
since intersection points are critical points of Cf . Now consider one of the Ci, say C1. Since
there exist no x-critical points, for each x there exists at most one y such that (x, y) ∈ C1.
Since C1 is connected, C1 can be written as a continuous function y = θ1(x). Since there
exist no y-critical points, C1 has no y-extremal points inside B, or equivalently, y = θ1(x) is
monotone. The endpoints of C1 must be on the edges of B. Otherwise, they are extremal
points and thus critical points of Cf , which is impossible. We have proved the first part of
the Lemma. If CB consists of only one curve segment, then by the result we just proved, B
is a type one isolating box for C.
Lemma 3.2 Let B = [a, b] × [c, d] ∈ Q2 be a box segregating w.r.t C, P = (α, β) ∈ C a
point inside B, C ∩ ([α, α] × [c, d]) = {P}, and CB \ {P} contains no critical points of C.
Then B is either a type two or a type three isolating box of C.
Proof. Since there exist no critical points in B1 = [a, α) × [c, d], by Lemma 3.1, C ∩ B1

consists of disjoint and monotone curve segments with their left endpoints on the left hand
side edge of B. Since C ∩ [α, α]× [c, d] = {P}, each curve segment in C ∩B1 must be with P
as their right end point. Otherwise, the curve will contain x-extremal points in B1, which is
impossible since such points are x-critical points. As a consequence, C ∩B1 contains disjoint
and monotone curve segments starting from P and ending at some points on the left edge
of B. Curve segments in C ∩B2 = (α, b]× [c, d] can be treated similarly. Therefore, if there
exist curve segments in C ∩B, B is a type three isolating box. Otherwise, it is a type two
isolating box.

3.2. Computing isolating boxes of types two and three
In order to compute isolating boxes, we need an algorithm to isolate the real roots of

equation systems.
Let Σ = {h(x), f(x, y)} be a triangular system where h ∈ Q[x] and f ∈ Q[x, y]. By

isolating the real roots of Σ = 0, we mean to compute a set of disjoint boxes BS such
that each real root of Σ = 0 is contained in one box in BS and each box in BS contains
only one root of Σ = 0. The algorithm from [7] is used to isolate the real roots of triangular
systems. For convenience, we always assume that the root is not on the edges of its isolating
box. We write this as the following algorithm.
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Algorithm 3.3 RootIsol(Σ,B, ε). Σ = {h(x), f(x, y)} is a triangular system of polynomi-
als in Q[x, y], B is a box as defined in (1), ε is a positive number. Output a set of isolation
boxes P for the real zeroes of Σ in B and each box with sizer smaller than ε.

We also need the inclusion function. For a box B ∈ Qn and a polynomial f(x1, . . . , xn),
an inclusion function f(B) returns an interval in Q such that f(P ) ∈ f(B) for all P ∈ B
and | f(B)| approaches to zero when |B| approaches to zero. For methods to construct such
functions, please consult [16].

In the following, we will give an algorithm to compute isolating boxes for the curve near
its critical points. All type two and type three isolating boxes will be computed in this
algorithm. We will first give the algorithm and then explain it below.

Algorithm 3.4 IsoBoxC(f(x, y),B, ε). C : f(x, y) = 0 is the curve, B is defined in (1),
and ε is a positive number. Output boxes Bi ⊂ B containing all the critical points of CB and
ε-isolations for CBi.

1. Let g(x) = Resy(f, ∂f
∂y ), h(x) = Resy(f, ∂f

∂x ).

2. Let {Bi,j = [ai, bi] × [ci,j , di,j ], i = 1, . . . , m, j = 1, . . . , mi} = RootIsol({g(x)h(x),
f(x, y)},B, ε).

3. While 0 ∈ f([ai, bi], ci,j) or 0 ∈ f([ai, bi], di,j), repeat {[a1, b1], . . . , [am, bm]} =
RootIsol(g(x)h(x), ρ), where ρ = (bi − ai)/2.

4. Output Bi = [ai, bi]× [Y1,Y2] and Bi,j .

In Step 1, the critical points of Cf are projected to the x-axis. In Step 2, we compute
the isolating boxes for the points of Cf lifted from the roots of g(x)h(x) = 0. In Step 3, we
refine these isolating boxes until they become segregating.

The correctness of Steps 1 and 2 is obvious. In Step 3, let Bi,j be an isolating box for a root
R = (α, β) of gh = f = 0. Since R is not on the edges of Bi,j , we have f(α, ci,j)f(α, di,j) 6= 0.
If 0 6∈ f([ai, bi], ci,j) and 0 6∈ f([ai, bi], di,j), then Bi,j is segregating. Otherwise, by the
convergent property of the inclusion function, this step will terminate and give isolating
boxes for Cf after sufficient refinements. This method to find the segregating box is new and
purely based on interval analysis.

