
Mathematics Mechanization Research Preprints
KLMM, Chinese Academy of Sciences
Vol. 29, 189–205, September 2010 189

A Greedy Algorithm for Feed-rate Planning of

CNC Machines along Curved Tool Paths with

Confined Jerk for Each Axis

Ke Zhang, Xiao-Shan Gao, Hongbo Li, Chun-Ming Yuan
KLMM, Institute of Systems Science, Chinese Academy of Sciences

E-mail: xgao@mmrc.iss.ac.cn

Abstract. The problem of optimal feed-rate planning along a curved tool path for
3-axis CNC machines with a jerk limit for each axis is addressed. We prove that the
optimal feed-rate planning must use “Bang-Bang” control, that is, at least one of the axes
reaches its jerk bound throughout the motion. As a consequence, the optimal parametric
velocity can be expressed as a piecewise analytic function of the curve parameter u.
We also give the explicit formula for the velocity function by solving a second order
differential equation. Under a “greedy rule”, an algorithm for optimal jerk confined
feed-rate planning is presented, together with an example.

Keywords. Optimal feed-rate planning, confined jerk, velocity limit surface, parametric
tool path, “Bang-Bang” control.

1 Introduction

The feed-rate optimization along curved tool paths is an important problem in CNC ma-
chining. In the feed-rate planning, the acceleration on each axis of the machine must be
constrained, because the torque (or force) capabilities of the axes’ drives are limited. There-
fore, the problem is how to identify the feed-rate along a given path such that the machining
time is minimal without exceeding the capabilities of the actuators.

Bobrow et al [1], Shiller and Lu [2] gave algorithms to determine the minimum-time mo-
tion for a robot manipulator along a specific path (at least a smooth curve) with acceleration
bounds on x, y, z axes. Farouki and Timar [3, 4] planned the feed-rate for CNC machining,
also with acceleration bounds on x, y, z axes, and gave a piecewise-analytic expression of
the optimal velocity planning function. Yuan and Gao [5] provided a time optimal feed-rate
planning method with tangential acceleration and chord error bounds. All of the methods
mentioned above used the velocity limit curve and its switching points in the u − u̇ phase
plane to obtain an optimal solution which is a continuous time optimal velocity function
along a specific path. Dong and Stori [6] gave a discrete greedy algorithm for the above
problem with a acceleration bound on each axis. These methods are all based on the idea
of “Bang-Bang” control, that is, at least one of the axes reaches its acceleration bound
throughout the motion.

However, the acceleration profile obtained with the above methods has discontinuities,
since the acceleration may change from the maximum A to the minimum −A instantly. These

190 K. Zhang et al

discontinuities correspond to step changes in the force output demanded of the drive, cause
vibrations and then large contouring errors. One method to reduce vibrations is introducing
jerk constraints along each axis to the original problem. Then we will obtain a feed-rate
planning with continuous acceleration.

When jerk constraints are added, the analysis must be performed in the u− u̇− ü phase
space instead of the u−u̇ phase plane. The new optimization problem becomes more difficult.
However, it is much easier when considering the constraints of the tangential acceleration
and jerk. Such problems have received much attention in the robotics and manufacturing
literature. Altintas and Erkorkmaz [8] presented a quintic spline trajectory generation al-
gorithm that produces continuous position, velocity, and acceleration profiles with confined
tangential acceleration and jerk. Macfarlane and Croft [9] developed and implemented an
online method to obtain smooth, jerk-bounded trajectories with fifth-order polynomials for
industrial robot applications. Their method is near time optimal with confined tangential
jerk and acceleration. Nam and Yang [10] presented a recursive trajectory generation method
that estimates an admissible path increment and determines the initiation of the final de-
celeration stage according to the distance left to travel estimated at every sampling time,
resulting in exact feed-rate trajectory generation through tangential jerk-confined accelera-
tion profiles for the parametric curves. Lin et al [11] proposed a dynamics-based interpolator
with real-time look-ahead algorithm to generate a smooth and tangential jerk-confined ac-
celeration/deceleration feed-rate profile. Emami and Arezoo [12] introduced a look-ahead
trajectory generation method which determines the deceleration stage according to the fast
estimated arc length and the reverse interpolation of each curve at every sampling time.
They obtained a feed-rate trajectory with tangential jerk-confined acceleration profiles for
the NURBS curves. Lai et al [13] further proposed a method which can generate velocities
with jerk limits as well as chord error, speed, and acceleration limits. The method uses a
discrete model and satisfies all these constraints by backtracking at each step.

In order to make full use of the capabilities of the machine tool, it is desirable to solve
the problem with jerk constraints on each axis, because the drivers of the axes of a CNC
machine are controlled independently. Using a jerk limit on each axis will lead to a continuous
acceleration curve for each axis. Dong et al [14] extended their discrete greedy algorithm [6]
by adding jerk constraints on each axes and obtained a discrete optimal solution. However,
none of these prior approaches have attempted to get an analytical solution with a continuous
model with jerk constraints on each axis.

In this paper, we consider the problem of optimal feed-rate planning along a specific
tool path ~r(u) with a confined jerk on each axis of a 3-axis machine. First, we prove that
the time-optimal feed-rate planning must use “Bang-Bang” control, that is, at least one of
the axes reaches its jerk bound throughout the motion. Then we give an optimal feed-rate
planning algorithm under a “greedy rule”: using the maximal jerk as much as possible.

