
Efficient Algorithm for Time-optimal Feedrate Planning and

Smoothing with Confined Chord Error and Acceleration ∗

Ke Zhang, Chun-Ming Yuan, Xiao-Shan Gao †

KLMM, Institute of Systems Science, Chinese Academy of Sciences

Abstract

In this paper, an efficient algorithm is proposed to generate a smooth near-time-
optimal feedrate function along a parametric tool path for 3-axis CNC machining under
a feedrate bound, an acceleration bound for each axis, and a chord error bound. The
algorithm first gives a discrete and computationally efficient algorithm to find a se-
quence of globally optimal velocity points under the feedrate, acceleration, and chord
error bounds. A linear programming strategy is proposed to smooth the velocity points
sequence. Finally, the velocity points sequence is fitted into a cubic spline to obtain a
near-time-optimal and smooth feedrate function. Simulation and experiment results for
NURBS curves are presented to illustrate the feasibility of the algorithm.

Keywords. Time-optimal feedrate planning, chord error, confined acceleration, discrete
velocity searching, feedrate smoothing.

1 Introduction

The problem of time-optimal feedrate planning along parametric tool paths has received
a significant amount of attention in both the robotics and CNC machining literature. In
feedrate planning, the acceleration on each axis of the machine must be constrained, because
the torque (or force) capabilities of the axes drives are limited. Therefore, the problem
is how to identify the feedrate along a given tool path such that the machining time is
minimal without exceeding the capabilities of the actuators. Furthermore, smoothed feedrate
functions are desired to reduce vibrations.

Bobrow et al [1] and Shiller [2] gave algorithms to determine the time-optimal motion
for a robot manipulator along a given parametric path under actuator torque constraints.
Farouki and Timar [3, 4] gave a piecewise-analytic expression of the optimal feedrate function
for CNC machining with acceleration bounds. A smoothed feedrate function consistent with
the acceleration bounds is generated afterward [5]. Following [3, 4], Zhang et al [6] gave
a simplified feedrate planning method for quadratic B-splines and realized industrial CNC
machining. Zhang et al [7] extended the above methods to the case of jerk bounds and gave

∗Partially supported by a National Key Basic Research Project of China (2011CB302400) and by a grant
from NSFC (60821002).

†Corresponding author.

1

a greedy feedrate planning algorithm. Yuan et al [8] extended the algorithms by including
chord error bounds.

The methods mentioned above are called phase space analysis methods, because they use
the velocity limit curve or surfaces in the u-u̇-ü phase plane or space to obtain an optimal
solution. However, these methods have two limitations. First, their computational expense
is high, especially for tool pathes described by complex parametric functions, which lead to
the solving of high degree equations. Second, the constraints in these methods are not easy
to be generalized because time-optimality is difficult to prove for jerk bounds.

Another class of feedrate planning methods is based on numerical nonlinear programming
algorithms. Lin et al [9] developed an algorithm to schedule the time intervals between each
pair of adjacent knots as cubic splines such that the total traveling time is minimized subject
to confined velocities, accelerations, and jerks. Altintas and Erkorkmaz [10] presented a
quintic spline trajectory generation algorithm that produces continuous position, velocity,
and acceleration profiles with confined tangential acceleration and jerk. They also developed
a feedrate optimization technique in [11] for minimizing the cycle time with axis velocity,
torque and jerk limits. Sencer-Altintas-Croft further proposed a nonlinear optimization
based interpolation method under confined jerk and chord error for 5-axis CNC machines
[12]. Dong et al [13, 14] gave discrete greedy algorithms with constraints of parametric
velocity, acceleration, and jerk based on a series of single variable optimization subproblems.
The sub-optimization structure makes it easy to deal with any state-dependent constraints.
In [15], in order to reduce vibrations, Gasparetto et al considered a feedrate planning problem
where the objection function is a linear combination of time and the jerk.

A third approach to feedrate planning is the direct sampling methods which compute the
feedrate at every sampling time based certain strategies. Yeh and Hsu used a chord error
bound to control the feedrate if needed and used a constant feedrate in other places [16].
Ernesto and Farouki [17], Feng et al [18], and Sun et al [19] proposed a method to generate
chord error and acceleration limited velocity functions. Nam and Yang [20] proposed a
recursive method to generate jerk limited velocity functions. Emami-Arezoo [22] and Lai et
al [21] proposed time-optimal velocity planning methods with confined acceleration, jerk, and
chord error by adjusting the velocity if any of the bounds is violated through backtracking.
Lee et al gave a jerk limited velocity planning algorithm based trigonometric acceleration and
deceleration profiles [23]. Fan et al proposed a method to generate jounce confined velocity
functions [24].

In this paper, the problem of finding a time-optimal smooth feedrate function along a
parametric tool path ~r(u), u ∈ [0, 1] with a feedrate bound, an acceleration bound for each
axis, and a chord error bound is considered. The main contribution of the paper is to give
a computationally efficient and practical algorithm for the above problem. The algorithm
consists of three major steps.

Firstly, the u-v phase plane is discretized into a grid by first dividing the tool path
parameter interval [0, 1] into sub-intervals, and then, for each parameter knot ui, dividing
the feedrate interval [0, Vim] into equal intervals of length ∆v, where Vim = Vlim(ui) is the
maximal feedrate at ui obtained from the velocity limit curve Vlim(u) defined in [1, 2, 3, 8].
Each point in the grid is of the form (ui, vj) where vj is a possible feedrate at parameter
value ui.