4. Isolate a curve without critical points

Let Cf : f(x, y) = 0 be a curve defined by a square-free polynomial f(x, y) and B ∈ Q2

such that B is segregating w.r.t Cf and B contains no critical points of Cf . In this section,
we will give two methods to compute isolating boxes for CB.

4.1. A root isolation based method
Let B = [a, b] × [c, d]. We first construct a set of boxes covering CB. We divide [a, b]

into n equal intervals with length smaller than a given precision ε. Let n = b(b− a)/εc+ 1,
t = b−a

n , and ti = a + it, i = 0, . . . , n. Since B contains no critical points of Cf , for each
x0 ∈ [a, b], by Lemma 3.1, line x = x0 intersects with CB in a fixed number, say m, of points.
Let [ci,j , di,j ], j = 1, . . . , m be the isolating intervals with length smaller than ε for the real
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roots of f(ti, y) = 0. Assume that ci,1 < ci,1 < · · · < ci,m. Then we can construct the
following boxes for i = 0 . . . , n− 1, j = 1, . . . , m (See Fig. 6(b)):

Bi,j = [ti, ti+1]× [min{ci,j , ci+1,j ]},max{di,j , di+1,j ]}]. (2)

It is clear that CB ⊂ ∪Bi,j . So what we need to do is to refine the boxes such that they
become isolating. This procedure is given in the following algorithm.

Algorithm 4.1 IsoBoxR(f(x, y),B, ε). Cf : f(x, y) = 0 is the curve, B is a box segregating
w.r.t Cf and contains no critical points of Cf , and ε > 0. Output a set of ε-isolation boxes
for CB.

1. Construct the initial boxes in (2). Let ρ = ε.

2. If the following conditions are valid for all appropriate subscripts, output {Bi,j}.

|Bi,j | < ε (3)
Bi,j ∩Bi,j+1 = ∅, (4)
Bi,j ∩Bi+1,j+1 = Bi,j ∩Bi+1,j−1 = ∅. (5)

Conditions (4) and (5) guarantee that isolation boxes for different curve segments are
disjoint.

3. Otherwise, let ρ = ρ/2, Bi,j = [ai, bi]× [ei,j , fi,j ] the box with largest size not satisfying
one of the conditions, and r = ai+bi

2 . Isolate the roots of f(r, y) = 0 with precision ρ;
replace Bi,j .j = 1, . . . , m with two sets of similarly constructed boxes over [ai, r] and
[r, bi]. Still use (2) to denote these boxes. Go to Step 2.
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Fig. 6. Compute type one isolating boxes

Figure 6 is an illustration of the procedure. In Figure 6(b), B is divided into five smaller
boxes. The solid points form the isolation intervals for the intersection points of x = ti and
the curve. In the box between t0 and t1, condition (4) is satisfied. In the box between t2
and t3, condition (4) is not satisfied. We then add a new line x = t5 and condition (4) is
now satisfied for the boxes between t2 and t5. The isolation in Fig. ??(d) is generated with
this algorithm.

Proof of Correctness of Algorithm 4.1. We need only to show that conditions (3), (4),
(5) will be satisfied after sufficient subdivision. Note that the width for each box will be as
small as possible after sufficient subdivision, say |Bi|w < ρ. Also, from Step 3, we know that
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the isolation intervals [ci,j , di,j ] of the roots of y will also be as small as possible, say also less
than ρ. Then, we will show that if ρ is small enough, conditions (3), (4), (5) will be satisfied.

Since Cf has no critical points in B and Cf ∩B is a closed set, the slopes of all the tangent
lines of Cf for points in CB have a maximal value sm 6= 0. Let us consider a curve segment
PQ as shown in Figure 6(d), where (P1, P2) and (Q1, Q2) are the isolation intervals for P
and Q respectively, S = P1T1Q2T2 is the isolating box, and PM is a line with slope sm.
Then the curve segment must be under line PM . As a consequence, the height of S must
satisfy |S|h < P1P2 + Q1Q2 + MR ≤ 2ρ + smρ = (sm + 2)ρ. So, if ρ < ε/(sm + 2), we have
|S| < ε and condition (3) is satisfied.

