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Abstract. In this paper, the time-optimal velocity planning problem for five axis CNC
machining along a given parametric tool path under chord error, acceleration, and jerk
constraints is studied. The velocity planning problem under confined chord error and
acceleration is reduced to an equivalent linear programming problem by discretizing the
tool path and other quantities. As a consequence, a polynomial-time algorithm with
computational complexity O(N3.5) is given to find the optimal solution, where N is the
number of discretized segments of the tool path. The velocity planning problem under
confined confined chord error, acceleration, and jerk is reduced to a linear programming
program by using a linear function to approximate the nonlinear jerk constraint. As
a consequence, a polynomial-time algorithm is given to find the approximate optimal
solution. Simulation results are used to show the efficiency and effectiveness of the
algorithms.

Keywords. Time-optimal interpolation, velocity planning, parametric tool path, jerk
constraint, linear programming algorithm, polynomial-time algorithm.

1. Introduction

Interpolation algorithms, which determine how the machine tool moves along the tool
path, play a key role in high speed and high precisions CNC machining and hence are widely
studied in the literature. An interpolation algorithm in the CNC controller usually consists
of two phases: velocity planning and parameter computation. Let η(u), u ∈ [0, 1] be the
tool path. The phase to determine the feedrate v(u) along η(u) is called velocity planning.
When the feedrate v(u) is known, the phase to compute the next interpolation point at
ui+1 = ui + △u during one sampling period is called parameter computation. This paper
focuses on velocity planning along a given parametric tool path for five-axis CNC machines.

In order to achieve high speed machining, it is required that the planned feedrate to be as
large as possible. In order to achieve high quality machining, it is required that the planned
feedrate satisfies constraints such as confined acceleration, confined jerk, and confined chord
error. Therefore, velocity planning is usually formulated as a time-minimum optimization
problem under kinematic and chord error constraints.

1) Partially supported by a National Key Basic Research Project of China (2011CB302400) and by a
grant from NSFC (60821002).
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The velocity planning algorithms for parametric tool pathes can be roughly divided
into four classes: the phase space analysis methods [1, 2, 3, 4, 5, 6], the direct sampling
methods [7, 8, 9, 10, 11, 12, 13], the critical point methods [14, 15, 16, 17], and the numerical
optimization methods [18, 19, 20, 21].

With the phase analysis methods, closed form optimal solutions are obtained with the
concepts of velocity limiting curve and integration trajectory in the case of confined accel-
eration by Bobrow et al [1], Shin and McKay [2], Farouki et al[3], Zhang et al [4], and Yuan
et al [5]. In the case of confined jerk, Zhang et al gave a greedy algorithm based on the
concept of velocity limiting surface [6]. The main drawback of this approach is that the com-
putations needed are time consuming if the tool path η(u) is complicated, and the method
works practically only for simple tool pates such as those described by quadratic and cubic
PH curves [4, 5].

In the direct sampling methods, the interpolation points at every sampling time kT, k =
0, 1, . . . are computed based certain strategies. For instance, Bedi et al [7] and Yang-Kong [8]
used a constant feedrate, and Yeh and Hsu used a chord error bound to control the feedrate
if needed and used a constant feedarte in other places [10]. These methods are simple
and efficient. However, the machine acceleration capabilities were not considered. Emami,
Arezoo [9] and Lai et al[11] proposed velocity planning methods with confined acceleration,
jerk, and confined chord error by adjusting the velocity if any of the bounds is violated
through backtracking. The backtracking procedure makes it difficult to estimate the control
complexities. In [12], the idea of phase space analysis is adopted to give a direct sampling
method under confined acceleration, whose computational complexity is O(M) where M
is the number of discretization grids. In [13], Tikhon et al proposes a NURBS interpolator
based on the adaptive feedrate control for the constant material removal rate and nevertheless
the velocity profile adopted ignores the constraints of machine performance.

In the critical point methods, critical points of the tool path with extremal curvatures are
identified and maximum feedrates at the critical points are determined according to chord
error or acceleration constraints. Furthermore, feedrate function for each tool path segment
between two critical points are planned with various velocity profiles such as S-shape profile
by Narayanaswami and Yong [14], trigonometric profile by Lee et al [16], and jounce confined
profile by Fan et al [15]. Tsai et al [17] further introduced dynamics constraints. This
approach is very practical, but it is not time-optimal and the chord error is not guarantied.

In the numerical optimization methods, the velocity planning problem is discretized as a
nonlinear optimization problem which is solved with standard numerical methods. This is a
quite standard method to solve continuous optimization problems. Nonlinear optimization
based interpolation methods under confined jerk and chord error were given by Erkorkmaz-
Altintas [21], Sencer-Altintas-Croft [19]. In [18], Gasparetto et al proposed to use a linear
combination of the machining time and the total jerk as the objective function in order
to minimize vibration. Numerical optimization methods are very general and powerful,
but solving nonlinear programming problems is generally time-consuming and the obtained
solutions are not guarantied to be global optimal.

In this paper, the time-minimum velocity planning problem for five axis CNC machining
along a given parametric tool path η(u), u ∈ [0, 1] under maximal feedrate, chord error, ac-
celeration, and jerk constraints is studied. The numerical optimization approach is adopted,
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but instead of nonlinear optimization method, the linear programming method is used to
solve the velocity planning problem. As a consequence, we give time-minimum velocity plan-
ning algorithms whose computational complexity is polynomial of the form O(N3.5) where
N is the number of discretized segments of the tool path. Furthermore, the computational
complexity is the same for any tool path, making the method an efficient one for the quite
general velocity planning problem mentioned above.

By discretizing the differential quantities as finite differences, the velocity planning prob-
lem under confined acceleration is reduced to an equivalent linear programming problem. It
is proved that the linear programming problem has a unique solution which is the solution
to the original velocity planning problem. As a consequence, a polynomial time algorithm
with complexity O(N3.5) is given to find the optimal solution, where N is the number of
discretized segments of the tool path.

In the case of confined jerk, the nonlinear jerk constraint is approximated with a stronger
linear linear function, and the velocity planning problem under confined jerk is also reduced
to a linear programming program problem. Simulation results show that the solution to the
linear programming problem gives nice approximation to the original problem.

Simulation results for tool pathes from real CNC models are used to show the effectiveness
of the algorithms. Complexity analysis is given to show the efficiency of the algorithm.