2

Secondly, a maximal discrete velocity curve is generated, which is a sequence of points
(ui, vni), i = 0, . . . , N in the grid such that either (ui+1, vni+1) is reachable from (ui, vni) with
the maximal accelerations and has the largest velocity vni+1 , or (ui+1, vni+1) = Vim and all
(ui+1, vk) are not reachable from (ui, vni) with the maximal accelerations. We then prove
that the solution of this algorithm is globally optimal under all the constraints when the
discretization is sufficiently small.

Finally, a linear programming strategy is used to adjust the velocities around each ac-
celeration discontinuity point locally to smooth the sequence of velocity points. Then the
velocity points are fitted into a cubic spline to obtain a near-time-optimal smooth feedrate
function.

The major advantage of the new algorithm is that near-time-optimal solutions can be
found very efficiently. The computational complexity of the algorithm is shown to be
O(N/∆v) in terms of floating point arithmetic operations, where N is the number of seg-
ments to discrete the tool path and ∆v is the length of the velocity intervals. It is easy to
see that N/∆v is proportional to the number of points in the grid.

The algorithm can be considered as a discrete version of the algorithms given in [1,
2, 3, 8]. Comparing to these methods, our discretized algorithm is much more efficient
especially for tool paths described by complex parametric functions, since the new algorithm
avoids the time consuming task of equation solving. Comparing to the feedrate planning
methods based on the nonlinear programming, the new method can find the globally optimal
solution with a nice computational complexity bound, while most existing methods based on
nonlinear programming cannot guarantee to find the globally optimal solution. Furthermore,
solving nonlinear programming problems could be slow in many cases. Comparing the direct
sampling methods, our algorithm needs not backtracking, and hence is more efficient. The
method is verified on a commercial CNC system to machine a cubic NURBS curve on a
three-axis CNC machine.

The rest of this paper is organized as follows. Section 2 gives the description and theo-
retical analysis of the feedrate planning problem. Section 3 gives the discrete velocity search
algorithm and proves the optimality of the algorithm. Section 4 gives the feedrate smoothing
and fitting methods. Section 5 gives the experiment results. Section 6 concludes the paper.

2 Problem description and analysis

For brevity, the tool path is considered to be a plane parametric curve, which has at least
C1 continuity:

~r(u) = (x(u), y(u)), 0 ≤ u ≤ 1.

The extension to spatial paths is straightforward. The derivatives with respect to time t and
the parameter u is denoted by dots and primes, respectively:

u̇ = du/dt, x′ = dx/du.

In the feedrate planning, the acceleration bound on each axis, the chord error bound,
and the tangential velocity bound of the machine will be considered.

Let σ(u) = |~r′(u)| =
√

x′(u)2 + y′(u)2. Then the tangential velocity along the tool path
is v(u) = σ(u)u̇. Firstly, the bounds on the x and y acceleration components are considered

3

to be Ax, Ay respectively. Let q(u) = v2(u). Then the accelerations on the x and y axes are





ax = ẍ = (x′
v

σ
)′

v

σ
=

1
σ

(
x′

σ
)′q +

x′

2σ2
q′

ay = ÿ = (y′
v

σ
)′

v

σ
=

1
σ

(
y′

σ
)′q +

y′

2σ2
q′.

(1)

At each u ∈ [0, 1], the x and y acceleration constraints −Ax ≤ ax ≤ Ax,−Ay ≤ ay ≤ Ay

can be reduced to 


−Ax ≤ 1

σ
(
x′

σ
)′q +

x′

2σ2
q′ ≤ Ax

−Ay ≤ 1
σ

(
y′

σ
)′q +

y′

2σ2
q′ ≤ Ay,

(2)

which defines the interior of a parallelogram as the set of possible (q, q′) values. Then the
maximal value of q is identified by the right-most vertex of the parallelogram in the (q, q′)
phase plane [3].

Solve equations 



1
σ

(
x′

σ
)′q +

x′

2σ2
q′ = αxAx

1
σ

(
y′

σ
)′q +

y′

2σ2
q′ = αyAy,

(3)

where αx = ±1, αy = ±1, to obtain

q =
αxAxy′ − αyAyx

′

x′′y′ − y′′x′
σ2,

which are the four values of q in the four vertices. The maximal value of q at each u ∈ [0, 1]
is then easy to obtain. Now the x and y axes velocity limit curve [1, 2, 3] is determined by
the acceleration constraints on the x and y axes:

Vxy(u) = σ

√
Ax|y′|+ Ay|x′|
|x′′y′ − y′′x′| (4)

which is called the velocity limit curve because the real velocity must be smaller that Vxy(u)
at each u.

Secondly, the chord error bound ε is considered. Let the curvature and radius of curvature
of the tool path be

κ(u) =
x′y′′ − y′x′′

σ3(u)
, ρ(u) = 1/|κ(u)|.

In general, the chord error bound is much less than the radius of curvature at each point
on the tool path. By the chord error formula [16, 8],

q(u) ≤ 8ερ(u)− 4ε2

T 2
≈

8ερ(u)
T 2

=
8ε

|κ(u)|T 2

4

where T is the sampling period. Then the chord error constraint can be transformed to be
the centripetal acceleration constraint [8]. Let AN = 8ε/T 2, then

q(u) ≤ 8ε

|κ(u)|T 2
⇐⇒ |aN (u)| = |κ(u)|v2(u) ≤ AN .

