
Time Optimal Feedrate Generation with Confined Tracking Error

based on Linear Programming ∗

Jian-Xin Guo, Qiang Zhang, Xiao-Shan Gao, Hongbo Li
KLMM, Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100190, China

December 28, 2012

Abstract

In this paper, the problem of time optimal feedrate generation under confined feedrate,
axis accelerations, and axis tracking errors is considered. The main contribution is to reduce
the tracking error constraint to constraints about the axis velocities and accelerations, when
the tracking error satisfies a second order linear ordinary differential equation. Based on this
simplification on the tracking error, the original feedrate generation problem is reduced to
a new form which can be efficiently solved with linear programming algorithms. Simulation
results are used to validate the methods.
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1 Introduction

In high speed and high precision CNC machining, it is desired to fully use the capabilities of
the CNC machines and at the same time to keep the machining accuracy within a given bound.
Therefore, the feedrate generation process is usually formulated as a time minimum planning
problem under kinematic constraints such as velocity, acceleration, jerk, and jounce bounds and
machining precision constraints such as chord error, tracking error, and contouring error bounds.

Optimal feedrate generation under kinematic constraints was widely studied and efficient
algorithms were designed in the cases of confined acceleration (see for instance [1, 2, 3, 4]),
confined jerk [5, 6, 7, 8, 9, 10, 11], and confined jounce [12]. After the sampling period of
the CNC machine is given, the chord error constraint can be approximately converted into a
constraint about the velocity [4, 7]. On the other hand, the tracking error and contouring error
are quite different from the above constraints in that they depend on the dynamic parameters
of the motor and the controllers used in the CNC machines and hence are more difficult to deal
with.

The common method to reduce tracking and contouring errors is to use a closed-loop con-
troller which calculates the difference between the desired signal and the feedback signal in
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real-time and generates a control signal to minimize the dynamic error. Lots of algorithms
along this line were developed. Koren proposed the cross-coupled control strategy [13] to di-
rectly minimize the contour error. This method is widely adopted in the study of CNC error
control. Visioli [14] proposed a tuning method for PID controllers to address the set-point follow-
ing and the load disturbance rejection problem. Chuang et al [15] proposed a model-referenced
adaptive control strategy combined with cross-coupled control of axial motion to improve con-
touring performance. Kulkarni et al [16] used optimal control methods to design a cross-coupled
compensator aimed specifically at improving contouring accuracy in multi-axial feed drive. Since
these methods are closed-loop and real-time, in order to use them, the users need to access to
the control system. This demands more to the end-users.

An alternative approach is to consider the dynamic constraints in the velocity planning phase,
which allows for performance improvements of existing industrial systems without modifying
the controllers. Dong and Stori [17, 18] considered the dynamic information in the velocity
planning phase by approximating the tracking error constraint with the linear part of the Taylor
expansion, which is a linear combination of the velocity and the acceleration. Based on these
new constraints, a time minimum feedrate profile is generated. Ernesto and Farouki [19] solved
the problem of compensating for inertia and damping of the machine axes by a priori modifying
the commanded tool path for CNC machines governed by typical feedback controllers so that
the generated tool path is the desired one. The critical point approach was used in both [21]
and [22] to compute feedrate with confined jerk and contour error. In [21], Lin et al used the
contour error to determine the maximal feedrates at the critical points of the tool-path and use
a jerk confined profile to determine the feedrate between two critical points. In [22], Tsai et al
used the chord error to determine the maximal feedrates at the critical points and to reduce the
contour error by reducing the maximal feedrates at the critical points when the countering error
exceeds the limit.