Our algorithm has two key components, which are also the main contribution of this
paper. The first one is how to compute the parametric velocity function after the control
axis and maximal (or minimal) jerk are given. To compute the parametric velocity function,
we need to solve a second-order differential equation, and the analytic solutions are given.
We also introduce the CASS (control axis switching surface). The control axis should be
changed when the velocity integration trajectory passes through a CASS. The second key

Algorithm for Feed-rate Planning with Jerk Constraints 191

component is to introduce and use the VLS (velocity limit surface) for the feed-rate planning.
It is similar to the VLC (velocity limit curve) in the feed-rate planning with acceleration
constraints [1, 2, 3, 4]. The VLS is a surface in the u − u̇ − ü space which limits the
parametric velocity and acceleration.

The general idea of our algorithm is to compute the integration trajectory forward from
(0, 0, 0) in the u− u̇− ü space under the limit of VLS and our “greedy rule”; then to compute
the integration trajectory backward from (1, 0, 0) in a similar way; and finally to obtain a
complete velocity integration trajectory with continuous acceleration by connecting the two
integration trajectories.

The rest of our paper will be organized as follows. Section 2 gives the mathematical
description and theoretical analysis of our feed-rate optimization problem. Section 3 gives
our feed-rate planning algorithm. Section 4 gives an example. Section 5 concludes the paper.

2 Problem description and theoretical analysis

2.1 Problem description

For brevity, we just consider a plane piecewise parametric curve as the tool path:

~r(u) = (x(u), y(u)), 0 ≤ u ≤ 1,

where x(u), y(u) ∈ C2([0, 1]). Furthermore, we assume that each segment of the curve is
infinitely differentiable. For instance, a cubic B-spline curve satisfies the conditions. Also,
we only consider the bounds on the x and y jerk components. The extension to spatial paths
is relatively straightforward but more tedious. We denote the derivatives with respect to
time t and the parameter u by dots and primes, respectively:

u̇ = du/dt, x′ = dx/du.

Then, it is obvious that

u̇′ =
ü

u̇
, (1)

ü′ =
...
u

u̇
, (2)

and

u̇′′ = (
ü

u̇
)′ =

...
u

u̇2
− ü2

u̇3
. (3)

The jerks on the x and y axes are:
{

jx =
...
x = ((x′u̇)′u̇)′u̇ = x′′′u̇3 + 3x′′u̇2u̇′ + x′u̇(u̇′)2 + x′u̇2u̇′′,

jy =
...
y = ((y′u̇)′u̇)′u̇ = y′′′u̇3 + 3y′′u̇2u̇′ + y′u̇(u̇′)2 + y′u̇2u̇′′.

(4)

Substituting (1)(3) into (4), jx, jy can be expressed as
{

jx = x′′′u̇3 + 3x′′u̇ü + x′...u ,

jy = y′′′u̇3 + 3y′′u̇ü + y′...u .
(5)

192 K. Zhang et al

We call u̇, ü, and
...
u parametric velocity, parametric acceleration, and parametric jerk, respec-

tively. Then our feed-rate optimization problem becomes to plan the parametric velocity
u̇ ∈ C1([0, 1]), such that the machining time is minimal:

minT =
∫ 1

0

du

u̇
(6)

under the following constraints: {
|jx| ≤ Jx,

|jy| ≤ Jy,
(7)

{
u̇|u=0,1 = 0,

ü|u=0,1 = 0,
(8)

where Jx, Jy are positive constants, denoting maximal jerks of x, y axes, respectively.

2.2 Optimal solution is “Bang-Bang” control

In this section, we will prove that the solution to our optimal problem must be “Bang-Bang”
control, that is, at least one of the axes reaches its jerk bound throughout the motion. In
other words, jx = ±Jx or jy = ±Jy at every time. When there is an axis whose jerk reaches
its bound, it is called the control axis.

We prove the claim by contradiction (see Fig.1). Assume that the optimal parametric
velocity function is u̇, and there exists an interval [u1, u2] in [0, 1], such that neither jx nor
jy reaches its bound for u ∈ [u1, u2], i.e., the inequalities (7) are strict.

From (4), jx, jy can be expressed as functions in u, u̇, u̇′, u̇′′, denoted by f, g, respectively:
{

jx = f(u, u̇, u̇′, u̇′′) = x′′′u̇3 + 3x′′u̇2u̇′ + x′u̇(u̇′)2 + x′u̇2u̇′′,

jy = g(u, u̇, u̇′, u̇′′) = y′′′u̇3 + 3y′′u̇2u̇′ + y′u̇(u̇′)2 + y′u̇2u̇′′.

So, for every u ∈ [0, 1], f, g are polynomials in u̇, u̇′, u̇′′. Using (7), there exist positive
constants A1 and A2, such that

{
|f(u, u̇, u̇′, u̇′′)| ≤ A1 < Jx,

|g(u, u̇, u̇′, u̇′′)| ≤ A2 < Jy
(9)

is established for u ∈ [u1, u2].
For every positive ε, we construct

∆u̇ =

{
ε(1 + cos π(2u−u1−u2)

u2−u1
) u1 ≤ u ≤ u2;

0 otherwise.