Based on the above relation, the chord error velocity limit curve is

VN (u) =

√
AN

κ(u)
. (5)

Note that the real velocity curve must also be smaller than or equal to VN (u) for each u.
Together with the tangential velocity bound Vmax, the velocity limit curve (abbr. VLC)

is obtained with all the constraints:

Vlim(u) = min{Vmax, Vxy(u), VN (u)}. (6)

Note that a segment of Vlim(u) could be used as the real velocity curve and such a segment is
called feasible [8]. In general, a feasible segment is either Vmax or VN , where the corresponding
constraint is satisfied. A segment of Vxy is generally not feasible, since in such a case all the
inequalities in (2) become equality which is not possible.

Then the feedrate optimization problem becomes to plan the velocity v(u), such that the
machining time is minimal:

min tf =
∫ 1

0

σ(u)
v(u)

du (7)

under the following constraints:




|ax(u)| ≤ Ax

|ay(u)| ≤ Ay

0 ≤ v(u) ≤ Vlim(u)
v(0) = v(1) = 0.

(8)

3 Discrete velocity search algorithm

In this section, an algorithm is given to find a globally optimal discrete velocity curve under
the given constraints.

3.1 Discretization of the phase plan

We will show how to divide the u-v phase plane into a grid. Firstly, the tool path is divided
into N ′ segments of equal parametric length ∆u. The knots are i∆u, i = 0, . . . , N ′, where
∆u = 1/N ′. For the accuracy of the algorithm, if Vlim(i∆u) is local minimal, that is
Vlim(i∆u) < min(Vlim((i−1)∆u), Vlim((i+1)∆u)), then the parameter interval [(i−1)∆u, (i+
1)∆u] is further subdivided to ten equal sub-intervals. Denote the new knots by

ui, i = 0, . . . , N,

5

Figure 1: Discretization of parameter and velocity.

where N is the number of the final knots.
An appropriate ∆v is chosen to discretize the value of velocity at each ui. From (6), the

maximal feasible discrete velocity at ui is Vlim(ui). Divide the verlocity interval [0, Vlim(ui)]
into Nv(i) equal sub-intervals, where

Nv(i) = bVlim(ui)
∆v

c, i = 0, . . . , N. (9)

The velocity at ui will be chosen in a series of discrete values (see Fig.1):

0,∆v, 2∆v, . . . , Nv(i)∆v.

Then the u-v phase plane is discretized into a grid and the number points in the grid is

N =
∑

0≤i≤N

{(Nv(i) + 1)}. (10)

3.2 Velocity reachability

Before presenting the complete algorithm, it needs to give a subfunction VR(vs,us, ve,ue)
which decides if the two neighboring points (us, vs) and (ue, ve) in the grid are reachable.
That is, whether it is possible to move the tool from point (x(us), y(us)) with initial velocity
vs to point (x(ue), y(ue)) with final velocity ve under the constraints (8).

Firstly, the reachability on each axis is considered. Suppose that the velocity components
(with signs) on an axis (x or y) of the two neighboring knots us, ue are v1, v2, respectively, the
projection distance (with sign) on this axis between the two knots is ∆s, and the acceleration
bound of this axis is A. The reachability function on each axis should be

vr(v1,∆s, v2, A) =
{

1 if the two knots with their velocities on this axis are reachable;
0 otherwise.

Because the distance between the two neighboring knots is quite small, the problem is
simplified to be only with the acceleration bound of this axis here, which means that Vlim(u)

6

(a) v1 ≥ 0, v2 ≥ 0 (b) v1 ≤ 0, v2 ≤ 0

Figure 2: Two cases of acceleration profile between two consecutive knots.

is not achievable. Minimum-time path traversals with only acceleration limits generally
involve a “Bang-Bang control” strategy. Then, it is easy to show that there has only two
cases of acceleration profiles when v1, v2 have the same signs (see Fig.2).

If v1 and v2 are both nonnegative, the case is shown in Fig.2(a): use A to accelerate and
then −A to decelerate. If v1 and v2 are both less than or equal to 0, the case is shown in
Fig.2(b): use −A first and then A. The distance |∆s| has a lower bound when v1 and v2

have the same signs. Setting t1 or t2 to be 0, the area of the trapezoid on the (t, v) phase
plane in Fig.2 is just the lower bound of |∆s|. The area is easy to compute as |v2

2−v2
1 |

2A . So,

when v1v2 ≥ 0, the two knots are reachable on this axis if and only if |∆s| ≥ |v2
2−v2

1 |
2A .

If v1 and v2 have the opposite signs, it means that there exists a point whose velocity on
this axis is 0 between the two knots. The parameter um of this point can be obtained by
solving x′(u) = 0 or y′(u) = 0 (the bisection method can be used between us and ue). Then
the projection distance ∆s is divided into ∆s1 which is the projection distance from us to
um, and ∆s2 which is the projection distance from um to ue. Then, when v1v2 < 0, the two
knots are reachable on this axis if and only if |∆s1| ≥ v2

1
2A and |∆s2| ≥ v2

2
2A .

Then the reachability function on each axis is

vr(v1,∆s, v2, A) =





1 if v1v2 ≥ 0 and |∆s| ≥ |v2
2−v2

1 |
2A ,

or v1v2 < 0 and |∆s1| ≥ v2
1

2A , |∆s2| ≥ v2
2

2A ;
0 otherwise.

It is clear that two knots with their velocities are reachable if and only if both their
projections on x and y axis are reachable. Then the reachability function is

VR(vs, us, ve, ue) =vr(
x′(us)
σ(us)

vs, x(ue)− x(us),
x′(ue)
σ(ue)

ve, Ax)·

vr(
y′(us)
σ(us)

vs, y(ue)− y(us),
y′(ue)
σ(ue)

ve, Ay)
(11)

7

(a) The forward direction pass. (b) The reverse direction pass.