In this paper, we consider the time minimum feedrate planning problem under confined
feedrate, axis acceleration, and axis tracking error. The main contribution of the paper is to
reduce the tracking error constraint to new forms which can be efficiently solved with linear
programming algorithms. When the PD controller is used, the tracking error satisfies a second
order linear ordinary differential equation. In this case, we prove that if a linear combination
of the velocity and acceleration is bounded by E, then the tracking error is also bounded by E.
As a consequence, the tracking error constraint is reduced rigorously to a constraint about the
velocity and acceleration. The tracking error constraint is further relaxed so that the optimal
feedrate generation problem can be discretized into a linear programming problem, which has
a unique global optimal solution. Simulation results are used to show that the method can be
used to solve large scale problems efficiently. We remark that when the tracking error is small
enough, the contour error is also small enough. The main reason to constrain the tracking error
is that the corresponding model is simple and can be solved efficiently.

Comparing to the work [17], our relaxation of the tracking error is theoretically guaranteed,
while the one given in [17] is an approximation. Also, our approach reduces the optimal feedrate
generation problem to a linear programming problem which can be solved with an algorithm of
polynomial time computational complexity. The method proposed in [17], although more general
than ours, is less efficient. Comparing to [21] and [22], our approach generates a time minimum
feedrate, while the feedrate generated with methods in [21] and [22] is not time minimum.

The paper is organized as follows. In Section 2, the basic CNC controller dynamic model
is described. In Section 3, simplifications for the tracking error constraints are presented. In
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Figure 1: The Motor

Section 4, the optimal feedrate generation problem is reduced to a linear programming problem.
In Section 5, simulation results via Matlab/Simulation are presented. In Section 6, concluding
remarks are given.

2 Machine dynamics

In this section, we will introduce the structure of the motor and controller used in this paper.

2.1 Actuator model

In this paper, a 3-axis CNC machine is considered. The three translational axes are assumed to
be decoupled and their mechanism parameters are the same for brevity. Here, we mainly discuss
the dynamics of the x-axis, and similar principles apply to the y-axis and z-axis.

The control system is composed of two main parts. The first part is the actuator which
is generally a permanent magnet synchronous motor. The second part is the controller to
be discussed in the next section. Here we consider the universal form of permanent magnet
synchronous motor shown in Fig. 1

The motor works as follows. The current amplifier ka converts the actuating signal u into
current i to control the motor, which produces a torque T through the motor torque gain kt.
The torque T determines the angular speed through the system inertia J and damping B. The
motor shaft angle θ, obtained by integration of w, determines the axis linear position x through
the transmission ratio rg. For brevity, set K = kaktrg since these three parameters often occur
in the form of this product.

2.2 PD controller model

The PID controller is widely used CNC systems, where the parameters are respectively the
proportional coefficient kp, integral coefficient ki, and derivative gain kd. In this paper, we will
use the PD controller to simplify the presentation. The illustration is shown in Fig.2, where
e = X − x is the tracking error which is the difference of the commanded axis location X and
the actual axis location x.
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Figure 2: The PD Controller

2.3 Relationship between tracking error and input signal

The transfer function of the output x and the input X in the Laplace domain can be written as
[19]

x

X
=

K(kds + kp)
Js2 + (B + Kkd)s + Kkp

.

Thus, the relationship between the tracking error ex and the input signal X is

ex

X
=

Js2 + Bs

Js2 + (B + Kkd)s + Kkp
.

In the time domain, when the initial values for ex and its derivative are zero, the above
equation can be written as:

Jëx + (B + Kkd)ėx + Kkpex = Jax + Bvx.

or
J

Kkp
ëx +

(B + Kkd)
Kkp

ėx + ex =
J

Kkp
ax +

B

Kkp
vx (1)

where ėx = dex
dt , vx = dX

dt , and ax = dvx
dt are the tracking error, velocity, and acceleration of the

x-axis respectively. We assume that ex(t) is defined in [0,∞) and e(0) = ė(0) = 0.

3 Simplifications of the tracking error constraint

In this section, we will show that the confined tracking error constraint can be replaced by
a constraint about the velocity and acceleration. The new constraints will lead to optimiza-
tion problems which are easier to solve. For this purpose, we need a lemma about differential
equations, which will be presented in the next section.