It is easy to show that {
∆u̇|u1,u2 = 0,

(∆u̇)′|u1,u2 = 0,
(10)

Algorithm for Feed-rate Planning with Jerk Constraints 193

Fig. 1. optimal solution is “Bang-Bang” control

and 



0 ≤ ∆u̇ ≤ 2ε,

|∆u̇′| ≤ B1ε,

|∆u̇′′| ≤ B2ε,

(11)

where B1, B2 are positive constants.
Let u̇∗ = ∆u̇ + u̇, from (10) we know that u̇∗ ∈ C1([0, 1]). For every u ∈ [u1, u2], using

first-order Taylor expansion of f, g to u̇, u̇′, u̇′′, we obtain:

f(u, u̇∗, u̇∗
′
, u̇∗

′′
) = f(u, u̇, u̇′, u̇′′) + ∆u̇

∂f

∂u̇
(u, ξ(u), η(u), τ(u))

+ ∆u̇′
∂f

∂u̇′
(u, ξ(u), η(u), τ(u))

+ ∆u̇′′
∂f

∂u̇′′
(u, ξ(u), η(u), τ(u)),

(12)

where ξ(u) is between u̇ and u̇∗, η(u) is between u̇′ and u̇∗′ , and τ(u) is between u̇′′ and u̇∗′′ .
So ξ(u), η(u), τ(u) are bounded for u ∈ [u1, u2]. Because the partial derivatives of f in (12)
are all polynomials in u̇, u̇′, u̇′′, we have constants F1, F2, F3 such that ∀u ∈ [u1, u2]:





|∂f

∂u̇
(u, ξ(u), η(u), τ(u))| ≤ F1,

| ∂f

∂u̇′
(u, ξ(u), η(u), τ(u))| ≤ F2,

| ∂f

∂u̇′′
(u, ξ(u), η(u), τ(u))| ≤ F3.

(13)

Using (9) (11) (12) (13), we have:

|f(u, u̇∗, u̇∗
′
, u̇∗

′′
)| ≤ A1 + C1ε,

where C1 = 2F1 + B1F2 + B2F3. In a similar way, there exists a C2 such that:

|g(u, u̇∗, u̇∗
′
, u̇∗

′′
)| ≤ A2 + C2ε.

194 K. Zhang et al

We just need to choose

ε = min{(Jx −A1)/C1, (Jy −A2)/C2},

and then u̇∗ also satisfies the constraints (7) (8) and the continuity condition. But we have
u̇∗ ≥ u̇, and u̇∗ > u̇ for u ∈ (u1, u2), from (6) we know that u̇∗ is a better solution, which
contradicts the original claim of optimality of u̇. So the optimal solution of our problem is
“Bang-Bang” control.

3 Feed-rate planning algorithm

The key idea of our algorithm for feed-rate optimization along curved tool paths is: in the
u − u̇ − ü space, using the jerk constraints to deduce a kind of velocity limit surfaces, then
generating an integration trajectory with the maximal parametric jerk under the limit of
such kind of surfaces. Before the integration trajectory reaches these surfaces, we use the
minimal parametric jerk to generate an integration trajectory to keep the continuity of the
acceleration curve.

3.1 Parametric jerk constraints

Using (5) (7), we can rewrite the jerk limits to be constraints of the parametric jerk
...
u :

(a) When x′y′ 6= 0, (7) is equivalent to:
{

f1(u, u̇, ü) ≤ ...
u ≤ g1(u, u̇, ü),

f2(u, u̇, ü) ≤ ...
u ≤ g2(u, u̇, ü),

(14)

where

f1(u, u̇, ü) =
{

(−Jx − x′′′u̇3 − 3x′′u̇ü)/x′ x′ > 0;
(Jx − x′′′u̇3 − 3x′′u̇ü)/x′ x′ < 0.

g1(u, u̇, ü) =
{

(Jx − x′′′u̇3 − 3x′′u̇ü)/x′ x′ > 0;
(−Jx − x′′′u̇3 − 3x′′u̇ü)/x′ x′ < 0.

f2(u, u̇, ü) =
{

(−Jy − y′′′u̇3 − 3y′′u̇ü)/y′ y′ > 0;
(Jy − y′′′u̇3 − 3y′′u̇ü)/y′ y′ < 0.

g2(u, u̇, ü) =
{

(Jy − y′′′u̇3 − 3y′′u̇ü)/y′ y′ > 0;
(−Jy − y′′′u̇3 − 3y′′u̇ü)/y′ y′ < 0.

Let {
J−(u, u̇, ü) = max{f1, f2},
J+(u, u̇, ü) = min{g1, g2}.

(15)

Then constraints (14) become

J−(u, u̇, ü) ≤ ...
u ≤ J+(u, u̇, ü). (16)

It shows that in every point of the u− u̇− ü space,
...
u has upper and lower bounds: J+, J−.

Algorithm for Feed-rate Planning with Jerk Constraints 195

(b) When x′ = 0, (7) becomes:
{
−Jx ≤ x′′′u̇3 + 3x′′u̇ü ≤ Jx,

f2(u, u̇, ü) ≤ ...
u ≤ g2(u, u̇, ü).

(17)

The first equation of (17) indicates the range of (u̇, ü) on the u section where u satisfies x′ = 0.
The range is limited by two curves x′′′u̇3+3x′′u̇ü = −Jx and x′′′u̇3+3x′′u̇ü = Jx in the u−u̇−ü
space. We call these curves type one velocity switching curve (abbr. VSC1). The second
equation of (17) still shows the upper and lower bounds of

...
u , where now J+ = g2, J− = f2.

(c) When y′ = 0, the analysis to the following equations are similar:
{

f1(u, u̇, ü) ≤ ...
u ≤ g1(u, u̇, ü),

−Jy ≤ y′′′u̇3 + 3y′′u̇ü ≤ Jy.
(18)

The first equation of (18) shows the upper and lower bounds of
...
u , where J+ = g1, J− = f1.

