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Time-Bound Optimal Planning in CNC Machine
Considering Machining Safety

Jianxin Guo , Mingyong Zhao, and Lixian Zhang

Abstract— In this paper, we propose a time-bound optimal
planning model to reconcile the dilemma between the cutting
efficiency and the cutting security. Unlike the traditional planning
method, we consider the bound of the kinematic constraints to
be flexible in the form of a fuzzy set. It is reasonable to use
such an expression considering that the safety of the computer
numerical control (CNC) machine is susceptible to the potential
disturbance in the cutting process. A fuzzy optimization method
is used to obtain a compromise bound aiming to balance the
cutting efficiency and the cutting security. The original problem
can be reduced into a convex problem in some weak conditions,
for which some interesting results are proved and the numerical
method is also used to solve it. The proposed algorithm is
experimented on our self-designed CNC machine. We verify
the effectiveness of our proposed method through air-cutting
and milling process with two respect experiment, and verify the
efficiency of our algorithm by comparing traditional open-loop
strategies.

Note to Practitioners—The starting point of this article is to
improve the safety performance under the premise of ensuring
the efficiency of CNC machining, but this method is also applica-
ble to other robot arm path planning and design. The boundary of
the existing speed planning problem cannot guarantee the safety
of the machining process, and blindly reducing the kinematic
boundary will greatly sacrifice the processing efficiency. This
paper proposes a new method based on fuzzy programming
to determine the optimal kinematic boundary, and this process
can be completely realized in an open-loop manner, avoiding
the method of avoiding risks through machine reorganization.
In this paper, we mathematically describe the conditions for
forming flexible kinematic boundaries, and then we resolve this
problem into a fast-solvable optimization problem through a
series of transformations. We perform air-cutting on the formed
machining paths, incorporate them into the CAD system or
carry out pocket milling tests in production. Preliminary physical
experiments show that this method is feasible and has unique
advantages over existing open-loop methods. In future research,
we will give a more accurate estimate of the security membership
function and extend the method to higher-order kinematically
constrained problems.
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I. INTRODUCTION

AS AN advanced manufacturing technology, CNC
machine tools are widely used in the fields of machinery

manufacturing, automobile industry, aerospace and intelligent
robot automatic production, and play an important role in
intelligent manufacturing. For example, in the field of machin-
ery manufacturing, as the demand for mechanical precision
parts becomes more and more diverse and personalized. The
precision machining of these parts can be realized by applying
the numerical control machining technology on the numerical
control machining equipment, which meets the needs of fast
product update and high precision. For another example, in the
field of aerospace, the demand for high-precision and differ-
entiated parts is increasing rapidly, involving large parts such
as wings and fuselages, and processing of complex curved
surfaces such as propellers and turbine blades. These parts
have high requirements for strength, stiffness and reliability.
It is very high, but the material has poor rigidity and complex
structure, which cannot be completed on ordinary machine
tools. High-end CNC machine tools can meet the processing
requirements of high speed, high precision and high flexibility.

Therefore, the comprehensive performance of CNC machin-
ing equipment, including the size of the machining area,
cutting torque, rigidity, etc., has also become more and more
strict [1]. If high-value parts have processing safety problems,
or even be damaged due to equipment failure, it will not only
cause huge direct economic losses and production interrup-
tions, but also slow down the development of manufacturers.
However, the fact is that the current machine tool design rarely
considers the impact of various failures on product quality.
Even if the failure probability of the machine tool itself is
small, the supply of external causes such as grid instability
may still cause equipment failure. In addition, machine design
is also difficult to change after installation. In particular, some
old machine tool manufacturers may have gone bankrupt,
so parts manufacturers cannot get technical support. At this
time, there is a very urgent need to add preventive measures for
processing risks. Therefore, a more effective type of solution
in practice is to start reducing the machining quality risk of
the part during the machining design stage and take related
preventive measures.

Based on the above facts, this study proposes an
operation-friendly strategy that can be implemented in the
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open-loop phase of velocity planning to control machining
risks. Considering that excessive processing speed is the main
cause of wear, tool breakage and shutdown accidents during
processing, here we intend to control the existing processing
risks from the aspect of speed planning. The price of improv-
ing processing safety is sacrificing part of the processing
speed, or processing efficiency. However, we try to give a
reasonable trade-off strategy for this decision to ensure the
maximum possible efficiency improvement within a certain
security range.