3.1 A key lemma

For a function y(t), the following key lemma reduces a bound of a linear combination of y(t),
ẏ(t), and ÿ(t) to a bound for y(t) itself.
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Lemma 3.1 Let y(t) be a differentiable function in the time domain t ∈ [0,∞) such that y(0) =
ẏ(0) = 0, and a, b positive real numbers satisfying b2 − 4a ≥ 0. Then |aÿ + bẏ + y| ≤ E implies
|y| ≤ E.

To prove the above result, we need the following lemma.

Lemma 3.2 Let y(t) be a differentiable function in the time domain t ∈ [0,∞) such that y(0) =
0, and M and r positive real numbers. If y satisfies |rẏ + y| ≤ M , then |y| ≤ M . establishes.

Proof. Consider rẏ + y ≤ M , namely, rẏ + y −M ≤ 0, and define

ỹ = y −M.

Then ˙̃y = ẏ, so the inequation rẏ + y ≤ M is equivalent to r ˙̃y + ỹ ≤ 0, or ˙̃y + ỹ
r ≤ 0. Thus we

have
e

t
r ( ˙̃y +

ỹ

r
) ≤ 0,

or
(e

t
r ỹ)

′ ≤ 0,

which means that e
t
r ỹ is a monotonously decreasing function in [0,∞). Therefore, e

t
r ỹ ≤ e

t0
r ỹ(t0)

for t ≥ t0. Since ỹ = y −M , we have

e
t
r (y −M) ≤ e

t0
r (y(t0)−M),

or

y ≤ e
t0
r (y(t0)−M)

e
t
r

+ M.

Setting t0 = 0 and y(0) = 0, we have y(t) ≤ M(1 − 1

e
t
r
). Likewise, if r(−ẏ) + (−y) ≤ M , then

−y ≤ M(1− 1

e
t
r
). As a consequence, |y| ≤ M(1− 1

e
t
r
) ≤ M.

Now, we can prove Lemma 3.1.

Proof of Lemma 3.1. Since a > 0, b > 0, and b2 − 4a ≥ 0, the two roots of the quadratic
equation p2 − bp + a = 0 in p are both positive and we use p to denote one of the roots. Let
ỹ = (b− p)ẏ + y and note p2 − bp + a = 0 ⇔ a

b−p = p. We have

aÿ + bẏ + y = (aÿ + pẏ) + ((b− p)ẏ + y) = p ˙̃y + ỹ.

By Lemma 3.2, from |aÿ+bẏ+y| = |p ˙̃y+ỹ| < E and p > 0, we have |ỹ| < E. Since b−p = a/p > 0
and |ỹ| = |(b− p)ẏ + y| < E, by Lemma 3.2 again, we have |y| ≤ E.

3.2 Simplification of the tracking error constraint

Let the tracking error constraint be

|eτ (t)| ≤ Eτ (2)

where eτ and Eτ are the tracking error and tracking error bound for the axis τ ∈ {x, y, z}.
Furthermore, eτ satisfies equation (1).
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The tracking error constraint in (2) will lead to difficulties when using numerical methods
to solve the optimization feedrate generation problem, since it generally will be reduced to
complicated nonlinear constraints. As a direct consequence of Lemma 3.1, we have the following
theorem which establishes a sufficient condition for the tracking error bound.

Theorem 3.3 Use the notations in (1) and (2) and suppose that the parameters of the motor
satisfy

(B + Kkd)2 − 4KkpJ ≥ 0. (3)

If
∣∣∣Jaτ+Bvτ

Kkp

∣∣∣ ≤ Eτ , then the tracking error satisfies |eτ | ≤ Eτ for each axis τ ∈ {x, y, z}.

Remark 3.4 In [15], the power series solution of eτ is computed in the Laplace domain and eτ

is taken to be the linear part which is also a linear combination of aτ and vτ . But this linear
combination is only an approximation for eτ , which does not guarantee the given tracking error
bound to be valid. On the other hand, we give a theoretical guaranteed bound.