Figure 3: An illustration of Algorithm DIS VP. The horizontal axis is the parameter u of
the tool path. The vertical axis is the tangential velocity.

3.3 Feedrate planning algorithm

The algorithm consists of a forward direction pass and a reverse direction pass. During the
forward pass, a trajectory is generated to search for the current maximal feasible velocity
under the VLC at each step, otherwise it will maintain on the VLC. The current maximal
feasible velocity is obtained by computing the velocity reachability function. During the
reverse pass, the maximal feasible preceding velocity under the forward velocity is obtained
at each step, otherwise it will be equal to the forward velocity. Now the complete algorithm
is stated below:

Algorithm DIS VP. Discrete velocity planning algorithm.
Input: ~r(u) u ∈ [0, 1], Vmax, Ax, Ay, ε, N

′,∆v.
Output: A set of knots u0 = 0 < u1 < · · · < uN = 1 and the velocity v∗i at ui.

1. Pre-process: compute the knots ui, i = 0, . . . , N as shown in the first paragraph of
section 3.1 and the velocity interval number Nv(i) at each ui with (9).

2. v0 = 0, i = 0.

3. Traverse vi+1 from Nv(i+1)∆v, (Nv(i+1)−1)∆v, . . . , to 0, until VR(vi, ui, vi+1, ui+1) =
1. If vi+1 = 0, set vi+1 = Nv(i + 1)∆v.

4. i = i + 1. If i < N go to step 3, otherwise continue.

5. v∗N = 0,i = N .

6. Traverse v∗i−1 from vi−1, vi−1−∆v, . . . , to 0, until VR(v∗i−1, ui−1, v
∗
i , ui) = 1. If v∗i−1 = 0,

set v∗i−1 = vi−1.

7. i = i− 1. If i > 0 go to step 6, otherwise continue.

8. Output v∗i , i = 0, . . . , N .

Fig.3 is used to illustrate Algorithm DIS VP, where Fig.3(a) shows the forward pass
(steps 2-4) and Fig.3(b) the reverse pass (steps 5-7). In Fig.3(a), the forward velocity curve

8

starts from (0, 0) and searches for the current maximal feasible velocity under the VLC at
each step in interval (1) in Fig.3. Then it maintains on the VLC in interval (2) because the
velocity reachability function has no solution or the velocity is feasible on the VLC. Then the
velocity curve departs from the VLC and searches for the maximal feasible velocity again
in interval (3). Intervals (4) and (5) are similar to intervals (2) and (3) respectively. In
Fig.3(b), the reverse velocity curve starts from point (1, 0) and searches for the maximal
feasible preceding velocity under the forward velocity curve. It updates the forward velocity
curve in intervals (2)(4)(7). Then the velocity values at each ui is obtained.

We now show how to chose the two parameters N ′ and ∆v in the input of the algorithm.
The segments number N ′ will be chosen to be at least 10% of the number of interpolation

steps along the tool path for the computational accuracy. It can be estimated as S/(10VaveT),
where S is an estimation of the length of the tool path, Vave is an estimation of the average
velocity.

The value ∆v can not be too large, otherwise Algorithm DIS VP may not obtain a
solution. Here a limit to ∆v is given as below. In the forward pass, vi = 0 leads to the
bounds of vi+1 from the velocity reachability function:

{
−2Ax|x(ui+1)− x(ui)| ≤ (x′(ui+1)

σ(ui+1) vi+1)2 ≤ 2Ax|x(ui+1)− x(ui)|
−2Ay|y(ui+1)− y(ui)| ≤ (y′(ui+1)

σ(ui+1) vi+1)2 ≤ 2Ay|y(ui+1)− y(ui)|

Then

vi+1 ≤ min{ σ(ui+1)
|x′(ui+1)|

√
2Ax|x(ui+1)− x(ui)|, σ(ui+1)

|y′(ui+1)|
√

2Ay|y(ui+1)− y(ui)|} , Va(i + 1)

To make sure that there is a feasible discrete velocity value at each ui+1, ∆v can not be
greater than Va(i + 1) at each ui+1, i = 0, . . . , N − 1. Then

∆v ≤ min
1≤i≤N

Va(i) , Va.

Together with the similar upper bound Vb in the reverse pass, the limit to ∆v is min{Va, Vb}.
The value of ∆v can be chosen to be min{Va, Vb}/100 ∼ min{Va, Vb}/10 in Algorithm
DIS VP.

Let N be the number of points in the discretization grid of the u-v phase plane given
in (10). Then the computational complexity of the algorithm is O(N) in terms of floating-
point arithmetic operations, since there are twice loop operations in the algorithm with N
as the maximal number of loops, and in each step inside the loop it only needs to perform
a fixed number of floating point arithmetic operations. It is clear that Nv(i) ≤ Vmax/∆v
and N ≤ VmaxN/∆v + N . Since Vmax is a fixed value, the computational complexity of the
algorithm is O(N/∆v). A more detailed analysis of Algorithm DIS VP will be stated in
the next subsection.

3.4 Optimality of the algorithm

In this subsection, it will be proved that Algorithm DIS VP does obtain a globally optimal
solution for problem (7) under constraints (8) as ∆u and ∆v approach to 0.

9

The method to prove the optimality is similar to that used in [1, 2, 3, 8]. The phase plane
(u, v) and the VLC are used to construct a solution for the minimum time control problem.
The algorithm is analyzed in the same phase plane and then the optimality is shown.