The rest of this paper is organized as follows. In Section 2, the kinematic constraints
and chord error constraints of CNC machining are presented. In Section 3, velocity planning
under confined acceleration and chord error is studied. In Section 4, velocity planning under
confined jerk, acceleration, and chord error is studied. In Section 5, the time complexity of
computation is analyzed. In Section 6, the conclusion is presented.

2. Kinematic and chord error constraints

In this section, the kinematics and chord error constraints of CNC machining will be
presented, including maximal feedrate, maximal accelerations of the five axes, and maximal
chord error. The jerk constraint will be given in Section 3.. At the start and end points of
the tool path, the feedrates are assumed to be zero.

2.1. The feedrate and acceleration constraints

We assume that the tool path of the five-axis CNC machine is given by a set of parametric
functions with at least C1 continuity η(u) = (x(u), y(u), z(u), a(u), c(u))T , (u ∈ [0, 1]),
where r(u) = (x(u), y(u), z(u)) is the machining path, a(u) and c(u) are rotary angles around
the X-axis and Z-axis respectively. The parametric functions could be NURBS, B-spline
curves, etc. Note that the coordinates of η(u) and r(u) are in the machine coordinate system
(MCS). In this paper, we use “·” to denote “ d

dt
” and use “ ′ ” to denote “ d

du
”.

Denote the machining velocity to be v = (vx, vy, vz) and the tangential feedrate to be v =
√

v2
x + v2

y + v2
z . Let s be the arc length of r(u) and σ(u) = ds/du =

√

x′(u)2 + y′(u)2 + z′(u)2

the parametric speed. Introduce the following important quantity

q =
( v

σ

)2
, (1)

which will be used as the optimization variable in our velocity planning problem. As will be
shown later, the acceleration constraints can be written as a linear inequality about q and
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its derivative which is one of the reasons allowing us to reduce the velocity planning to a
linear programming problem. Then

u̇ =
du

dt
=

du

ds

ds

dt
=

v

σ
=

√
q,

For the x-axis,

vx = ẋ =
dx

du

du

dt
= x′√q (2)

ax = v̇x =
dvx

dx

dx

dt
= vx

dvx

dx
=

1

2

dvx
2

dx
=

1

2

dqx′2

dx
(3)

The maximal feedrate along the tool path is an important CNC parameter reflecting
the machining ability. During the machining process, the feedrate must obey the constraint
of maximal feedrate. If the maximal feedrate Vm is given, the feedrate v must satisfy the
following condition

v(u) ≤ Vm, u ∈ [0, 1]. (4)

From (2), v = σ
√

q. Then, the inequality (4) can be written as an inequality about q

q(u) ≤ V 2
m

σ2(u)
, u ∈ [0, 1]. (5)

For CNC machines, the maximal acceleration limits of each axis, reflecting the ability to
accelerate, are important parameters. The following formulas are the acceleration constraints
of the five axes:

|aτ (u)| ≤ Aτ , τ ∈ {x, y, z, a, c}, u ∈ [0, 1]. (6)

where Aτ is the maximal acceleration of τ -axis. From (3), the constraints (6) are equivalent
to the following inequalities about q

|1
2

d(qτ ′2)
dτ

| ≤ Aτ , τ ∈ {x, y, z, a, c}, u ∈ [0, 1]. (7)

2.2. Chord error constraint for five-axis CNC machines

Chord error is the error caused by machining the tool path within one sampling period.
Only the start point and end point for one sampling period are given to the CNC machine,
and the actual machining path is different from the tool path. Chord error is used to measure
the difference between these two pathes and is defined to be the distance between the line
segment connecting the start point and end point and the tool-path as shown in Figure 1.

Different from the three-axis CNC machines, for five-axis CNC machines, the chord error
is measured in the workpiece coordinate system (WCS) instead of the machine coordinate
system(MCS) [20]. Therefore, the coordinate transformation between WCS and MCS is
needed. Such a transformation depends on the structure of the CNC machines and the
widely used table-tilting (Figure 2) five-axis CNC machine is adopted in this paper. Other
types of five-axis CNC machines can be treated similarly.
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|PQ|: chord error

A BP

Q

Fig. 1. The schematic diagram of chord error

Fig. 2. Typical table-tilting 5-axis machine

In a table-titling machine shown in Figure 2, C is the workbench rotary angle around the
Z-axis and A is the rotary angle around the X-axis. Denote rw(u) = (xw(u), yw(u), zw(u))
as the coordinates of tool path curve r(u) in WCS. The initial coordinate of origin of MCS
is denoted as Ow = (xw0 , yw0, zw0).

Let Rot(a, x) and Rot(c, z) be the rotary matrices of rotating angle a around X-axis and
angle c around Z-axis respectively, which have following forms

Rot(a, x) =









1 0 0 0
0 cos a − sin a 0
0 sin a cos a 0
0 0 0 1









, Rot(c, z) =









cos c − sin c 0 0
sin c cos c 0 0
0 0 0 0
0 0 0 1









.

Denote the translation matrix to be Tran(Ow) which has the form

Tran(Ow) =









1 0 0 0
0 1 0 0
0 0 1 0

xw0 yw0 zw0 1









.

The relationship between the coordinate (xw, yw, zw) in WCS and the coordinate (x, y, z) in
MCS is given below.

(xw yw zw 1) = (x y z 1) · Tran(Ow) · Rot(a, x) · Rot(c, z) (8)
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which can be written as




xw

yw

zw



 =





cos c cos a sin c sin a sin c
− sin c cos a cos c sin a cos c

0 − sin a cos a



 ·





x + xw0

y + yw0

z + zw0



 (9)

By (9), the coordinate transformation from MCS to WCS is obtained.
Let µ = (xw, yw, zw)T and η = (x, y, z, a, c)T . Differentiate two sides of the equation (9)

and obtain the following differential relationship

dµ

du
= Mt ·

dη

du
(10)

where

Mt =





cos c cos a sin c sin a sin c zw sin c yw

− sin c cos a cos c sin a cos c zw cos c −xw

0 − sin a cos a −(y + yw0) cos a − (z + zw0) sin a 0



 .

Differentiate two sides of the equation (10) and obtain the second-order derivative of
vector µ as follow

d2µ

du2
=

dMt

du
· dη

du
+ Mt ·

d2η

du2
(11)

where

dMt

du
=













−c′ sin c −c′ cos c 0
−a′ sina sin c + c′ cos a cos c −a′ sina cos c − c′ cos a sin c −a′ cos a
a′ cos a sin c + c′ sin a cos c a′ cos a cos c − c′ sin a sin c −a′ sin a

c′zw cos c + z′
w

sin c −c′zw sin c + z′
w

cos c −y′ cos a − z′ sin a − zwa′

y′

w
−x′

w
0













T

.

and x′
w, y′w, z′w can be determined by (10).