The following theorem gives a further relaxation for the tracking error bound. As will be
shown in the next section, the new constraints obtained with this relaxation can be discretized
into linear constraints.

Theorem 3.5 Assume the same condition as Theorem 3.3 and let Ẽτ = E2
τ Kkp

JAτ+B . If J |aτ |+Bvτ
2

Kkp
≤

Ẽτ for τ ∈ {x, y, z}, then |eτ | ≤ Eτ .

Proof. Using the Cauchy inequality, we have

∣∣∣∣
Jaτ + Bvτ

Kkp

∣∣∣∣ ≤
J |aτ |+ Bv

Kkp
=

√
J |aτ | ·

√
J |aτ |+

√
Bv · √B

Kkp
≤

√
J |aτ |+ Bv2

Kkp

√
J |aτ |+ B

Kkp
.

Since J |aτ |+Bvτ
2

Kkp
≤ Ẽτ and J |aτ |+ B ≤ JAτ + B, we have

∣∣∣∣
Jaτ + Bvτ

Kkp

∣∣∣∣ ≤
√

Ẽτ (JAτ + B)
Kkp

= Eτ .

By Theorem 3.3, we have |e| ≤ Eτ and the theorem is proved.

4 Optimal feedrate generation under confined tracking error
based on linear programming

In this section, we will show that the optimal feedrate generation problem can be reduced to a
linear programming problem which can be solved efficiently.

4.1 Formulation of the problem

The tool path is assumed to be a spatial parametric curve:

−→r (u) = (x(u), y(u), z(u)), u ∈ [0, 1],
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which has derivatives at least to the second order. Here, the parametric curve could be B-splines,
NURBS, etc. Denote the machining velocity to be v(t) = (vx(t), vy(t), vz(t)) and the tangential

velocity (machining feedrate) to be vf =
√

v2
x + v2

y + v2
z . We will use “ ′ ” to denote “ d

du”.

Introduce the following important quantity q

u̇ =
du
dt

=
√

q,

which will be used as the optimization variable in our feedrate planning problem. We have

ü =
du̇
dt

=
du̇
dt
· u̇

u̇
=

d(u̇2)
2dt

· 1
u̇

=
d(u̇2)
2dt

· dt
du

=
d(u̇2)
2du

=
1
2

(
u̇2

)′ = 1
2
q′.

Then for the x-axis,

vx = ẋ =
dx
du

du
dt

= x′
√

q (4)

ax = v̇x =
d(x′u̇)

dt
= x′′u̇2 + x′ü = x′′u̇2 + ẋü = x′′q + x′

q′

2
. (5)

Similar formulas can also be given for the y-axis and z-axis. So

vf =
√

v2
x + v2

y + v2
z =

√
x′2q + y′2q + z′2q = σ

√
q (6)

where σ =
√

x′2 + y′2 + z′2.

In addition, the machining time T can be written as:

T =
∫ T

0
dt =

∫ 1

0

du

u̇
=

∫ 1

0

du√
q
. (7)

The kinematic constraints considered include the tangential feedrate bound and the bounds
on the axis accelerations, which mainly reflect the capabilities of the CNC machine. Furthermore,
the tracking error bounds for all axes are considered, which are used to control the accuracy
of the machining. Thus the feedrate generation problem can be formulated as a time-minimum
problem under the kinematic and tracking error constraints, that is, to design the parametric
velocity u̇ along the tool path such that the machining time is minimized under the given
constraints:

min
u(t)

T = min
u(t)

∫ 1

0

du√
q

(8)

s.t.





|vf | ≤ Vmax

|aτ | ≤ Aτ

|eτ | ≤ Eτ
J

Kkp
ëτ + (B+Kkd)