Using (2), the x and y acceleration constraints can be rewritten to be the constraints of
v′: {

f1(u, v) ≤ v′ ≤ g1(u, v)
f2(u, v) ≤ v′ ≤ g2(u, v)

(12)

Let f = max{f1, f2}, g = min{g1, g2}. Then the constraints (12) lead to

f(u, v) ≤ v′ ≤ g(u, v), (13)

where f(u, v), g(u, v) are piecewise continuously differentiable functions of u, v. The inequal-
ity (13) shows that v′ has an upper and lower bound at any point on the phase plane (u, v)
under the VLC.

When ∆u and ∆v approach to 0, it can be seen that step 3 in Algorithm DIS VP
searches for the current maximal v′ under all the constraints. Although only a finite number
of values for the velocity is found, it can be considered that a velocity curve v(u) is computed
in this proof when ∆u and ∆v approach to 0.

In steps 2-4, the segments of the velocity curve are either under the VLC or equal to
Vlim(u). If the velocity curve segment is under the VLC, it satisfies v′ = g(u, v). If the
segment is equal to Vlim(u), there are two cases: Vlim(u) is a feasible solution in step 3,
which means f(u, v) ≤ V ′

lim(u) ≤ g(u, v); or there has no solution in step 3, which means
V ′

lim(u) ≤ f(u, v) ≤ g(u, v). Together with the two cases, V ′
lim(u) ≤ g(u, v) satisfies when

the velocity curve segment is equal to Vlim(u).
The analysis of steps 5-7 is similar. Step 6 searches for the current minimal v′ with all

the constraints. If the velocity curve segment is under the VLC, it satisfies v′ = f(u, v); if
the segment is equal to Vlim(u), it satisfies f(u, v) ≤ V ′

lim(u).
Now it is clear that the complete velocity curve consists of three types of segments

(Fig.3(b) is used to illustrate): the segments which satisfy v′ = g(u, v) (see Fig.3(b) segments
(1)(3)(6)), the segments which satisfy v′ = f(u, v) (see Fig.3(b) segments (2)(4)(7)), and the
feasible segments which are parts of the VLC curve Vlim(u) (see Fig.3(b) segment (5)). If the
velocity curve segment is equal to Vlim(u), it satisfies the x and y acceleration constraints
since it satisfies V ′

lim(u) ≤ g(u, v) and f(u, v) ≤ V ′
lim(u). Then all the segments of the

velocity curve satisfy the x and y acceleration constraints and are under the VLC.
Hence, to prove the optimality, it only needs to show that the velocity curve given by

Algorithm DIS VP is higher than any other velocity curve on the phase plane (u, v), which
satisfies constraints (8). In order to prove this, it needs the following result.

Comparison Theorem (p.25, [27]): Let y, z be solutions of the following differential equa-
tions

y′ = F (x, y), z′ = G(x, z),

respectively, where F (x, y) ≤ G(x, y), a ≤ x ≤ b, and F or G satisfies Lipschitz’s condition.
If y(a) = z(a), then y(x) ≤ z(x) for any x ∈ [a, b].

Using the comparison theorem, it can be proven that the algorithm obtains a globally
optimal solution. Let v̂ be any feasible solution for (8) and v be the solution given by
Algorithm DIS VP.

10

Fig.3(b) is used to illustrate the proof. In segment (1) in Fig.3(b), there are v̂(0) = v(0)
and

v′ = g(u, v), v̂′ ≤ g(u, v̂), u ∈ [0, u1].

g(u, v) satisfies Lipschitz’s condition since it is piecewise continuously differentiable. From
the comparison theorem, it can be shown that v̂ ≤ v, u ∈ [0, u1].

In segments (3) and (6) in Fig.3(b), there are v̂(u2) ≤ v(u2), v̂(u5) ≤ v(u5) since
v(u2), v(u5) are on the VLC. The condition y(a) = z(a) can be changed to y(a) ≤ z(a)
in the comparison theorem. The result will not change according to the proof of the com-
parison theorem. Then

v̂ ≤ v, u ∈ [0, u1] ∪ [u2, u3] ∪ [u5, u6].

In segment (7) in Fig.3(b), there are v̂|ũ=0 = v|ũ=0, and

d

dũ
v(1− ũ) = −f(1− ũ, v(1− ũ)),

d

dũ
v̂(1− ũ) ≤ −f(1− ũ, v̂(1− ũ)), ũ ∈ [0, 1− u6]

by making the change of variable ũ = 1−u. −f(1− ũ, v(1− ũ)) satisfies Lipschitz’s condition
since f(u, v) is piecewise continuously differentiable. From the comparison theorem, it can
be shown that

v̂(1− ũ) ≤ v(1− ũ), ũ ∈ [0, 1− u6],

which is equivalent to v̂ ≤ v, u ∈ [u6, 1].
In segments (2) and (4) in Fig.3(b), the proof is similar to segments (3) and (6). Then

v̂ ≤ v, u ∈ [u1, u2] ∪ [u3, u4] ∪ [u6, 1].

Together with v̂ ≤ v, u ∈ [u4, u5], it can be shown that v̂ ≤ v, u ∈ [0, 1]. From

σ(u)
v(u)

≤ σ(u)
v̂(u)

,

then ∫ 1

0

σ(u)
v(u)

du ≤
∫ 1

0

σ(u)
v̂(u)

du,

which proves the optimality of the algorithm.

4 Feedrate smoothing and fitting

In this section, we will show how to obtain a near-time-optimal smooth velocity function
from the sequence of velocity values obtained in section 3.

It is known that the velocity found with Algorithm DIS VP is a discretization of the
velocity curve found with the methods in [1, 2, 3, 8], which is piecewise differentiable. So
its acceleration profile has discontinuities at a finite number of parametric values, which will
cause vibrations and then large contouring errors. From (1), when the parametric tool path
has at least C2 continuity, the acceleration discontinuity points are just the discontinuity
points of v′ (or q′). In this case, one method to reduce vibrations is smoothing the velocity
curve.