Now, we can give the chord error constraint. Since one sampling period is very small,
the tool path during one sampling period can be approximated as a piece of circle arc. If
the sampling period is T and and tool path is rw(u) = (xw(u), yw(u), zw(u)) in WCS, then
the chord error δ(u) has the following relationship with velocity vw(u) in WCS [5],

δ(u) = ρw(u) −
√

ρw(u)2 − vw(u)2T 2

4

where ρw(u) is the curvature radius of tool path under WCS and ρw(u) = |r′w(u)|3
|r′w(u)×r′′w(u)| . Let

δm be the maximal chord error. So

ρw(u) −
√

ρw(u)2 − vw(u)2T 2

4
≤ δm.

That is

vw(u) ≤
√

8ρw(u)δm − 4δ2
m

T
.
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Since the δm is a tiny quantity compared with ρw(u), under WCS the limit of velocity vw(u)
at u can be approximately written to be

vw(u) ≤
√

8δmρw(u)

T
(12)

Since vw

σw
= u̇ =

√
q, (12) is reduced to

q ≤ 8δmρw(u)

σ2
wT 2

=
8δmσw

|r′w(u) × r′′w(u)|T 2
(13)

From (10) and (11), constraint (13) can be written as an inequality about q

q ≤ 8δm|Mtη
′|

|Mtη′ × (M ′
tη

′ + Mtη′′)|T 2
. (14)

3. Optimization velocity planning under acceleration constraint

In this section, we will present a polynomial time algorithm to find the time optimal
solution to the velocity planning problem under acceleration and chord error constraints.

3.1. Formulation of the problem

In this section, the velocity planning problem is formulated as an optimal problem under
differential constraints.

The machining time is t =
∫ 1
0

du
u̇

=
∫ 1
0

du√
q
. So the time optimal velocity planning problem

under the confined feedrate, acceleration, and chord error can be described as the following
form

min
q

∫ 1

0

du√
q

(15)

subject to constraints (5), (7), and (14).
The above optimal problem has a very important property given in the following theorem,

which was proved in many cases and using different methods in [1, 2, 3, 5, 6, 20].

Theorem 3.1 The optimal feedrate vo(u), u ∈ [0, 1] of problem (15) is maximum for any

parameter u. That is, let vf (u) be another feedrate satisfying constraints (5), (7), and (14).
Then, vf (u) ≤ vo(u) for all u ∈ [0, 1]. Furthermore, the optimal feedrate is bang-bang-

singular in the sense that for any parameter u, the equality sign holds at least in one of the

three constraints constraints (5), (7), and (14).

As a consequence of Theorem 3.1, it is easy to see that the optimal solution to problem
(15) is unique.

3.2. The discrete form of optimization problem

The three-axis version for the above optimization problem can be solved analytically
as shown in [1, 2, 3, 5]. Although the analytical solution approach can be theoretically
extended to the five-axis case, it is difficult to obtain a practically effective method due
to the complicated expression introduced in constraint (14). Therefore, to develop efficient
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numerical method is inevitable for the five-axis CNC velocity planning with chord error
constraint. In order to use numerical method to solve problem (15), in this section, we give
a discrete version of this problem.

We divide the parametric interval [0, 1] into N equal parts with endpoints are ui = i
N

,
i = 0, . . . , N . The length of each sub-interval is ∆ = 1/N . Since the velocities at the two
endpoints of tool path are zero, we have q0 = qN = 0. Since ∆ is very small, the constraints
(5), (7), and (14) can be approximately transformed into the following linear inequalities.

0 ≤ qi ≤
V 2

m

σ2
i

(16)

|qi+1τ
′2
i+1 − qiτ

′2
i | ≤ 2Aτ |τi+1 − τi|, τ ∈ {x, y, z, a, c} (17)

0 ≤ qi ≤
8δm|Mtiη

′
i|

|Mtiη
′
i × (Mt

′
iη

′
i + Mtiη

′′
i )|T 2

. (18)

where qi = q(ui), σi = σ(ui), τi = τ(ui), τ ′
i = τ ′(ui), and the vectors η′i, Mti and M ′

ti
are

the values of η′(u), M ′
t(u) and Mt(u) at ui respectively. Correspondingly, the optimization

problem (15) is transformed into the following nonlinear programming problem with objective
function

min
{qi}

1

N

N−1
∑

i=1

1√
qi

(19)

and constraints (16), (17), and (18).
Instead of solving problem 19, we will solve the following linear programming problem

with objective function

max
{qi}

N−1
∑

i=1

qi (20)

and constraints (16), (17), and (18).
In the following, we will show that the solution to the linear programming problem (20)

provides an approximate solution to the original problem (15). The key idea is to show that
the optimal solution q∗i , (i = 1, . . . , N − 1) to the linear programming problem (20) is unique
and each q∗i achieves the maximal value among all possible feasible solutions. Combing this
property and Theorem 3.1, the claim can be proved.

Theorem 3.2 The unique solution to problem (15) can be sufficiently approximated with the

unique solution of the linear programming problem (20) when N is large enough.

Proof: The feasible region for qi = 0, (i = 1, . . . , N − 1) determined by constraints (16),
(17), and (18) is clearly a finite compact set. Then, the linear programming program always
has a solution Q∗ = {q∗i , (i = 1, . . . , N − 1)} .

We claim that for each i, q∗i is maximal among all feasible solutions. Assume the contrary.
Then there exists another feasible solution {qk, (k = 1, . . . , N−1)} such that qj > q∗j holds for
at least one j. Since for a linear programming problem, the optimal value for the objective
function is unique, there must exist a k such that qk < q∗k. Notice that q0 = q∗0 = qN = q∗N =
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0. Then, there exists i < j such that q∗i ≥ qi and q∗k < qk, (k = i + 1, . . . , j − 1), and q∗j ≥ qj.
Since qi, qi+1 and q∗i , q∗i+1 satisfy the constraint (17), we have

|qi+1τ
′2
i+1 − qiτ

′2
i | ≤ 2Aτ |τi+1 − τi|,

|q∗i+1τ
′2
i+1 − q∗i τ

′2
i | ≤ 2Aτ |τi+1 − τi|.