To achieve this, we employ a time-optimal velocity planning
framework. Since the speed bound determines the maximum
speed of the processing process, a reasonable boundary deci-
sion means the corresponding processing safety level. In fact,
the kinematic boundary of velocity planning was proposed
early to suppress vibration to a certain extent [2]. Moreover,
in some cases, the preference index during processing can be
understood as a linear combination of certain kinematics and
dynamics [3]. Based on this idea, it is theoretically feasible to
understand the safety of the machining process as a mapping
of certain kinematics of the planning process. Specifically,
we realize the combination of kinematic bounds and temporal
optimization through the technique of fuzzy optimization [4],
so that a reasonable set of Pareto bounds is selected for the
cutting process. We have carried out some theoretical analysis
of the model, and found that this framework can be finally
classified into a class of traditional speed optimal control
problems. In the end, we achieved the desired result through
several stages including: de-fuzzy the original model to be
“crisp”, normalizing the objective function, and non-linear
optimization algorithms. Overall, our approach here is easier
to implement for work related to traditional CNC failover.
We know that mechanical adjustment is the most direct way to
solve related problems. But this method requires dismantling
the mechanical structure, which is very expensive to maintain.
In addition, the method here is also an extension of the speed
planning algorithm, which is more flexible than technologies
such as filters.

II. LITERATURE REVIEW

The literature involved in this work comes from two
general directions, one strand is related to speed planning.
Traditionally, time-optimal feedrate planning along a given
parametric tool path is of significant importance for achieving
this goal in the CNC systems ([5], [6], [7], [8]). The feedrate
planning problem is usually formulated as a time-minimum
optimal control problem under kinematic constraints such as
confined feedrate, axis acceleration, jerk, and even jounce, and
efficient algorithms have been proposed to solve the problem.
The acceleration bounds are introduced to reduce inertia and
prevent mechanical shocks. The jerk and jounce bounds are
used to generate smooth feedrate profiles aimed at improving
the machining quality. Different models and algorithms have
been designed to obtain feedrate planning. For instance, [9]
discussed a sequential algorithm for the computation of a
minimum-time speed profile over a given path. Reference [10]
proposed an integrated jerk-limited method of minimal time
trajectory planning with confined contour error. Reference [11]

proposed a novel feedrate scheduling method for generating
smooth feedrate profile conveniently with the consideration
of both chord error and kinematic error. In fact, the velocity
curve obtained by this basic planning algorithm is still easily
affected by external shock and structural vibration. Some
work on modifying the input curves to suit the machining
characteristics also accompanies them. Well-known techniques
such as input shaping ( [12]), or Finite Impulse Response
(FIR) filtering ([13], [14]) have been integrated to minimize
residual vibrations. However, filtering introduces unavoidable
delay and induces large contouring errors in multi-axis motion
that must be compensated ([15]). Alternatively, it is reasonable
to integrate the handing method into the planning process
which is before the cutting process. Such strand involves the
error compensation consideration. For instance, [16] proposed
a double Taylor expansion-based contouring error estimation
method for spatial contours; [17] presents a new contour error
pre-compensation method that integrates analytical prediction
of contour error, optimal path-reshaping model for five-axis
machining; [3] incorporate the axis error constraints into
the conventional feedrate planning model to cope with the
inaccuracy problem in the cutting process.

The other strand is risk assessment and management for
CNC. According to the view in [18], in actual CNC engi-
neering problems, most of the occurrence of a fault has an
interaction, and hence the traditional methods cannot identify
the interaction between faults. Thus, correct corrective mea-
sures cannot be taken, resulting in repeated faults in the use
of products, thus reducing the reliability of product. For this
reason, many decision evaluation models in fault diagnosis
have been developed accordingly. Reference [19] proposed
Interpretive Structural Modeling (ISM)/Analytical Network
Process (ANP) Accurately to describe the relationship between
CNC equipment failures and identify reliability weakness.
In the study of [20], the explanatory structural model approach
was adopted to realize the hierarchical structure of the fault
propagation model through matrix transformation and decom-
position. In order to accurately describe and explore the
relationship between CNC equipment faults and identify the
weak links of reliability, a new method for CNC equipment
related fault analysis based on social network analysis (SNA)
was proposed in [21]. Reference [22] proposed a comprehen-
sive risk assessment model in which multiple techniques are
combined to generate a Failure Mode and Effects Analysis
(FMEA) model for generating a comprehensive failure mode
ranking. Risk management is also a difficult task relative
to risk identification. It is often necessary to estimate the
likelihood of occurrence and impact on the manufacturing
process during the risk assessment phase to prioritize risks
and to determine the most appropriate risk mitigation strategy
during the mitigation phase [23]. There are many strategies
to ensure the safety of CNC machining. For instance, A
3D vision-based time-of-flight sensor is proposed in [24] to
provide in-depth information about the manufacturing scene,
which can be used by the proposed method to make effective
decisions to automatically detect and avoid collisions for safe
toolpaths in the production process. Reference [25] presented
an optimization method for CNC high-quality operation to
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obtain optimal machining process parameters. Reference [26]
proposed a method to satisfy a given spindle power constraint
during the optimization process by iteratively adjusting the
value of the feedrate plan in each production cycle. In addition,
there has also recently been work on safety assurance for
robots similar to CNC. For instance, a safe Bayesian optimiza-
tion algorithm has been developed, which guarantees that the
performance of the system never falls below a critical value
[27]. Generally speaking, there is relatively more work on risk
identification, while the work on safety management focuses
on virtual scenes (CAD/CAM process) and tool parameter
optimization.