Kkp
ėτ + eτ = J

Kkp
aτ + B

Kkp
vτ

(9)

where aτ is the acceleration for τ ∈ {x, y, z}, eτ is the tracking error for τ ∈ {x, y, z}, and
Vmax, Aτ , Eτ are the bounds for the feedrate, axis accelerations, and axis tracking errors respec-
tively.
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Figure 3: Contour error and tracking error

Remark 4.1 As mentioned in Section 1, the contour error is considered in most existing work.
Here, we give three reasons for controlling the tracking error. Firstly, the contour error is
bounded by the tracking error in certain sense. In Fig. 3, P is the intended interpolation
point, P1 is the actual position, and |P1B| is the contour error. It is easy to see that |PP1| =√

e2
x + e2

y + e2
z where ex, ey, ez are the tracking errors for the axes. Since P and B are generally

very close, we can approximately assume that the tool-path near points P and B is a circular
arc segment. In this case, it is easy to show that |P1B| ≤ |PP1| =

√
e2
x + e2

y + e2
z. Therefore,

given a bound δ for the contour error, if we set ex = ey = ez = δ/
√

3 then the tracking
error bounds implies the contour error bound. Secondly, although it is the contour error that
affects the machining shape, accumulation of tracking error could also lead to problems at the
connection points of two tool path segments. Thirdly, as we will show in this paper, the optimal
feedrate generation problem under tracking error bounds can be solved efficiently, while the
corresponding problem under contour error bounds seems more difficult to solve.

4.2 Simplification of the problem

In this section, we will give two new forms for problem (8), which are easier to solve. We first
state two properties for problem (8).

It is shown that the time-minimum problem under confined acceleration has a bang-bang
control structure [1, 2, 3]. This is also valid when the tracking error is added for the following
reasons. If the tracking error reaches its bounds, then we already have a bang-bang structure.
Otherwise, let us assume that the tracking error does not reach its bound in the time interval
[a, b]. Then in the time interval [a, b], the tracking error constraint is inactive and the feedrate
generation problem under velocity and acceleration constraints must also be time-minimum and
hence bang-bang either in the velocity or in the acceleration following [1, 2, 3]. We thus have

Property one. The solution to the optimal problem (8) is bang-bang-singular in the sense
that for any parametric value u ∈ [0, 1], at least one of the constraints in (9) reaches its bound.

The above property is useful in that if a numerically computed solution is bang-bang-singular,
then with a high probability we can assert that it is an optimal solution.

By Theorem 3.3, the tracking error constraint eτ (t) ≤ Eτ can be replaced by the new con-
straint | Jaτ

Kkp
+ Bvτ

Kkp
| ≤ Eτ when the predetermined controller coefficients and the machine pa-

rameters satisfying condition (3). As a consequence, instead of the initial problem (8), we can
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consider the following optimization problem.

min
u(t)

T = min
u(t)

∫ 1

0

du√
q

(10)

s.t.





|vf | ≤ Vmax

|aτ | ≤ Aτ∣∣∣Jaτ+Bvτ
Kkp

∣∣∣ ≤ Eτ

(11)

From [20, p. 385], for an optimal feedrate generation problem whose constraints involve the
velocity and acceleration only, the optimal solution is unique and is maximum among all feasible
feedrate solutions at any time. We thus have the following property.

Property Two. The optimal solution of problem (10) is unique and is maximum among all
feasible solutions at any time.

Based on the above property, problem (10) is equivalent to the following problem.

max
u(t)

∫ 1

0
q du (12)

s.t.





|vf | ≤ Vmax

|aτ | ≤ Aτ∣∣∣Jaτ+Bvτ
Kkp

∣∣∣ ≤ Eτ

(13)

Intuitively, instead of minimize the machining time, we can maximize the machining velocity.
Furthermore, by Theorem 3.5, instead of the optimization problem (12), we can consider the
following optimization problem:

max
u(t)

∫ 1

0
q du (14)

s.t.