Let a1 = qi+1τ
′2
i+1, a2 = qiτ

′2
i , b1 = q∗i+1τ

′2
i+1, b2 = q∗i τ

′2
i , B = 2Aτ |τi+1−τi|. So |a1−a2| ≤ B,

|b1 − b2| ≤ B. By the assumption q∗i ≥ qi and q∗i+1 < qi+1, we have a1 > b1 and a2 ≤ b2.
Then

a1 − b2 = a1 − b1 + b1 − b2 ≥ b1 − b2 ≥ −B,

a1 − b2 = a1 − a2 + a2 − b2 < a1 − a2 ≤ B.

Thus |a1 − b2| ≤ B. That is

|qi+1τ
′2
i+1 − q∗i τ

′2
i | ≤ 2Aτ |τi+1 − τi|.

That is, q∗i and qi+1 satisfy the constraint (17). Similarly, it can be shown that qj−1 and q∗j
also satisfy the constraint (17). Since constrains (16) and (18) are automatically satisfied,
by replacing q∗k, (k = i + 1, . . . , j − 1) with qk, (k = i + 1, . . . , j − 1), we obtain a new feasible
solution of the linear programming problem, which has a larger value for the objective
function, leading a contradiction. Thus the claim is proved.

From the claim, the linear programming problem (20) has a unique solution q∗i , (i =
0, . . . , N). Furthermore, since the solution q∗i is maximal for each i among all feasible so-
lutions, a solution to problem (20) is also a solution to problem (19). And the objective
function (19) is the discrete form of (15). Therefore, the solution to linear problem (20) can
approximate the solution to problem (15) as good as possible.

3.3. Optimization velocity planning based on linear programming

In the preceding section, we show that the problem of velocity planning is transformed
into a linear optimization problem. In this section, the algorithm is given.

In order to use the standard solver from MatLab, we rewrite the linear programming
problem (20) has the following standard form.

max
Q

cQ (21)

with constraints MQ ≤ R and Q ≥ 0, where Q = (q1, ..., qN−1)
T , q0 = qN = 0, the coefficient

vector c is (1, ..., 1) with size 1 × (N − 1), R and M will be given below.

Denote h(u) = min{ V 2
m

σ(u)2
, 8δm|Mtη

′(u)|
|Mtη′(u)×(Mt

′η′(u)+Mtη′′(u))|T 2 } and λi = (x′2
i , y′2i , z′2i , a′2i , c′2i )T ,

where x′
i = x′(ui). Let πi = (2Ax|xi+1 − xi|, 2Ay |yi+1 − yi|, 2Az |zi+1 − zi|, 2Aa|ai+1 −

ai|, 2Ac|ci+1 − ci|). Then R = (π0, π0, h(u0), ..., πN−2, πN−2, h(uN−2), πN−1, πN−1)
T whose

size is (11N − 1) × 1. The coefficient matrix M has the following form whose size is
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(11N − 1) × (N − 1).

M =











































λ1 0 0 ... 0 0
−λ1 0 0 ... 0 0
1 0 0 ... 0 0

−λ1 λ2 0 ... 0 0
λ1 −λ2 0 ... 0 0
0 1 0 ... 0 0
... ... ... ... ... ...
0 0 0 ... −λN−2 λN−1

0 0 0 ... λN−2 −λN−1

0 0 0 ... 0 1
0 0 0 ... 0 −λN−1

0 0 0 ... 0 λN−1











































(22)

After solving the linear programming problem (21), we obtain a set of optimal solution
Q∗ = (q∗1 , . . . , q

∗
N−1)

T with q∗0 = q∗N = 0. From equation (1), the optimal feedrate can be

obtained v∗i = v(ui) = σ(ui)
√

q∗i , (i = 0, . . . , N). We can uses standard techniques to fit the
discrete values vi to obtain the optimal feedrate function v∗(u), u ∈ [0, 1].

Based on the above analysis, the following velocity planning algorithm is given.

Algorithm 3.3 VPA LP

Input: Five-axis tool path η(u),u ∈ [0, 1] in MCS, the sampling period T , the maximal

feedrate Vm , five-axis maximal acceleration bounds (Ax, Ay, Az, Aa, Ac), the chord error

bound δm, the number of discretion number N , and the initial position of the origin of MCS

(xw0 , yw0, zw0).
Output: The approximate optimal velocity function v(u), u ∈ [0, 1] of problem 15.

1. Compute ηi = η(ui), λi, and πi defined in this section, where ui = i
N

, i = 0, . . . , N to

obtain the coefficient matrix M in (22).

2. Compute the error limit function

h(ui) = min{V 2
m

σ2
i

,
8δm|Mt(ui)η

′(ui)|
|Mt(ui)η′(ui) × (M ′

t(ui)η′(ui) + Mt(ui)η′′(ui))|T 2
}, i = 1...N − 1.

Obtain the right-side vector

R = (π0, π0, h(u1), ..., πN−2, πN−2, h(uN−1), πN−1, πN−1)
T

3. Solve the linear programming problem (21) to obtain the optimal solution Q∗ = (q∗1 , ...,
q∗N−1)

T . Let q∗0 = q∗N = 0.

4. Compute the velocity function. For instance, in the simplest case, we can give a piece-

wise linear representation as follows

v(u) = v∗i
u − ui+1

ui − ui+1
+ v∗i+1

ui − u

ui − ui+1

where v∗i = σ(ui)
√

q∗i and u ∈ [ui, ui+1], i = 0, . . . , N − 1.
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Fig. 3. The tool path curve
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Fig. 4. The A-axis and C-axis curve

A nice feature to Algorithm 3.3 is that we can give its worst case computational complex-
ity, which is rare for most velocity planning algorithms. Since the dominate step of Algorithm
3.3 is step 3, we need only to estimate the complexity of this step. Based on Karmarkar’s
famous algorithm [22] to solve linear programming problems, if using floating point number
computations, the algorithm requires O(N) steps and each step requires O(N2.5) arithmetic
operations. Thus, we have

Theorem 3.4 For a given N , the worst case computational complexity for Algorithm 3.3 is

O(N3.5) in terms of floating point arithmetic operations.

In Algorithm 3.3, we need only to compute the values of the tool path η(u) at the
parameter values uk, k = 0, . . . , N . The computation complexity for this procedure is O(N).
As a consequence, the computational complexity of the algorithm is the same for any tool
path η(u). This is a nice feature comparing to the phase analysis methods [1, 2, 3, 4, 5, 6]
which involves integrations and nonlinear algebraic equation solving and thus only practically
work for simple tool pathes [4, 5].

3.4. An illustrative example

An illustrative example is given, where the tool path is a set of cubic polynomial curve:

η(u) = (15u3, 10u2, 20u, 2u2 + 5u − 68, 7.5u2 + 2u − 27), u ∈ [0, 1].