11

Figure 4: Feedrate smoothing around the velocity derivative discontinuity.

In the proof of optimality of Algorithm DIS VP in section 3.4, it is shown that the veloc-
ity curve consists of three parts: the segments which satisfy v′ = g(u, v), the segments which
satisfy v′ = f(u, v), and the segments which are parts of Vlim(u). Then, every discontinuity
point of v′ is either the intersection of any two parts of the above three, or the derivative
discontinuity of the VLC. The first kind of discontinuities are easy to find throughout the
process of Algorithm DIS VP. The locating of the second kind of discontinuities is not
direct. This case will be dealt with later.

First, the case that v′ suddenly decreases at a point is considered. To find these points, it
just needs to add steps 1’, 3’ and 6’ after steps 1, 3 and 6 respectively in Algorithm DIS VP:

1’. Initialization: flag(i) = 0, i = 0, . . . , N

3’. If vi < Nv(i)∆v and vi+1 = Nv(i + 1)∆v, set flag(i + 1) = 1.

6’. If v∗i < vi and v∗i−1 = vi−1, set flag(i− 1) = 1; if v∗i−1 < vi−1 and flag(i− 1) = 1, set
flag(i− 1) = 0.

In the forward pass of Algorithm DIS VP, step 3’ marks the points where the segments
which satisfy v′ = g(u, v) intersect the VLC with flag(i + 1) = 1 at ui+1. In the reverse
pass, step 6’ marks the points where the segments which satisfy v′ = f(u, v) intersect the
forward velocity curve and removes the marks where the forward velocity curve is updated
by the reverse velocity curve.

Suppose flag(k) = 1, that is, v′ suddenly decreases at parametric uk. Choosing an appro-
priate small positive integer l, the velocities computed by Algorithm DIS VP at parametric
uk−l, . . . , uk+l are decreased to obtain a finite rate of change of v′ (or q′) (see Fig.4). With
the approximation of q′ and q′′ by

q′i =
qi − qi−1

ui − ui−1
, q′′i =

q′i − q′i−1

ui − ui−1
,

solve the linear programming problem to obtain the new qi:

min
k+l∑

i=k−l

(v∗i
2 − qi) (14)

12

subject to




0 ≤ qi ≤ v∗i
2, i = k − l, . . . , k + l

−Ax ≤ 1
σ

(
x′

σ
)′(ui)qi +

x′

2σ2
(ui)q′i ≤ Ax, i = k − l, . . . , k + l + 1

−Ay ≤ 1
σ

(
y′

σ
)′(ui)qi +

y′

2σ2
(ui)q′i ≤ Ay, i = k − l, . . . , k + l + 1

− J ≤ q′′i ≤ J, i = k − l, . . . , k + l + 2

(15)

where v∗i are the velocities computed by Algorithm DIS VP, J is an appropriate limit of
q′′.

Note that the second and third constraints in (15) are discrete version of constraints (2),
which guarantee that the acceleration on each axis is confined. The fourth constraint in (15)
is used for smoothing the velocity.

The new velocities at parametric values uk−l, . . . , uk+l satisfy all the original constraints
and have eliminated the discontinuity of q′ at uk in the sense of discrete model.

Usually, the small positive integer l can be predetermined (for example, l = N/100). It
is clear that the above linear programming always has a solution when the q′′ bound J is
large enough. Since for i = k − l, . . . , k + l + 2,

|q′′i | ≤
2maxk−l−1≤i≤k+l+2 |q′i|

mink−l≤i≤k+l+2(ui − ui−1)
≤ 4maxk−l−2≤i≤k+l+2{qi}

mink−l−1≤i≤k+l+2(ui − ui−1)2
,

the initial value of J can be chosen to be

4maxk−l−2≤i≤k+l+2{v∗i 2}
mink−l−1≤i≤k+l+2(ui − ui−1)2

.

Then J is decreased by using dichotomy and the above linear programming is solved every
time, until an acceptable solution is obtained.

In the case that v′ suddenly increases at uk, which is also easy to find throughout the
process of Algorithm DIS VP as above, a velocity adjusting interval [uk−l1 , uk+l2] can be
chosen to cover this point, the preceding and the next v′ discontinuity point. Then the linear
programming above is solved together with the three discontinuities. If the discontinuity is
on the VLC and its position is not known, the velocity adjusting interval can be chosen to
cover this VLC segment as well.

The feedrate smoothing with linear programming will not increase the complexity of the
algorithm since the linear programming has efficient polynomial-time algorithms [28] with
complexity O(n3.5), and the dimension of the problem n = 2l + 1 ≈ N/50 is quite small
compared with N . So, the total computational complexity of the whole procedure is the
same as that of Algorithm DIS VP.

For the interpolation process, the sequence of velocity points should be fitted into a
feedrate function. Sencer et al [12] expressed the feedrate function in a cubic B-spline form.
Ernesto and Farouki [17] specified the square of the feedrate as a Bernstein-form polynomial.
In this paper, the A-spline [29] is adopted to fit the the velocity points into a smooth curve.
It is based on a piecewise function composed of a set of polynomials, each of degree three

13

Figure 5: The butterfly curve and its control points.

at most. Then the feedrate v(u) along the tool path ~r(u) is obtained, which is a cubic
spline with C1 continuity. With an acceptable curve fitting error, the feedrate function is
near-time-optimal.