|vf | ≤ Vmax

|aτ | ≤ Aτ
Jaτ+Bvτ

2

Kkp
≤ Ẽτ

−Jaτ+Bvτ
2

Kkp
≤ Ẽτ

(15)

where Ẽτ = E2
τ Kkp

JAτ+B and τ ∈ {x, y, z},

4.3 Discrete forms of the optimal feedrate generation problem

In order to solve problems (12) and (14), we will discretize them into mathematical programming
problems. To do that the parametric interval [0, 1] is divided into N equal intervals with knots
ui = i

N , i = 0, 1, . . . , N . The length of each interval is ∆ = 1
N . When ∆ is very small,

the constraints can be approximately transformed into discrete inequalities. Use subscript i to
represent the corresponding value of a variable at ui = i

N (for instance, qi = q( i
N )).

When N is large enough, the directives of q can be approximated by finite differences:
{

q
′
i ≈ qi+1−qi−1

2∆

q
′′
i ≈ qi+1+qi−1−2qi

∆2 .
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Based on equations (5) - (7), the optimization problem (12) can be approximated with the
following nonlinear programming problem:

max
qi

∑
qi (16)

s.t.





∣∣σ2
i qi

∣∣ ≤ V 2
max∣∣∣τ ′′i qi + τi

′

4∆(qi+1 − qi−1)
∣∣∣ ≤ Aτ∣∣∣ J

Kkp
(τi

′′
qi + τi

′

4∆(qi+1 − qi−1)) + B
Kkp

(τi
′√

qi)
∣∣∣ ≤ Eτ

(17)

where i = 0, 1, . . . , N and τ ∈ {x, y, z}. It is easy to see that the first two sets of constraints in
(17) are linear in qi, but the third set is nonlinear in qi.

Based on equations (5)-(7), the optimization problem (14) can be approximated with the
following linear programming problem:

max
qi

∑
qi (18)

s.t.





∣∣σ2
i qi

∣∣ ≤ V 2
max∣∣∣τ ′′i qi + τi

′

4∆(qi+1 − qi−1)
∣∣∣ ≤ Aτ

( J
Kkp

(τi
′′
qi + τi

′

4∆(qi+1 − qi−1)) + B
Kkp

(τi
′2qi)) ≤ Ẽτ

(− J
Kkp

(τi
′′
qi + τi

′

4∆(qi+1 − qi−1)) + B
Kkp

(τi
′2qi)) ≤ Ẽτ

(19)

where i = 0, 1, . . . , N , τ ∈ {x, y, z}, and Ẽτ = E2
τ Kkp

JAmax+B . For such a linear optimization problem,
a local optimal solution is also the unique global optimization solution and the computational
complexity to find the optimal solution is also known.

Theorem 4.2 For a given N , the worst case computational complexity to solve problem (18) is
O(N3.5) in terms of floating point arithmetic operations.

Note that the number of variables and the number of constraints for the linear programming
problem (18) are both O(N). Based on Karmarkar’s famous algorithm [23] to solve linear
programming problems, the complexity to find the optimal solution for a linear programming
problem is O(N3.5) arithmetic operations for floating point numbers. Thus, we have Theorem
4.2.

Remark 4.3 It should be noticed that the method proposed in this paper can be used to
any control system where the tracking error satisfies a second order differential equation. For
instance. In the control system shown in Fig.4, the PD controller is used to fulfill the position
loop tracking control and the P controller is used to control the velocity. The tracking error for
this system satisfied the following second order differential equation.

Jë + (B + Kkvpkpd + Kkvp)ė + Kkvpkppe = Ja + Bv.

5 Simulation

We implemented our algorithm and performed simulation using Matlab/Simulink. In this sec-
tion, we will present the simulation results which show that the linear programming problem
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Figure 4: PD-P Controller

(18) can be efficiently solved and the feedrate provided by the algorithm is guarantied to have
bounded tracking error.