The second equation of (18) indicates the range of (u̇, ü) on the u section where u satisfies
y′ = 0. It is limited by two curves y′′′u̇3 + 3y′′u̇ü = −Jy and y′′′u̇3 + 3y′′u̇ü = Jy in the
u− u̇− ü space. These curves are also VSC1.

3.2 Integration trajectory and control axis switching surface

Since we have proven that the solution to our optimal problem uses“Bang-Bang” control,
it is necessary to deduce the parametric velocity function u̇ when any axis reaches its jerk
bound. Using (1), it is easy to show that once the parametric velocity function u̇ in u is
known, the parametric acceleration function ü in u is determined. Then the two functions u̇
and ü in u determine a curve in the u− u̇− ü space. We call the curve integration trajectory.
This subsection will discuss 1) how to compute the parametric velocity function when any
axis reaches its jerk bound and 2) how to choose control axis and switch axis.

Firstly, we deal with the solutions of parametric velocity function u̇. For example, if
the x-axis reaches its jerk bound Jx, we need to solve the following second-order differential
equation:

((x′u̇)′u̇)′u̇ = Jx. (19)

Let f = x′u̇. The differential equation becomes

d

dx
(
df

dx
f)f = Jx.

Let g = df
dx . Then we have

g2f + gf2 dg

df
= Jx.

Let h = g2. The equation above becomes

dh

df
=

2Jx

f2
− 2h

f
.

196 K. Zhang et al

Solving the differential equation, we obtain

h =
2Jx

f
− C1

f2
, (20)

where C1 is an integration constant. The above equation can be rewritten as

df

dx
= ±

√
2Jxf − C1

f
.

We solve it to obtain

x− C2 = ±
∫

fdf√
2Jxf − C1

= ±(C1

√
2Jxf − C1 +

1
3

√
2Jxf − C1

3
)/2J2

x , (21)

where C2 is an integration constant. We solve the equation above to obtain

u̇ =
1

2Jxx′
[ω(U +

√
U2 + C3

1)
2
3 + ω2(U −

√
U2 + C3

1)
2
3 − C1], (22)

where U = 3J2
x(x− C2), ω3 = 1.

Now we deduce the expressions of these integration constants C1, C2 in u, u̇, ü for our
later algorithm. We have

h = (
df

dx
)2 = (

x′′u̇2 + x′ü
x′u̇

)2.

Substituting it into (20), we get

C1 = 2Jxf − hf2 = 2Jxx′u̇− (x′′u̇2 + x′ü)2. (23)

Use (21) (23) to obtain

C2 = x± ((x′′u̇2 + x′ü)3 − 3Jxx′u̇(x′′u̇2 + x′ü))/3J2
x . (24)

Then from (23) (24), the integration constants C1, C2 are determined by specifying a known
point on the integration trajectory in the u− u̇− ü space.

If y-axis reaches its jerk bound Jy, we solve the parametric velocity function in the same
way to get

u̇ =
1

2Jyy′
[ω(U +

√
U2 + C3

1)
2
3 + ω2(U −

√
U2 + C3

1)
2
3 − C1], (25)

where U = 3J2
y (y − C2), ω3 = 1. We also have

C1 = 2Jyy
′u̇− (y′′u̇2 + y′ü)2, (26)

C2 = y ± ((y′′u̇2 + y′ü)3 − 3Jyy
′u̇(y′′u̇2 + y′ü))/3J2

y . (27)

Algorithm for Feed-rate Planning with Jerk Constraints 197

In (22) or (25), if U2 +C3
1 is negative in some interval of u, the expression of u̇ should be

converted, for the convenience of our computation. Taking (25) for example, we substitute
ω by e

2
3
ikπ (k = 0, 1, 2) to obtain

u̇ =
−C1

2Jyy′
[e

2
3
ikπ(

U

(−C1)3/2
+ i

√
1− U2

(−C1)3
)2/3 + e−

2
3
ikπ(

U

(−C1)3/2
− i

√
1− U2

(−C1)3
)2/3 + 1]

=
−C1

2Jyy′
[e

2
3
ikπe

2
3
i arccos U

(−C1)3/2 + e−
2
3
ikπe

− 2
3
i arccos U

(−C1)3/2 + 1]

=
−C1

2Jyy′
[2 cos

2
3
(arccos

U

(−C1)3/2
+ kπ) + 1].

If x (or y)-axis reaches its jerk bound −Jx (or −Jy), we just need to replace Jx (or Jy)
by −Jx (or −Jy) in the solutions above.

Now we turn to deal with how to decide the control axis. There are two problems:
determining control axis at the starting point and axis switching during the motion.

If we integrate
...
u = J+(u, u̇, ü) forward from (0, 0, 0) in the u− u̇− ü space as the current

integration trajectory, it is easy to determine the control axis from (u, u̇, ü) = (0, 0, 0) and
the three cases (a),(b),(c) in section 3.1. For example, when x′(0) > 0, y′(0) > 0, x-axis is
the control axis if and only if g1(0, 0, 0) = Jx/x′ < g2(0, 0, 0) = Jy/y′.

From (15), when we integrate
...
u = J+(u, u̇, ü), the expression of the parametric velocity

may change if the values of g1, g2 vary. It means that the control axis should be switched.
So we call g1 = g2 the control axis switching surface (abbr. CASS). For example, if the
integration trajectory passes through a CASS from the region g1 < g2 to the region g1 > g2,
the control axis should be switched from x to y, and vice versa.

The situation is similar when integrating
...
u = J−(u, u̇, ü), and the CASS is then f1 = f2.