The path curve and the curve of two rotary axes are illustrated respectively in Figure 3 and
Figure 4.

The CNC parameters are given as follow: Ax = 1000mm/s2, Ay = 1000mm/s2, Az =
1000mm/s2, Aa = 500◦/s2, Ac = 500◦/s2, Vm = 110mm/s, δm = 0.05µm, T = 1ms,
Ow = (1, 1, 1), N = 200.

The velocity curve obtained with Algorithm VPA LP and the theoretical chord error of
the velocity curve are shown in Figures 5 and 6 respectively, where theoretical chord error



32 W. Fan, X.S. Gao, K. Zhang

is calculated by

δ(u) =
q(u)|Mtη

′ × (M ′
tη

′ + Mtη
′′)|T 2

8|Mtη′|
. (23)

The acceleration curves of X, Y and Z axes for this velocity curve are shown in Figure
7(a). The acceleration curves of two rotary axes are illustrated in Figure 7(b).
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Fig. 5. The planned velocity
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Fig. 6. The chord error

From Figures 5, 6, and 7, it is easy to see that the planned velocity function is Bang-
bang-singular control, meaning that at least one of five-axis accelerations, the feedrate, and
the chord error reaches its boundary value at any time. The whole machining process is
divided into five phases. When u ∈ [0, 0.155], the acceleration of Z-axis reaches maximum
value 1000mm/s2. When u ∈ [0.155, 0.71], the chord error reaches maximum value. When
u ∈ [0.71, 0.905], the feedrate reaches maximal velocity Vm. When u ∈ [0.905, 0.925], the
acceleration of C-axis reaches minimum value −500◦/s2. Finally, when u ∈ [0.925, 1], the
acceleration of X-axis reaches minimum value −1000mm/s2.

From Theorem 3.1, the Bang-bang-singular control is a necessary condition of this optimal
problem. The fact that our solutions are Bang-bang-singular implies that these solutions
provide nice approximation to the optimal solution of the original problem.

However from Figure 5, it is not difficult to find that the feedrate function is not smooth
at some points such as u = 0.155, u = 0.71 and u = 0.905. At these points the large vibration
of the machine tool could lead to poor machining quality. This problem is addressed in the
next section by introducing jerk bounds.
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Fig. 7. Accelerations for five axes
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4. Velocity planning under jerk constraint with linear programming

In this section, we will consider time optimal velocity planning under jerk constraints
and give an approximate algorithm based on linear programming.

4.1. Formulation of the problem

Let the tool path η(u) = (x(u), y(u), z(u), a(u), c(u))T , (u ∈ [0, 1]) have C2 continuity.
The maximal jerks of the five axes Jm = (Jx, Jy, Jz, Ja, Jc) are used to describe the maximal
change rate of accelerations that five axes can sustain. So the jerk of every axis in the
machining process should satisfy the following constraints

|jτ (u)| ≤ Jτ , u ∈ [0, 1], τ ∈ {x, y, z, a, c}. (24)

Use the symbols in Section 2.. Since the acceleration a = (ax, ay, az, aa, ac) can be
expressed in the following form

aτ = τ̈ =
d(
√

qτ ′)

dt
=

d(
√

qτ ′)

du

√
q = τ ′′q +

τ ′

2
q′,

the jerk j = (jx, jy, jz , ja, jc) can be written as

jτ = ȧτ = a′τ
√

q = (τ ′′′q + (τ ′ +
τ ′′

2
)q′ +

τ ′

2
q′′)

√
q, (25)

where τ ∈ {x, y, z, a, c}. Note that (25) in nonlinear about q, q′, and q′′.
The time optimal velocity planning problem becomes

min
q

∫ 1

0

du√
q

(26)

subject to constraints (5), (7), (14), and (25).
Note that after adding jerk constraints, Theorem 3.1 is not fully proved yet. We do not

know whether an optimal solution to problem (26) is maximum at any parameter value. But,
we still know that an optimal solution must be bang-bang-singular [6, 20].

4.2. Discrete form of the velocity planning problem

Similar to Section 3., the interval [0, 1] is divided into N equal intervals at ui = i/N, (i =
0, . . . , N). The first order and second order derivatives of q can be approximated as

q′i ≈
qi+1 − qi−1

2∆u
,

q′′i ≈ qi+1 + qi−1 − 2qi

∆u2
, i = 1, . . . , N − 1.

As a consequence, constraint (25) is discretized to the following form

|(ατi
qi−1 + βτi

qi + γτi
qi+1)

√
qi| ≤ Jτ , i = 1, . . . , N − 1 (27)

where

ατi
=

τ ′
i

2∆u2
− τ ′

i

2∆u
− τ ′′

i

4∆u
, βτi

= τ ′′′
i − τ ′

i

∆u2
, γτi

=
τ ′
i

2∆u2
+

τ ′
i

2∆u
+

τ ′′
i

4∆u
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and τ ′
i = τ ′(ui), τ ′′

i = τ ′′(ui) and τ ′′′
i = τ ′′′(ui).

We assume that the velocities and accelerations at the beginning and end are zero:

q(0) = q(1) = 0,a(0) = a(1) = 0.

Since

jτ =
daτ

dt
= aτ

daτ

dvτ
=

1

2

da2
τ

dv
,

for the first interval [0, u1], |jτ1 | = |(a2
τ1
−a2

τ0
)/(2vτ1−2vτ0)| = |a2

τ1
/(2τ ′

1
√

q1)| = |N2τ ′2
2
√

q1q2/8τ
′
1| ≤

Jτ . Similarly for the last segment [uN−1, 1], |jτN
| = |N2τ ′2

N−2
√

qN−1qN−2/8τ
′
N−1| ≤ Jτ .

Therefore for the jerk constraints in the first and last intervals can be written as

|N2τ ′2
2

√
q1q2/8τ

′
1| ≤ Jτ (28)

|N2τ ′2
N−2

√
qN−1qN−2/8τ

′
N−1| ≤ Jτ (29)

Correspondingly, the optimization problem (26) is transformed into the following non-

linear programming problem with objective function

min
{qi}

1

N

N−1
∑

i=1

1√
qi

(30)

under constraints (16), (17), (18), (27), (28), and (29).
We could use existing algorithms to solve the above nonlinear programming problem.

But, the solving procedure is generally quite time consuming and the solutions thus obtained
is not guarantied to be optimal. In the next section, we try to reduce the problem into a
linear programming problem.