The planar tool-path trident in Fig.4 is from [22]. The tool-path is initialized from the origin
point (0, 0) in order to use the inverse Laplace transformation. The following parameters are
used in the simulation: Vmax = 200mm/s, Ax = Ay = 1000mm/s2, Ex = Ey =0.1mm, K =
kaktrg = 0.2Nm2 /V, J = 0.03kgm2, B = 0.05kgm2/s, kp = 1000V/mm, and kd = 25V/(mm/s).
The parameter N in the discretization is taken as N = 100. From these parameters, it can
be calculated Ẽx = Ẽy = 0.07mm. It is easy to show that condition (3) is valid and problem
(18) can be used to find an approximate solution for the original optimal feedrate generation
problem.

We first compute the optimal feedrate without considering the tracking error bound with
the method given in [4]. The tangent velocity and the separate axis acceleration are shown in
Fig. 5 and Fig. 6 respectively. Clearly, the control is bang-bang-singular in the sense that
one of the constraints reaches its bound at any time. Fig. 7 is the real time tracking error
obtained by feeding the interpolation points obtained from the velocity function in Fig. 5 into
Matlab/Simulink, where the interpolation period and the controlling calculated time are both
0.001s. Obviously, the peak value of the tracking error is about 0.25mm.

Next, the tracking error bound Ex = Ey = 0.1mm is added and the optimization problem
(18) is solved using the linear toolbox in Matlab to find the feedrate. The results are illustrated
in Fig. 8 - Fig. 11. From Fig. 10, it can be seen that the linear combination of aτ and v2

τ in
(15) reaches its bounds Ẽτ at almost all places, which means that the feedrate obtained with
our method is an optimal solution to problem (18) due to the discussion about the bang-bang
structure in Section 4.2. From Fig. 10, we can see that the maximal tracking error is around
0.06mm. This means that although the tracking error bound is satisfied, when replacing the
constraint eτ ≤ Eτ with Jaτ+Bvτ

2

Kkp
≤ Ẽτ , the feasible space of feedrate becomes smaller. Notice

that the machining time is increased from 1.1s to 3.9s when the tracking error is reduced from
0.25mm to 0.06mm.

In Fig. 12 - Fig. 14, the sharp corners in the trident curve are illustrated. In these figures,
the solid line segments marked with green stars denote the original curve, the blue dotted line
denotes the output without considering tracking errors in the velocity planning, and the red
dotted line denotes the output with the tracking error bound 0.1mm. We can see that the
contour error is improved evidently.
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Figure 6: Tangent Velocity
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Figure 8: Tracking Error in real time

Finally, a set of data is used to compare the scalability of the problem (16) which is a nonlinear
programm problem (NLP) and (18) which is a linear programm problem (LP). N is set to be
different values and executing times are collected and are listed in Table 1. As expected, problem
(18) can be efficiently solved for large scale problems.

N 100 150 200 300 500
Time(NLP) 20.4s 8.10s 10.80s Fail Fail
Time(LP) 0.25s 0.40s 0.50s 0.50s 1.50s

Table 1: Computation times comparison between NLP and LP for different N

6 Conclusion

An approach is proposed to reduce the tracking error of high-speed CNC systems while still main-
tain the machining time optimality. The PD controller is used here to illustrate the approach.
Compared with the existing work, we establish a precise relationship between the tracking error
bound and the bound for a linear combination of velocity and acceleration. The linear combi-
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Figure 9: Tangent velocity
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Figure 10: Axis acceleration
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Figure 11: ẽ(u) = J |aτ |+Bvτ
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Figure 12: Tracking error with Ẽτ = 0.07mm

nation is further reduced to boost the efficiency of solving the optimization algorithm. With
these simplifications, the original problem is converted into a linear programming problem which
can be solved efficiently for large scale problems. The main advantage of this approach is that
the method can be implemented outside of the control loop, requiring no access to the control
system. This is very convenient for the end-user since it allows for performance improvements
of existing industrial systems without modifying their controllers.
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