When the integration trajectory passes through the CASS from the region f1 > f2 to the
region f1 < f2, the control axis should be switched from x to y, and vice versa. We will
not mention about how to deal with the CASS when integrating

...
u = J+(u, u̇, ü) or

...
u =

J−(u, u̇, ü) in our later algorithm.

3.3 Velocity limit surface and velocity switching curve

Let J−(u, u̇, ü) and J+(u, u̇, ü) be the expressions defined in (15). We call J−(u, u̇, ü) =
J+(u, u̇, ü) the velocity limit surface (abbr. VLS), which is an algebraic surface in the fol-
lowing region of the u− u̇− ü space:

D = {(u, u̇, ü)|0 ≤ u ≤ 1, u̇ ≥ 0}.

Obviously, the integration trajectories cannot go beyond the VLS, that is, we can only plan
the integration trajectories in the region where J−(u, u̇, ü) ≤ J+(u, u̇, ü) is valid. Intuitively,
this region is just a part of D divided by the VLS, which contains (0, 0, 0), (1, 0, 0) (see Fig.2).

From f1 < g1, f2 < g2, and (14) (15), we know that the VLS has two components:

f1(u, u̇, ü) = g2(u, u̇, ü),

198 K. Zhang et al

Fig. 2. VLS and three kinds of VSC

f2(u, u̇, ü) = g1(u, u̇, ü),

and these two components do not intersect. Assuming the contrary, we list the simultaneous
equations (consider the situation of x′ > 0, y′ > 0):

{
(−Jx − x′′′u̇3 − 3x′′u̇ü)/x′ = (Jy − y′′′u̇3 − 3y′′u̇ü)/y′,

(−Jy − y′′′u̇3 − 3y′′u̇ü)/y′ = (Jx − x′′′u̇3 − 3x′′u̇ü)/x′.

Add the equations above together to obtain

−Jx/x′ − Jy/y′ = Jx/x′ + Jy/y′,

which is obviously not true.
It is easy to show that the VSC1 introduced in section 3.1 is also divided into two parts

on the VLS (see Fig.2). Besides VSC1, there are two kinds of velocity switching curves VSC2

and VSC3.
Since we assume the tool path to be a piecewise C2 curve, there may exist discontinuities

for x′′′ or y′′′. From (14) (15), they will cause discontinuities of the VLS along certain curves,
which are called VSC2. Because we assume that each segment of the piecewise parametric
curve is infinitely differentiable, the discontinuities for x′′′ or y′′′ can only occur in the nodes
or connection points of the piecewise parametric curve.

Besides, we call the set of points (in fact, curves) where the integration trajectories are
tangent to the VLS to be VSC3. For i = 1, j = 2 or i = 2, j = 1, the integration trajectories
which are tangent to fi = gj are just the solutions of

...
u = fi or

...
u = gj . Differentiating

fi − gj = 0 with respect to u, and using (1) (2), we obtain:

∂

∂u
(fi − gj) +

ü

u̇

∂

∂u̇
(fi − gj) +

...
u

u̇

∂

∂ü
(fi − gj) = 0.

Substituting
...
u = fi into the equation above, we have:

u̇
∂

∂u
(fi − gj) + ü

∂

∂u̇
(fi − gj) + fi

∂

∂ü
(fi − gj) = 0. (28)

The intersection of (28) and the VLS: fi = gj is the VSC3.

Algorithm for Feed-rate Planning with Jerk Constraints 199

Fig. 3. CASS and integration trajectory of u̇f

3.4 Feed-rate planning algorithm

Our feed-rate planning algorithm is designed under a “greedy rule”: using the maximal
parametric jerk

...
u as much as possible, that is, we use the minimal parametric jerk only

when it has to decelerate. The optimal feed-rate planning problem with acceleration bounds
[1, 2, 3, 4] uses a similar rule, but the difference is that we cannot prove our “greedy rule”
generates a globally optimal solution for our problem. We will discuss about this in the
conclusion.

Firstly, we give the framework of our feed-rate planning algorithm. The specific compu-
tational methods in the algorithm will be given later.

Algorithm. Feed-rate planning with jerk constraints.
Input: ~r(u) = (x(u), y(u)), 0 ≤ u ≤ 1; Jx, Jy.
Output: The integration trajectory for u ∈ [0, 1].
step0: Let S = (0, 0, 0).
step1: Generate a J+ trajectory by integrating

...
u = J+(u, u̇, ü) forward from S, until

the J+ integration trajectory (if it passes through the CASS first, then change the control
axis as previously mentioned) intersects the VLS. Denote the parametric velocity function of
the J+ trajectory obtained by u̇1; if it does not intersect the VLS before u = 1, then we have
obtained an integration trajectory for u ∈ [0, 1]. Denote its parametric velocity function by
u̇f , and go to step4.

step2: Generate a J− trajectory by integrating
...
u = J−(u, u̇, ü) backward from each

point on the VSC. If the J− trajectory starting from point Q on a VSC intersects the J+

trajectory u̇1 obtained in step1 at point P , then update the integration trajectory between
P and Q to be the J− trajectory from P to Q (see Fig.3).

step3: Let S = Q, iterate the process of steps 1-3 until u = 1. Denote the parametric
velocity function of the whole forward integration trajectory by u̇f .

step4: Generate a backward integration trajectory starting from (1, 0, 0) in a similar

200 K. Zhang et al

way as step1-step3 until u = 0. Denote the parametric velocity function of the backward
integration trajectory by u̇b.

step5: Connect the two integration trajectories of u̇f and u̇b by J− trajectories. We
obtain a complete integration trajectory for u ∈ [0, 1].