4.3. Relax the problem into a linear programming problem

In this section, we will reduce problem (30) into a linear programming problem by intro-
ducing a relaxation technique.

The linear programming problem has the following objective function

max
Q

cQ (31)

and constraints M̂Q ≤ R̂, Q ≥ 0, where Q = (q1, . . . , qN−1), c = (1, . . . , 1), and M̂ will be
given below. The objective function is the same as (21), which means to maximized make
the total feedrate.

Note that constraints (16), (17), and (18) are already linear in Q. In the following, we
will show how to reduce constraints (27), (28), and (29) into linear form.

Let the optimal solution of problem (21) be {q⋆
i }i=0,...,N . Multiplying the the correspond-
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ing
√

q⋆

i

qi
on both sides of constraints (27)-(29), we have

|(
√

q⋆
i ατi

qi−1 +
√

q⋆
i βτi

qi +
√

q⋆
i γτi

qi+1)| ≤ Jτ

√

q⋆
i

qi
, i = 1, . . . , N − 1 (32)

|N
2τ ′2

2

8τ ′
1

√

q⋆
1q2| ≤ Jτ

√

q⋆
1

q1
(33)

|
N2τ ′2

N−2

8τ ′
N−1

√

q⋆
N−1qN−2| ≤ Jτ

√

q⋆
N−1

qN−1
(34)

where τ ∈ {x, y, z, a, c}. The left hand sides of (32)-(34) are linear in qi. We will show how
to relax the right hand sides of these inequalities into linear forms.

Any qi satisfying the constraints of problem (30) must also satisfy the constraints of
Theorem 3.2. By Theorem 3.2, any such qi must satisfy qi ≤ q∗i , (i = 0, . . . , N). Therefore,

we can replace
√

q⋆

i

qi
≥ 1 in (32)-(34) by 1 and obtain

|(
√

q⋆
i ατi

qi−1 +
√

q⋆
i βτi

qi +
√

q⋆
i γτi

qi+1)| ≤ Jτ , i = 1, . . . , N − 1 (35)

|N
2τ ′2

2

8τ ′
1

√

q⋆
1q2| ≤ Jτ (36)

|
N2τ ′2

N−2

8τ ′
N−1

√

q⋆
N−1qN−2| ≤ Jτ . (37)

Consequently, we obtain a linear programming problem with objective function (31) and con-
straints (16), (17), (18), (35), (36), (36), and (37). The solution of this linear programming
problem satisfy all the constraints of problem (26).

The relaxation condition
√

q⋆

i

qi
≥ 1 is very restrictive. The following lemma gives a better

estimation for
√

q⋆

i

qi
.

Lemma 4.1 If {q⋆
i }i=1,...,N−1 is the optimal solution of (21) and {qi}i=1,...,N−1 is the opti-

mized solution of problem (30), then

√

q⋆
i

qi
≥ 3

2
− qi

2q⋆
i

≥ 1.

Proof: From Theorem 3.2, we have qi ≤ q⋆
i , and hence 3

2 − qi

2q⋆

i

≥ 1. Let t =
√

qi/q⋆
i . Then

√

q⋆
i

qi
− (

3

2
− qi

2q⋆
i

) =
t2

2
+

1

t
− 3

2
=

t2

2
+

1

2t
+

1

2t
− 3

2
≥ 3

3

√

t2

2
· 1

2t
· 1

2t
− 3

2
= 0.
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By Lemma 4.1, if qi satisfy the following constraints, then they also satisfy constraints
(32)-(34).

|(
√

q⋆
i ατi

qi−1 +
√

q⋆
i βτi

qi +
√

q⋆
i γτi

qi+1)| ≤ Jτ (
3

2
− qi

2q⋆
i

) (38)

|N
2τ ′2

2

8τ ′
1

√

q⋆
1q2| ≤ Jτ (

3

2
− q1

2q⋆
1

) (39)

|
N2τ ′2

N−2

8τ ′
N−1

√

q⋆
N−1qN−2| ≤ Jτ (

3

2
− qN−1

2q⋆
N−1

) (40)

Now, we will give the M̂ in problem (31). Since M in (22) represents constraints (16),
(17), and (18), the first 11N − 1 rows of M̂ are the same as that of M .

Let α̂τ0 = Jτ/(2q⋆
1), β̂τ0 =

√

q⋆
1N

2τ ′2
2 /(8τ ′

1), α̂τN
=

√

q⋆
N−1N

2τ ′2
N−2/(8τ

′
N−1), β̂τN

=

Jτ/(2q⋆
N−1), α̂τi

= ατi

√

q⋆
i , β̂τi

= βτi

√

q⋆
i + Jτ/(2q⋆

i ), γ̂τi
= γτi

√

q⋆
i , θτi

= Jτ/q⋆
i − β̂τi

, i =

1, . . . , N−1, α̂i = (α̂xi
, α̂yi

, α̂zi
, α̂ai

, α̂ci
)T , β̂i = (β̂xi

, β̂yi
, β̂zi

, β̂ai
, β̂ci

)T , γ̂i = (γ̂xi
, γ̂yi

, γ̂zi
, γ̂ai

, γ̂ci
)T ,

and θi = (θxi
, θyi

, θzi
, θai

, θci
)T . The inequality (38)-(40) is added to M to obtain M̂

M̂ =





















































































λ1 0 0 ... 0 0
−λ1 0 0 ... 0 0

β̂1 γ̂1 0 ... 0 0
θ1 −γ̂1 0 ... 0 0
1 0 0 ... 0 0

−λ1 λ2 0 ... 0 0
λ1 −λ2 0 ... 0 0

α̂2 β̂2 γ̂2 ... 0 0
−α̂2 θ2 −γ̂2 ... 0 0

0 1 0 ... 0 0
... ... ... ... ... ...
0 0 0 ... −λN−2 λN−1

0 0 0 ... λN−2 −λN−1

0 0 0 ... α̂N−1 β̂N−1

0 0 0 ... −α̂N−1 θN−1

0 0 0 ... 0 1
0 0 0 ... 0 −λN−1

0 0 0 ... 0 λN−1

α̂0 β̂0 0 ... 0 0

α̂0 −β̂0 0 ... 0 0

0 0 0 ... α̂N β̂N

0 0 0 ... −α̂N β̂N





















































































(41)

The right end vector in (31) is

R̂ = (π0, π0, 1.5Jm, 1.5Jm, h(u1), ..., πN−2, πN−2, 1.5Jm, 1.5Jm, h(uN−1), πN−1, πN−1, 1.5Jm, 1.5Jm)T .