Let Ci be the i-th curve segment of C ∩B arranged bottom up and Bi the corresponding
box. Since Ci are disjoint, we have dm = min{|yi − yj |,∀(x, yi) ∈ Ci, (x, yi) ∈ Cj} > 0.
If ρ < dm

2(sm+2) , then |Bi|h < (sm + 2)ρ < dm/2 and Bi ∩ Bi+1 = ∅ will be valid. Thus,
condition (4) will be satisfied. Otherwise, the y-distance between Ci and Ci+1 will be smaller
than |Bi|h + |Bi+1|h < dm, a contradiction to the definition of dm. Condition (5) can be
proved in a similar way.

4.2. A marching cube based method
Since B contains no critical points of Cf , we could use the marching cube methods of

Snyder [21] or Pantinga-Vegter [18] to mesh CB. But these methods cannot be used directly
because they do not generate isolating boxes. That is, a box in their output could contain
more than one curve segments (Fig. 7). In this section, we introduce a subdivision method
to generate isolating boxes.

(a) (b)

Fig. 7. (a): box generated by Snyder’s method; (b) box generated by Pantinga-Vegter’s
method

For a box S = [a, b]× [c, d], we consider the following monotone condition on the edges
of S:

0 6∈ fy(a, [c, d]), 0 6∈ fy(b, [c, d]), 0 6∈ fx([a, b], c), and 0 6∈ fx([a, b], c). (6)

If condition (6) is satisfied, then f(a, y), f(b, y) are monotone functions in y and f(x, c),
f(x, d) are monotone functions in x. Thus, we can easily check whether Cf intersects with
the edges of S. For instance, let P = (a, c) and Q = (a, d) be two vertices of S. Then if
f(P )f(Q) > 0, then PQ ∩ Cf = ∅; otherwise, f(P )f(Q) ≤ 0 and Cf intersects with PQ.
Furthermore, since f(a, y) is monotone in y, Cf intersects with PQ at a single point. That
is, we have

f(P )f(Q) ≤ 0 ⇔ |PQ ∩ Cf | = 1. (7)

To simplify the discussion, we assume that Cf does not pass through the vertices of S. Since
Cf has no critical points, in order for S to contain one curve segment of Cf , we just need to
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require that S intersects Cf at two of its edges. We summarize these as the following lemma.

Lemma 4.2 Let S be a box satisfying (6) and containing no critical points of Cf . Then an
edge of S either does not intersect with Cf or intersects with Cf at one point. Furthermore,
if two edges of S intersect with Cf , then S is a type one isolating box for Cf .

If Cf intersects with more than two edges of S, we continue to subdivide S. This leads
to the following algorithm.

Algorithm 4.3 IsoBoxM(f(x, y),B, ε). Cf : f(x, y) = 0 is a curve with no critical points
in box B. Output an ε-isolation for CB.

1. Let BS = {B} and IB = ∅. Repeat the following steps until BS = ∅.
(a) Let S ∈ BS and BS = BS \ {S}.
(b) If 0 6∈ f(S), then Cf ∩ S = ∅. We discard S.
(c) If condition (6) is satisfied, add S to IB; otherwise subdivide S into four equal

boxes and add them to BS.

2. If |S| > ε for S ∈ IB, subdivide S into four equal boxes and replace S with them in
IB.

3. Repeat the following steps until IB = ∅ and output BS..

(a) Let S ∈ IB and IB = IB \ {S}.
(b) If no edges of S intersect with Cf , then Cf ∩ S = ∅ and discard S.
(c) If two edges of S intersect with Cf . Add S to BS
(d) Subdivide S into four equal boxes, add them to IB.

The isolation boxes in Fig. 2(c) is generated with this algorithm.
Step 1 subdivides B into smaller boxes such that a box either does not intersection with

Cf or condition (6) is valid. Since CB has no critical points, for a sufficiently small box
containing Cf , condition (6) will be satisfied. By the convergent property of the inclusion
function, if a box B does not intersects with B then 0 6∈ f(B) will be satisfied after B is
sufficiently subdivided. Thus, Step 1 will terminate.

Step 2 subdivides B into boxes whose sizes are smaller than ε.
Step 3 further subdivides B into isolating boxes for Cf . Note that each box in IB satisfies

condition (6). Then, we can use (7) to check whether an edge of S intersect with S. The
correctness of steps (b) and (c) is due to Lemmas 3.1 and 4.2 respectively. Since CS consists
of disjoint curve segments, this step will terminate Also note that two boxes could share an
edge not intersecting with Cf . If this happens, we will shrink one of the boxes a little bit to
make them separate. Some of the boxes in Fig. 2(c) are generated in this way.