Remark. The “greedy” rule is used in step 2. In step 1, the J+ integration trajectory
u̇1 meets the VLS at a point. If we continue to use the same jerk, u̇1 will pass through the
VLS and violate the jerk limits. In other words, we must decelerate before this happens.
According to the definition, the integration trajectory can meet the VSC at a point in a
VSC. That is why we generate a J− integration trajectory starting from a point in the next
VSC and try to use this trajectory as the decelerate part of the whole trajectory. In other
words, we use the maximal parametric jerk to accelerate as long as possible and then use
the minimal parametric jerk to decelerate so that the jerk limits (VLS) are not violated.

Concrete computational methods of step2 and step5 in our algorithm are given below.
We will treat step5 first.

For step5, because the control axes of the forward and backward integration trajectories
may have been switched for several times, u̇f and u̇b are both piecewise-analytic functions (see
Fig.3). We need to traverse and choose each analytic segment of the forward and backward
integration trajectories respectively, and to connect these two segments by a J− trajectory
if there exists such a solution (if we connect them by a J+ trajectory, the two segments
which are connected can only be J− trajectories, this will violate our “greedy rule”). After
choosing one segment in u̇f and u̇b respectively, there are two cases:

1) The J− trajectory for connection does not pass through CASS. Assume the J− trajec-
tory starts from point (u1, u̇f (u1), üf (u1)) on the forward trajectory to point (u2, u̇b(u2), üb(u2))
on the backward trajectory in the u−u̇−ü space. From (23) (24) or (26) (27), the integration
constants of the J− trajectory can be expressed as C1(u, u̇, ü), C2(u, u̇, ü). We need to solve
the following algebraic equation system

{
C1(u1, u̇f (u1), üf (u1)) = C1(u2, u̇b(u2), üb(u2)),
C2(u1, u̇f (u1), üf (u1)) = C2(u2, u̇b(u2), üb(u2))

(29)

to obtain u1, u2. Then the integration constants of the J− connection trajectory are C1(ū1,
u̇f (ū1), üf (ū1)), C2(ū1, u̇f (ū1), üf (ū1)), where ū1 is a solution of equation (29). Then we
obtain the J− trajectory for the connection in step5.

2) The J− trajectory for connection passes through an CASS. Now the expressions of
the J− trajectory and its integration constants are different in the two sides of the CASS.
Suppose the left side is controlled by jx = −Jx and the right side is controlled by jy = −Jy.
Denote the integration constants of the jx = −Jx trajectory by Cx

1 , Cx
2 and the integration

constants of jy = −Jy trajectory by Cy
1 , Cy

2 . Assume the J− trajectory for connection passes
through the CASS at the point (uc, u̇c, üc), and it starts from the point (ul, u̇f (ul), üf (ul))
on the forward trajectory to the point (ur, u̇b(ur), üb(ur)) on the backward trajectory. Then,

Algorithm for Feed-rate Planning with Jerk Constraints 201

we need to solve the following algebraic equation system




f1(uc, u̇c, üc) = f2(uc, u̇c, üc),
Cx

1 (ul, u̇f (ul), üf (ul)) = Cx
1 (uc, u̇c, üc),

Cx
2 (ul, u̇f (ul), üf (ul)) = Cx

2 (uc, u̇c, üc),
Cy

1 (ur, u̇b(ur), üb(ur)) = Cy
1 (uc, u̇c, üc),

Cy
2 (ur, u̇b(ur), üb(ur)) = Cy

2 (uc, u̇c, üc)

(30)

to obtain ul, uc, ur, u̇c, üc and the two sets of integration constants of the J− trajectory for
the connection: Cx

1 (uc, u̇c, üc), Cx
2 (uc, u̇c, üc) and Cy

1 (uc, u̇c, üc), C
y
2 (uc, u̇c, üc). It is similar

to deal with the case when the J− trajectory passes through the CASS more than once.
In general, the solutions of the above equation systems are finite. We just need to compare

these solutions to get an optimal one according to the machining time in (6).
For step2, there are two cases:
1) Point Q is on a VSC1 or a VSC2. If u = u0 at Q, we assume the coordinate of Q

is (u, u̇, ü) = (u0, b, c) and denote the expression of VSC1 or VSC2 on the u0 section by
h1(u̇, ü) = 0 as previously mentioned. Assume u = a at P . Then the coordinate of P is
(a, u̇1(a), ü1(a)). The integration constants of the J− trajectory are C1(u, u̇, ü), C2(u, u̇, ü)
as above. We just need to solve the following algebraic equation system





C1(u0, b, c) = C1(a, u̇1(a), ü1(a)),
C2(u0, b, c) = C2(a, u̇1(a), ü1(a)),

h1(b, c) = 0
(31)

to obtain a, b, c. If the equation system has more than one solutions or there are more VSCs,
we should choose the solution with maximal parametric a according to our “greedy rule” .
We deal with equation systems occurring later in the same way. The integration constants
of the J− trajectory can be computed by C1(u0, b, c), C2(u0, b, c). Then we obtain the J−
trajectory in step2.