We finally remark that a time-optimal smooth velocity function to the feedrate planning
problem under confined acceleration and chord error does not exist. In Section 3.4, it is
shown that a time-optimal velocity function exists under confined acceleration and chord
error, which achieves maximal value at any point. Also see [1, 2, 3, 8]. When we want to
smooth the time-optimal solution, at any discontinues point, the velocity function can be
approximated by a smooth one with any precision and there does not exists an optimal one.
See Figure 4 for an illustration. Therefore, a near-time-optimal solution is the best we can
have for the problem.

5 Experimental results

In this section, we will present the experimental result. The butterfly curve from [25] is used
to illustrate the algorithm. It is a cubic NURBS curve (see Fig.5) with 51 control points and
has C2 continuity since each knot has multiplicity 1.

The constraints are set to be Vmax = 120mm/s,Ax = Ay = 800mm/s2, ε = 1µm, T =
2ms, where T is the sampling period of the CNC machine. For discretization, N ′ =
300, 500, 1000 and ∆v = 0.01, 0.02mm/s are chosen respectively in this example. The exe-
cuting times of Algorithm DIS VP with different N ′ and ∆v are listed in Table 1 (CPU:
Intel Core2 Duo, 2.93GHz; programming software: Microsoft Visual C++ 6.0). From Table
1, we can see that the executing time of Algorithm DIS VP is approximately proportional
to O(N ′/∆v), which confirms the computational complexity analysis of the algorithm in the
last paragraph of section 3.3.

The discretization with N ′ = 1000,∆v = 0.01mm/s is adopted to show the results of
the algorithm. The total number of refined tool path segments is N = 1452 in Algorithm
DIS VP. In Fig.6, the dotted curve is the VLC computed by (6), and the solid curve is the
optimal velocity given by Algorithm DIS VP.

Fig.7 shows the detail of the velocity smoothing given by linear programming in section

14

Table 1: Executing times of Algorithm DIS VP with different N ′ and ∆v.

N ′ 300 300 500 500 1000 1000
∆v (mm/s) 0.02 0.01 0.02 0.01 0.02 0.01

Velocity Planning (s) 0.043 0.085 0.067 0.134 0.128 0.255

Figure 6: Dotted curve: VLC; Solid curve: velocity given by Algorithm DIS VP.

4. The dotted curve is the original optimal velocity. The solid curve is the smoothed velocity.
Then the velocity points sequence is fitted into a cubic spline with 229 cubic polynomials.

In Fig.8(a)(b), the points are the sequence of velocity points, and the solid curve is the fitted
velocity curve. Fig.8(b) shows the detail of Fig.8(a).

The CNC system used in the experiment is GJ-210M (see Fig.9), which is a commercial
product of Shenyang Lantian CNC Corporation. Since the butterfly curve consists of 48
segments of cubic rational curves, together with the 229 segments of the feedrate function,
there are at most 276 segments with different curve expressions or feedrate functions. A new

Figure 7: Dotted curve: the optimal velocity; Solid curve: the smoothed velocity.

15

(a)

(b)

Figure 8: The velocity points and the fitted velocity curve.

G-code is designed for cubic NURBS curves in the CNC system GJ-210M:

G66.5 x0 x1 x2 x3

y0 y1 y2 y3

d0 d1 d2 d3

v0 v1 v2 v3

u1 u2

which means on the segment [u1, u2], the curve is

x(u) =
x0 + x1u + x2u

2 + x3u
3

d0 + d1u + d2u2 + d3u3
, y(u) =

y0 + y1u + y2u
2 + y3u

3

d0 + d1u + d2u2 + d3u3

and the feedrate function is

v(u) = v0 + v1u + v2u
2 + v3u

3.

By employing Taylor’s expansion of u(t) at t = tk and neglecting high-order terms, the
second-order Taylor interpolation algorithm [18, 24] is adopted in the controller:

uk+1 = uk +
v

σ
(uk)T + (

v

σ
)′

v

σ
(uk)

T 2

2
. (16)

Detailed analysis of parameter computation can be found in [25, 26].

16

Figure 9: The CNC system used in the experiment.

Fig.10 shows the simulation results: the feedrate, the x and y accelerations, and the chord
error, respectively. The machining time (5.17 s) is much shorter than the machining time
(8.05 s) given by the algorithm proposed in [23] for the same curve and velocity, acceleration
and chord error constraints. It should be noted that even though the real jerk constraint has
not been considered in this paper, the acceleration on each axis is continuous.

6 Conclusion

The algorithm proposed in this paper is computationally more efficient than the analytical
solving methods used in the phase plane analysis approaches when the parametric functions
for the tool path are complex. Computing the expression of the VLC and switching points
are avoided. It also does not need to integrate the accelerations. The constraints are more
easy to be generalized in this algorithm. This discrete velocity search algorithm just need
to compute a velocity reachability function at each step, and the computational complexity
of the algorithm is O(M/∆v) in terms of floating-point arithmetic operations. Comparing
with the existing discrete algorithms using nonlinear programming techniques, this algorithm
can give time-optimal solution with confined acceleration and chord error. Using a linear
programming scheme and velocity curve fitting to remove the sudden jumps occurring in
the acceleration of the time-optimal feedrate solution, a near-time-optimal solution with
continuous accelerations is obtained. Simulation and experiment results show the feasibility
and applicability of the feedrate planning algorithm.

References

[1] Bobrow JE, Dubowsky S, Gibson JS. Time-optimal control of robotic manipulators
along specified paths. International Journal of Robotics Research 1985; 4(3):3-17.

[2] Z. Shiller. On singular time-optimal control along specified paths. IEEE Trans. Robot.
Autom., 10, 561-566, 1994.