Now, all the parameters in problem (31) are given and we can give the velocity planning
algorithm.
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Algorithm 4.2 VPJ LP

Input: Five-axis tool path η(u),u ∈ [0, 1] in MCS, the sampling period T , the feedrate bound

Vm, five-axis acceleration bounds (Ax, Ay, Az, Aa, Ac), the chord error bound δm, five-axis

jerk bounds (Jx, Jy, Jz , Ja, Jc) the number of discretion number N , and the initial position of

the origin of MCS (xw0 , yw0, zw0).
Output: The approximate optimal velocity function v(u), u ∈ [0, 1] of problem 15.

The algorithm is almost the same as Algorithm 3.3. The only difference is that instead of
solving linear programming (21), we now solve linear programming (31). Since the matrix M̂
is of the form (13N − 1)× 1, the computational complexity of Algorithm 3.3 is also O(N3.5)
floating point arithmetical operations.

5. Simulation results

In this section, simulation results are used to show that Algorithm 4.2 can be used to
find the approximate optimal solution very efficiently.

5.1. Simulation results

For the tool path in Figure 3, we use Algorithm 4.2 to find the velocity function obeying
jerk constraints. Set Jx = Jy = Jz = 100000mm/s3, Ja = Jc = 15000◦/s3. Other parameters
are the same as those given in Section 3.4.. The velcoty functions obtained with Algorithms
3.3 and 4.2 are given in Figure 8. The “sharp corners” of the velocity curve under confined
acceleration are smoothed by adding the jerk constraint. Furthermore, the velocity curve
under confined jerk does change must from that under the acceleration, which shows that
the obtained velocity curve is approximate optimal.

Figure 9 shows the theoretical chord error of the velcoty curve under confined jerk, which
is calculated by (23). The chord error in Figure 9 is smaller than that given in Figure 6 at
some positions.
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Fig. 8. Feedrates
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Fig. 9. Chord error with jerk bound

The acceleration curves of five axes with jerk constraints are shown in Figures 10 and
11. These acceleration curves of five axes are continuous. The jerk curves of five axes with
jerk constraints are shown in Figure 12 and 13, from which we can see that the jerk bounds
are satisfied.

From Figure 8 to 13, we can see that the control profile of velocity is approximate bang-
bang-singular. In fact, when u ∈ [0, 0.001], A-axis jerk reaches Ja. When u ∈ [0.001, 0.125],
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Fig. 10. Accelerations of X, Y and Z axes
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Fig. 11. Accelerations on A and C axes
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Fig. 12. Jerks of X, Y and Z axes
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Fig. 13. Jerks of A and C axes with

Z-axis acceleration reaches Az. A-axis jerk reaches −Ja when u ∈ [0.125, 0.192]. Chord
error reaches maximum value when u ∈ [0.192, 0.68]. C-axis jerk reaches −Jc when u ∈
[0.68, 0.733]. Velocity reaches Vm when u ∈ [0.733, 0.86]. Once again C-axis jerk reaches
−Jc when u ∈ [0.86, 0.93]. The X-axis acceleration reaches −Ax when u ∈ [0.93, 0.997]. The
C-axis jerk reaches Jc when u ∈ [0.997, 1].

Now compute more complicated tool path shown in Figure 14. This five-axis curve is one
piece of tool path for an “impeller” shown in Figure 14(c). Both tool path curve and rotary
angle curve are cubic B-splines containing ten segments and having C2 continuity. The
parameters are set to be Vm = 10mm/s, Ax = Ay = Az = 200mm/s2, Aa = Ac = 500◦/s2,
Jx = Jy = Jz = 5000mm/s3, Ja = Jc = 5000◦/s3, δm = 0.1µm, T = 3ms, N = 500.

0
2

4
6

8

−8

−6

−4

−2
−8

−6

−4

−2

0

2

x(mm)y(mm)

z(
m

m
)

(a) Tool path

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

20

40

60

80

100

u

R
ot

ar
y 

an
gl

e 
(

° 
)

A−axis rotary angle
C−axis rotary angle

(b) Rotary angles (c) The impeller

Fig. 14. The tool path and rotary angles for a segment of an impeller

The velocity curves obtained by Algorithm VPA LP and Algorithm VPJ LP are given



39

in Figure 15. The VLC (velocity limit curve) by chord error, which is the maximal feedrate
value not violating the chord erro, defined in [5] is also given. The chord errors with and
without jerk constraints are shown in 16. Accelerations on five axes are illustrated in Figures
17 and 18. Figures 19 and 20 show the jerks of the X, Y, Z axes and rotary axes A, C
respectively. It is easy to find that for the planned velocity, all of constraints are satisfied
and motion profile is nearly bang-bang. As a consequence, the velocity is an appropriate
solution to the original velocity planning problem (26).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

u

V
el

oc
ity

(m
m

/s
)

velocity without jerk constraints
velocity with jerk constraints
VLC by chord error

Fig. 15. Velocity curves
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Fig. 16. Chord error curves
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Fig. 17. Accelerations with jerk constraints
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Fig. 18. Accelerations with jerk constraints
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Fig. 19. Jerks with jerk constraints
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Fig. 20. Jerks with jerk constraints

5.2. Computational costs analysis

In Algorithm VPA LP, linear programming is used to obtain the optimal solution.
The larger the number of refined intervals N is, the more closely the solution of Algorithm
VPA LP approximates to the solution of the original problem (15). On the other hands,
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N 100 200 300 500 1000

Fig. 3 0.328s 0.625s 0.922s 2.187s 3.594s

Fig. 14 0.390s 0.844s 1.218s 2.485s 5.047s

Table 1. Computation times of Algorithm VPA LP for different N

Fig. 3 Fig. 14
N VPJ LP NP VPJ LP NP

100 1.609s 42min 2.740s 67min

200 3.766s 149min 5.000s 175min

300 5.797s failure 6.641s failure

500 10.875s failure 10.813s failure

1000 32.640s failure 27.047s failure

Table 2. Computation times of Algorithms NP and VPJ LP for different N

computational costs will rise as N becomes lager. In this section, we will use experimental
data to show that for our problems the computational complexity is much better than the
worst case complexity O(N3.5).

In Table 1, the computation times using Algorithm VPA LP to plan the velocities for
the tool pathes in Figure 3 and Figure 14 under different N are given.

From Table 1, we have the following observations. Firstly, the actual computational
complexity of Algorithm VPA LP is about O(N), that is, the computational time is pro-
portional to N . This is in accordance with Smale’s result that the number of operations
required to solve a linear programming problem grows in proportion to the number of vari-
ables on the average [23] under certain conditions. Secondly, for different tool paths, the
computational times are of little difference, which is very significant for practical usage since
tool path curves in the practical problem may be rather complicated.