2) Point Q is on a VSC3. Assume the coordinate of Q to be (d0, b0, c0). From (28),
denote the VSC3 by {(u, u̇, ü)|h2(u, u̇, ü) = 0, h3(u, u̇, ü) = 0}. Assume u = a0 at P . Then
the coordinate of P is (a0, u̇1(a0), ü1(a0)). The integration constants of the J− trajectory can
also be expressed as C1(u, u̇, ü) and C2(u, u̇, ü). We just need to solve the following algebraic
equation system 




C1(d0, b0, c0) = C1(a0, u̇1(a0), ü1(a0)),
C2(d0, b0, c0) = C2(a0, u̇1(a0), ü1(a0)),
h2(d0, b0, c0) = 0,

h3(d0, b0, c0) = 0

(32)

to obtain a0, d0, b0, c0. The integration constants of the J− trajectory are C1(d0, b0, c0) and
C2(d0, b0, c0). If the J− trajectory passes through a CASS between P and Q, we use the
method mentioned above for case 2) of step5 to deal with this situation.

So far, we have obtained a complete integration trajectory, its parametric velocity func-
tion satisfies (7) (8) and our “greedy rule”.

With the algorithm, we obviously obtain a unique and optimal feed-rate planning along
specific tool paths with jerk constraints on each axis under the “greedy rule”.

202 K. Zhang et al

1.0
0.75

0.5-2
0.0

du/dt

-1

uuu

0.25

0

u

1

0.5
0.25

2

0.75 1.0
0.0

1.0
0.75

0.5-2
0.0

du/dt

-1

uuu

0.25

0

u

1

0.5
0.25

2

0.75 1.0
0.0

1.0
0.75

0.5-2
0.0

du/dt

-1

uuu

0.25

0

1

u

0.5
0.25

2

0.75 1.0
0.0

(a) VLS (b) CASS (c) CASS

Fig. 4. VLS and CASS

1.0
0.75

0.5-2
0.0

uu

-1

uuu

0.25

0

1

u

0.5
0.25

2

0.75 1.0
0.0

1.0
0.75

0.5 uu
0.25

0.0
-2

0.25

u

0.5

-1

0.75 1.0

uuu 0

0.0

1

2

1.0
0.75

0.5 uu
0.25

0.0
-2

0.25

u

0.5

-1

0.75 1.0

uuu

0.0

0

1

2

(a) (b) (c)

Fig. 5. Forward integration trajectory: (a); backward integration trajectory: (b) and (c)

4 An example

We use the following example to illustrate our algorithm:

~r(u) = (u, u2), 0 ≤ u ≤ 1,

Jx = Jy = 1.

The algorithm has the following steps:
1) Firstly, compute the VLS and the CASS :

Fig.4(a): VLS J−(u, u̇, ü) = J+(u, u̇, ü);
Fig.4(b): CASS of maximal parametric jerk g1(u, u̇, ü) = g2(u, u̇, ü);
Fig.4(c): CASS of minimal parametric jerk f1(u, u̇, ü) = f2(u, u̇, ü).

Then, compute the three kinds of VSC :
VSC1: {(0, u̇, ü) | 1− 6u̇ü = 0} and {(0, u̇, ü) | 1 + 6u̇ü = 0};
VSC3: {(u, u̇, ü) | 1−6u̇ü+2u = 0, 4u̇−3ü2 = 0} and {(u, u̇, ü) | 1+6u̇ü+2u = 0, 4u̇+3ü2 =
0};
VSC2 dose not exist here.

2) Generate a J+ trajectory forward from (0, 0, 0). The trajectory is controlled by jx = Jx

in the beginning, then intersects the CASS g1 = g2 at u = 0.05 and switches to the control
of jy = Jy. It will not intersect the VLS or the CASS before reaching u = 1 (Fig.5(a)). We

Algorithm for Feed-rate Planning with Jerk Constraints 203

1.0
0.75
0.5 uu

0.25

0.0

-2

0.25

u

-1

0.5

uuu 0

0.75 1.0

1

0.0

2

Fig. 6. Connect the forward and backward trajectories

obtain the parametric velocity function of the forward integration trajectory (Fig.5(a)):

u̇f =





1
2(6u)

2
3 , 0 ≤ u ≤ 0.05;

1
4u((

√
9u4 − 0.5625 · 10−2u2 + 0.5625 · 10−5 + 3u2 − 0.9375 · 10−3)

2
3

+(
√

9u4 − 0.5625 · 10−2u2 + 0.5625 · 10−5 − 3u2 + 0.9375 · 10−3)
2
3

−0.0168), 0.05 ≤ u ≤ 1.

3) Generate a J+ trajectory backward from (1, 0, 0). The trajectory u̇b is controlled by
jy = Jy in the beginning. It intersects the the CASS g1 = g2 at u = 0.9253, then switches to
the control of jx = Jx. Then it intersects the VLS at u = 0.8104 (Fig.5(b)). Now, we need
to execute step2 of the algorithm by solving the equation system (31). The only solution is
a jy = −Jy trajectory from the point (u, u̇, ü) = (0, 0.7528,−0.2214) on the VSC1 at u = 0
to the point (0.9561, 0.1679,−0.4486) on trajectory u̇b (Fig.5(c)). Then we obtain the the
backward integration trajectory:

u̇b =
{

1
4u(6(1− u2))

2
3 , 0.9561 ≤ u ≤ 1;

0.3211
u (2 sin(2

3 arccos(2.0607u2 − 1) + 1
6π)− 1), 0 ≤ u ≤ 0.9561.