17

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−3

Time (s)

Figure 10: The feedrate, acceleration on each axis and chord error.

[3] Timar SD, Farouki RT, Smith TS, Boyadjieff CL. Algorithms for time-optimal control
of CNC machines along curved tool paths. Robotics and Computer-Integrated Manufac-
turing 2005; 21:37-53.

[4] Timar SD, Farouki RT. Time-optimal traversal of curved paths by Cartesian CNC
machines under both constant and speed-dependent axis acceleration bounds. Robotics
and Computer-Integrated Manufacturing 2007; 23(2):563-579.

[5] Boyadjieff CL, Farouki RT, Timar SD. Smoothing of Time-Optimal Feedrates for Carte-
sian CNC Machines. Mathematics of Surfaces XI, LNCS, Springer Berlin, 2005; 3604:84-
101.

[6] Zhang M, Yan W, Yuan CM, Wang DK, Gao, XS. Curve fitting and optimal inter-
polation on CNC machines based on quadratic B-splines. Science China - Information
Sciences 2011; 54(7):1407-1418.

[7] Zhang K, Yuan CM, Gao XS, Li HB. A greedy algorithm for feedrate planning of CNC
machines along curved tool paths with confined jerk. Robotics and Computer-Integrated
Manufacturing 2012; 28:472-483.

[8] Yuan CM, Zhang K, Fan W, Gao, XS. Time-optimal interpolation for CNC machining
along curved tool paths with confined chord error. MM Research Preprints 2011; 30:57-
89.

[9] Lin CS, Chang PR, Luh JYS. Formulation and optimization of cubic polynomial joint
trajectories for industrial robots. IEEE Trans. Robot. Autom. 1983; AC-28:1066-1074.

18

[10] Erkorkmaz K, Altintas Y. High speed CNC system design Part I: jerk limited trajectory
generation and quintic spline interpolation. International Journal of Machine Tools and
Manufacture 2001; 41:1323-1345.

[11] Altintas Y, Erkorkmaz K. Feedrate Optimization for Spline Interpolation In High Speed
Machine Tools. CIRP Annals - Manufacturing Technology 2003; 52(1):297-302.

[12] Sencer B, Altintas Y, Croft E. Feed optimization for five-axis CNC machine tools with
drive constraints. International Journal of Machine Tools and Manufacture 48 (2008)
733-745.

[13] Dong JY, Stori JA. A generalized time-optimal bi-directional scan algorithm for con-
strained feedrate optimization. ASME Journal of Dynamic Systems, Measurement, and
Control 2006; 128:379-390.

[14] Dong JY, Ferreiraa PM, Stori JA. Feedrate optimization with jerk constraints for gen-
erating minimum-time trajectories. International Journal of Machine Tools and Manu-
facture 2007; 47:1941-1955.

[15] Gasparetto A, Lanzutti A, Vidoni R, Zanotto V. Experimental validation and com-
parative analysis of optimal time-jerk algorithms for trajectory planning. Robotics and
Computer-Integrated Manufacturing 2012; 28:164-181.

[16] Yeh SS, Hsu PL. Adaptive-feedrate interpolation for parametric curves with a confined
chord error. Computer-Aided Design 34(2002)229-237.

[17] Ernesto CA, Farouki RT. High-speed cornering by CNC machines under prescribed
bounds on axis accelerations and toolpath contour error. Int J Adv Manuf Technol
2012; 58:327-338.

[18] Feng J, Li Y, Wang Y, Chen M. Design of a real-time adaptive NURBS interpolator
with axis acceleration limit. Int J Adv Manuf Technol 2010; 48:227C241.

[19] Sun Y, Jia Z, Ren F, Guo D. Adaptive feedrate scheduling for NC machining along
curvilinear paths with improved kinematic and geometric properties. Int J Adv Manuf
Technol 2008; (36):60C68.

[20] Nam SH, Yang MY. A study on a generalized parametric interpolator with real-time
jerk-limited acceleration. Computer-Aided Design 36, 27-36, 2004.

[21] Lai JY, Lin KY, Tseng SJ, Ueng WD. On the development of a parametric interpolator
with confined chord error, feedrate, acceleration and jerk. Int J Adv Manuf Technol
2008; 37:104-121.

[22] Emami MM, Arezoo B. A look-ahead command generator with control over trajectory
and chord error for NURBS curve with unknown arc length. Computer-Aided Design
4(7)(2010)625-632.

[23] Lee AC, Lin MT, Pan YR, Lin WY. The feedrate scheduling of NURBS interpolator
for CNC machine tools. Computer-Aided Design 2011; 43:612-628.

19

[24] Fan W, Gao XS, Yan W, Yuan CM. Interpolation of parametric CNC machining path
under confined jounce. Int J Adv Manuf Technol 2012; DOI 10.1007/s00170-011-3842-0.

[25] Yau HT, Lin MT, Tsai MS. Real-time NURBS interpolation using FPGA for high speed
motion control. Computer-Aided Design 2006; 38:1123-1133.

[26] Wu J, Zhou H, Tang X, Chen J. A NURBS interpolation algorithm with continuous
feedrate. Int J Adv Manuf Technol 2012; 59:623C632.

[27] Birkhoff G, Rota GC. Ordinary differential equations. John Wiley, New York, 1969.

[28] Karmarkar N. A new polynomial-time algorithm for linear programming. ACM Sympo-
sium on Theory of Computing, New York, 1984; 302-311.

[29] Akima MH. A new method of interpolation and smooth curve fitting based on local
procedures. Journal of the Association for Computing Machinery 1970; 17(4):589-602.

20