Algorithm VPJ LP computes approximate solutions of the time-optimal velocity plan-
ning problem under confined jerk using linear programming methods. The original velocity
planning problem under confined jerk is a nonlinear programming problem (30), which is
denoted by (NP) and can be solved with the nonlinear programming software in Matlab. In
Table 2, we compare the computation time for Algorithms VPJ LP and NP for different
N .

From Table 2, we can see that Algorithm VPJ LP is much faster than nonlinear pro-
gramming NP. When N exceeds 300, NP cannot solve the nonlinear problem while Algo-
rithm VPJ LP stills works well.

6. Conclusion

In this paper, the time optimal velocity planning problem for five axis CNC machining
along a given parametric tool path under chord error, acceleration, and jerk constraints is
studied.

The parameter interval [0, 1] is divided into N equal parts and the differential quantities
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are discretized into finite differences. Then, the velocity planning problem under confined
acceleration is reduced to a equivalent linear programming problem, and as a consequence,
a polynomial time algorithm with complexity O(N3.5) is given to find the optimal solution.

In the case of confined jerk, the nonlinear jerk constraint is approximated with a linear
linear function, and the velocity planning problem under confined jerk is approximated with
a linear programming program. As a consequence, a polynomial time algorithm is given to
find the approximate optimal solution under confined jerk.

As a consequence, efficient polynomial-time algorithms are given for time-optimal velocity
planning of five-axis CNC machining along any parametric tool path under confined chord
error, acceleration, and jerk. Simulation results and complexity analysis are used to show
the efficiency and effectiveness of the algorithms.

References

[1] J.E. Bobrow, S. Dubowsky, J.S. Gibson, Time-optimal control of robotic manipulators along
specified paths. Int. J. Robot. Res., 4(3)(1985)3-17

[2] K. Shin, N. McKay, Minimum-time control of robotic manipulators with geometric path con-
straints. IEEE Transactions on Automatic Control 30 (1985)531-541.

[3] R.T. Farouki, Y.F. Tsai, Exact Taylor series coefficients for variable-feedrate CNC curve inter-
polators. Computer-Aided Design 33(2)(2001)155-165.

[4] M. Zhang, W. Yan, C.M. Yuan, D.K. Wang, X.S. Gao, Curve fitting and optimal interpolation
on CNC machines based on quadratic B-splines. Science China, Series E 54(7)(2011)1407-1418.

[5] C.M. Yuan, K. Zhang, W. Fan, X.S. Gao, Time-optimal interpolation for CNC machining along
curved tool paths with confined chord error. MM Research Preprints 30(2011)57-89.

[6] K. Zhang, X.S. Gao, H.B. Li, C.M. Yuan, A greedy algorithm for feed-rate planning of CNC ma-
chines along curved tool paths with confined jerk for each axis. Robotics and Computer Integrated

Manufacturing 28(2012) 472C483.

[7] D. Bedi, I. Ali, N. Quan, Advanced techniques for CNC machines, Journal of Enginerring for

Industry 115(1993)329-336.

[8] D.C.H. Yang, T. Kong, Parametric interpolator versus linear interpolator for precision CNC
machining. Computer-Aided Design 26(3)(1994)225-234.

[9] M.M. Emami, B. Arezoo, A look-ahead command generator with control over trajectory and
chord error for NURBS curve with unknown arc length. Computer-Aided Design 4(7)(2010)625-
632.

[10] S.S. Yeh, P.L. Hsu, Adaptive-feedrate interpolation for parametric curves with a confined chord
error. Computer-Aided Design 34(2002)229-237.

[11] J.Y. Lai, K.Y. Lin, S.J. Tseng, W.D. Ueng, On the development of a parametric interpolator with
confined chord error, feedrate, acceleration and jerk. Int. J. Adv. Manuf. Technol. 37(2008)104-
121

[12] K. Zhang , C.M. Yuan, X.S. Gao, Efficient Algorithm for Feedrate Planning and Smoothing with
Confined Chord Error and Acceleration for Each Axis. MM-Research Preprints 30(2011)39-56.

[13] M. Tikhon, T.J. Ko, S.H. Lee, H.S. Kim, NURBS interpolator for constant material removal
rate in open NC machine tools. Int. J. of Mach. Tools and Manu. 44(2004)237-245

[14] T. Yong, R. Narayanaswami, A parametric interpolator with confined chord errors, acceleration
and deceleration for NC machining. Computer-Aided Design 35(2003)1249-1259.



42 W. Fan, X.S. Gao, K. Zhang

[15] W. Fan, X.S. Gao, W. Yan, C.M. Yuan, Interpolation of Parametric CNC Machine Tool Path
Under Confined Jounce. Int. J. Adv. Manuf. Technol.(2011)DOI:10.1007/s00170-011-3842-0

[16] A.C. Lee, M.T. Lin, Y.R. Pana, W.Y. Lin, The feedrate scheduling of NURBS interpolator for
CNC machine tools. Computer-Aided Design 43(2011)612-628.

[17] M.S. Tsai, H.W. Nien, H.T. Yau, Development of an integrated look-ahead dynamics-based
NURBS interpolator for high precision machinery. Computer-Aided Design 40 (2008) 554-566.

[18] A. Gasparetto, A. Lanzutti, R. Vidoni, V. Zanotto, Experimental validation and compara-
tive analysis of optimal time-jerk algorithms for trajectory planning Robotics and Computer-

Integrated Manufacturing 28(2012)164-181.

[19] B. Sencer, Y. Altintas, E. Croft, Feed optimization for five-axis CNC machine tools with drive
constraints. Int. J. of Mach. Tools and Manu.48 (2008) 733-745.

[20] S.R. Li, Q. Zhang, X.S. Gao, H. Li, Minimum Time Trajectory Planning for Five-Axis Machining
with General Kinematic Constraints. MM-preprints, 31(2012)1-20.

[21] K. Erkorkmaz, Y. Altintas, High speed CNC system design. Part I: jerk limited trajectory
generation and quintic spline interpolation. Int. J. of Mach. Tools and Manu. 41(2001)1323-
1345

[22] N. Karmarkar, A new polynomial time algorithm for linear programming. Combinatorica, 4(4):
373C395, 1984.

[23] S. Smale On the average number of steps of the simplex method of linear programming. Mathe-

matical Programming, 27(3):241-262, 1983.