4) Connect the integration trajectories of u̇f and u̇b by J− trajectories. Solving the
previous equation system (30), the only solution is that the J− trajectory connects the
integration trajectories of the second segment of u̇f and the first segment of u̇b, and it
intersects the CASS at u = 0.4336 (see Fig.6). It is controlled by jx = −Jx for u ∈
[0.1893, 0.4336] and by jy = −Jy for u ∈ [0.4336, 0.9580]. Then the parametric velocity
function of the complete integration trajectory is (see Fig.7(a)):

u̇ =





1
2(6u)

2
3 , 0 ≤ u ≤ 0.05;

1
4u((

√
9u4 − 0.5625 · 10−2u2 + 0.5625 · 10−5 + 3u2 − 0.9375 · 10−3)

2
3

+(
√

9u4 − 0.5625 · 10−2u2 + 0.5625 · 10−5 − 3u2 + 0.9375 · 10−3)
2
3

−0.0168), 0.05 ≤ u ≤ 0.1893;
0.5440(2 sin(2

3 arccos(2.6437u− 1.0877) + 1
6π)− 1), 0.1893 ≤ u ≤ 0.4336;

0.3124
u (2 sin(2

3 arccos(2.1476u2 − 1.0869) + 1
6π)− 1), 0.4336 ≤ u ≤ 0.9580;

1
4u(6(1− u2))

2
3 , 0.9580 ≤ u ≤ 1.

204 K. Zhang et al

u
0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

0.3

0.4

0.5

u
0.2 0.4 0.6 0.8 1.0

K0.4

K0.2

0

0.2

0.4

0.6

u
0.2 0.4 0.6 0.8 1.0

K1.0

K0.5

0

0.5

1.0

(a) u̇ (b) ü (c) Solid: jx; Dotted: jy

Fig. 7. parametric velocity, parametric acceleration and x, y jerks in u

From Fig.7(b), the acceleration is continuous and from Fig.7(c), the jerk control is “Bang-
Bang”. The five segments of the integration trajectory are respectively controlled by Jx, Jy,
−Jx, −Jy, and Jy in the u+ direction.

5 Conclusion

Our algorithm in this paper is based on the idea of “greedy rule”, that is, to use maximal
parametric jerk as much as possible. Under the “greedy rule”, we plan the feed-rate with a
“Bang-Bang” control strategy and give an optimal jerk confined solution.

It is a significant open problem that how to prove the algorithm is globally optimal (or
not) without the “greedy rule”. The main difficulty is that, for second-order differential
equations, we have no results similar to the “comparison theorem” for first-order differential
equations (p.25, [7]).

Besides, in CNC real-time interpolator after the feed-rate planning, we need to compute
a “reference point” indicating the commanded machine position. If uk is the reference point
parameter value at time k∆t, the equation that determines this value is:

k∆t =
∫ uk

0

du

u̇
.

From (19), it admits closed-form integration in our algorithm. This helps to enhance CNC
machining accuracy.

References

[1] J.E. Bobrow, S. Dubowsky, J.S. Gibson. Time-optimal control of robotic manipulators
along specified paths. Int J Robotics Res, 4(3), 3-17, 1985.

[2] Z. Shiller, H.H. Lu. Robust computation of path constrained time optimal motions.
IEEE Inter. Conf. on Robotics and Automation, Cincinnati, OH, 144-149, 1990.

[3] S.D. Timar, R.T. Farouki, T.S. Smith, C.L. Boyadjieff. Algorithms for time-optimal
control of CNC machines along curved tool paths. Robotics and Computer-Integrated
Manufacturing, 21, 37-53, 2005.

Algorithm for Feed-rate Planning with Jerk Constraints 205

[4] S.D. Timar, R.T. Farouki. Time-optimal traversal of curved paths by Cartesian CNC
machines under both constant and speed-dependent axis acceleration bounds. Robotics
and Computer-Integrated Manufacturing, 23(2), 563-579, 2007.

[5] C.M. Yuan, X.S. Gao. Time-optimal interpolation of CNC machines along parametric
path with chord error and tangential acceleration bounds. MM-preprints, 29, 165-188,
2010.

[6] J. Dong, J.A. Stori. A generalized time-optimal bi-directional scan algorithm for con-
strained feedrate optimization. ASME Journal of Dynamic Systems, Measurement, and
Control, 128, 379-390, 2006.

[7] G. Birkhoff, G.C. Rota. Ordinary differential equations. John Wiley, New York, 1969.

[8] K. Erkorkmaz, Y. Altintas. High speed CNC system design Part I: jerk limited trajectory
generation and quintic spline interpolation. International Journal of Machine Tools and
Manufacture, 41, 1323-1345, 2001.

[9] S. Macfarlane, E.A. Croft. Jerk-bounded manipulator trajectory planning: design for
real-time applications. IEEE Transactions on Robotics and Automation. 19, 42-52, 2003.

[10] S.H. Nam, M.Y. Yang. A study on a generalized parametric interpolator with real-time
jerklimited acceleration. Computer-Aided Design, 36, 27-36, 2004.

[11] M.T. Lin, M.S. Tsai, H.T. Yau. Development of a dynamics-based NURBS interpola-
tor with real-time look-ahead algorithm. International Journal of Machine Tools and
Manufacture, 47(15), 2246-2262, 2007.

[12] M.M. Emami, B. Arezoo. A look-ahead command generator with control over trajectory
and chord error for NURBS curve with unknown arc length. Computer-Aided Design,
42, 625-632, 2010.

[13] J.Y. Lai, K.Y. Lin, S.J. Tseng, W.D. Ueng. On the development of a parametric in-
terpolator with confined chord error, feedrate, acceleration and jerk Int J Adv Manuf
Technol, 37(1-2), 104-121,2008

[14] J. Dong, P.M. Ferreiraa, J.A. Stori. Feed-rate optimization with jerk constraints for gen-
erating minimum-time trajectories. International Journal of Machine Tools and Manu-
facture, 47, 1941-1955, 2007.