5. The algorithm and experiments

Now, we can give the algorithm to compute an ε-isolation for a curve Cf . The algorithm
first constructs the isolating boxes for the curve near critical points with Algorithm 3.4 and
then computes the isolating boxes for the curve in the rest of the regions with Algorithm 4.1
or 4.3.
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Algorithm 5.1 IsoCur(f(x, y),B, ε). C : f(x, y) = 0 is the curve, B is a box given in (1),
and ε > 0. Output an ε-isolation for CB.

1. Execute Algorithm 3.4 with input f(x, y), B, and ε to compute isolating boxes

BS = {Bi,j = [ai, bi]× [ci,j , di,j ], i = 1, . . . , m, j = 1, . . . , mi}.

Note that all critical points of CB are contained in Bi,j .

2. Let b0 = X1, am+1 = X2. Let Si = [bi, ai+1]× [Y1,Y2], i = 0, . . . , m. Note that Cf has
no critical points in Si. Execute Algorithm 4.1 or 4.3 with input f(x, y), Si, and ε to
generate isolating boxes BSi

3. Output BS ∪ ∪m+1
i=1 BSi or a linear meshing as described in Section 2.

In an isolation for a curve, two boxes overlap if and only if the curve pass through their
common edge. In order to satisfy this condition, in Step 2, we need further assume that
each box generated by Algorithm 4.1 or 4.3 meets at most one of the boxes Bi,j generated
in Step 1. Otherwise, we need further subdivide the boxes in BSi. We do not add this to
the description of the algorithms to keep them simple.

We will show several examples with our algorithm implemented with Maple. The timings
are collected with a laptop with 2 core 1.73G CPU, 1 G memory, Windows Vista OS.
Example 1. Consider the curve in Fig. 1.

g = 2 x4 − 3 x2 y + y2 − 2 y3 + y4.

The computing time TS for root isolation of triangular system is 0.064 seconds. The com-
puting time for boxes approximation under the precision 0.2 with Algorithm 4.1 is 0.193
seconds. The computing time for boxes approximation under the precision 0.2 with Algo-
rithm 4.3 is more than 1 hours!. Its approximating figures are as shown in Fig. 1 and Fig.
??.
Remark: The reason why Algorithm 4.3 takes a long time is that there exist curve branches
which are very close to each other even when they are disjoint. It will take the program a
long time to separate the curve branches by repeated subdivision.

The following examples are implemented with Algorithm 4.1.
Example 2. Consider the approximation of the following curve. g = 2 + 7 x− 7 y− 14 x3 +
7 x5−x7−16 y2+14 y3+20 y4−7 y5−8 y6+y7+y8−42 y2x−70 y3x2+35 xy4+70 y2x3+42 yx2−
35 x3y4 + 7 x6y − 21 x5y2 − 35 yx4 + 21 x2y5 + 35 y3x4 − 7 xy6. The computing time for root
isolation of triangular system is 1.592 seconds. The computing time for boxes approximation
under the precision 0.05 is 2.418 seconds. The curve and its approximating figures are as
shown in Fig. 8.
Example 3. Consider the approximation of the curve: g = −3 + 12 y2 + 2 y4 − 12 y6 + y8 +
12 x2 − 28 y2x2 + 12 y4x2 + 4 y6x2 − 18 x4 + 20 y2x4 + 2 y4x4 + 12 x6 − 4 x6y2 − 3 x8. The
computing time for root isolation of triangular system is 0.064 seconds. The computing time
for boxes approximation under the precision 0.3 is 0.390 seconds. Its approximating figure
is as shown in Fig. 9.
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Fig. 8. Given curve and its boxes approximation

Fig. 9. Given curve and its boxes approximation

Example 4. Consider the approximation of the following curve.

g = x8 + 4 x6y2 + 6 y4x4 + 4 y6x2 + y8 − 4 x6 − 12 y2x4 − 12 y4x2 − 4 y6 + 16 y2x2.

The computing time for root isolation of triangular system is 0.020 seconds. The computing
time for boxes approximation under the precision 0.07 is 0.218 seconds. The curve and its
approximating figures are as shown in Fig. 10.

6. Conclusion

In this paper, we give an algorithm to generate an isolation for a plane curve, which is a
set of boxes covering the curve, having the same topology as the curve, and approximating
the curve to any given precision. A certified meshing can be generated from the isolation.

Key ingredients of the method include: a new method to generate isolating boxes and a
new subdivision method to generate isolating boxes for curves without critical points. Both
methods are totally based on interval arithmetics and are quite efficient.
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