III. TIME-BOUND OPTIMAL PLANNING MODEL WITH
FUZZY KINEMATIC CONSTRAINTS

In this section, we propose a practical model to reconcile
the efficiency-security dilemma. Aim to describe the flexible
bound set for the constraints, we will introduce the fuzzy
set theory which helps to model the problem. To begin with,
we introduce some basic concept about the fuzzy set.

A. Fuzzy Set Theory Principles

Let X be the universal set with its elements denoted by x .
Membership of the element x to a classical subset G (also
known as crisp set G) of X is defined by the following
characteristic function:

µG(x) =

{
1, x ∈ G,

0, x /∈ G.

When the valuation set {0, 1} is replaced by the closed set
[0, 1], we can define a fuzzy set A through its membership
function µA(x). It associates with each element x in X a
real number in the interval [0, 1]. Therefore, A is completely
characterized by the following description set:

A = {[x, µA(x)] : x ∈ X, 0 ≤ µA(x) ≤ 1}.

For instance, if we choose X = R, A = R+
∪ {0}, and the

membership of A to be (in Fig.1):

µA(x) =


1, 0 ≤ x ≤ 1,
1
2

−
1
2

sin(x −
3
2
)π, 1 < x ≤ 2,

0, x > 2.

Thus, µA( 3
2 ) =

1
2 , µA( 7

4 ) =
1
2 −

√
2

4 , µA(3) = 0. We can find in
this case, 3 /∈ A, and 3

2 , 7
4 ∈ A however 3

2 belongs to A “more
than” 7

4 belongs to A. In a word, the concept of the fuzzy
set is an extension to the classical set, i.e. it not only defines
which element belongs to the set but also describe how much
it belongs to this set. Always, in the following discussion we
denote the fuzzy set A to be Ã.

B. Crisp Kinematic Constraints

In CNC domain time-optimal planning problem is of sig-
nificant importance, which has attracted many researchers.
The goal of that is to generate the feedrate to finish the
given cutting curve under the given kinematic information and

Fig. 1. Membership function defined upon R+
∪ {0}.

other constraints. The bound of the constraints is predefined
considering the mechanical properties of the machine tool
and the lathe itself. Mathematically, it can be described as
following:

min T s.t. |vτ | ≤ Vmax, |aτ | ≤ Amax (III.1)

The numerical solution of this problem can be perfectly
solved through many methods like [5] and [6]. For concision,
we denote this problem to be P0.

We assume that the value of the bound Vmax and Amax
are to be chosen from V and A . It is easy to find that
given the bound values (Vmax, Amax) ∈ V × A , a feasible
solution v, a, T can be expressed as the function of the bound
pair (Vmax, Amax). This means that there exists an “induced
projection” F from the pair of bound setting value V × A
to the solution space (v, a, or T ):

Fs : V × A → S .

This means that Fs(Vmax, Amax) = s, s = v, a, T . Here,
without loss the generality we denote s = v, a, T in the
solution space S . Thus, we can view this problem from
another angle, i.e. v = v(Vmax, Amax), a = a(Vmax, Amax),
and T = T (Vmax, Amax). Correspondingly, an optimal solution
(local or global) from that can also be denoted as: v∗

=

v∗(Vmax, Amax), a∗
= a∗(Vmax, Amax), T ∗

= T ∗(Vmax, Amax).

C. Fuzzy Kinematic Constraints

In the practice, the bound of the velocity and the accelera-
tion are predefined through considering the ability of the lathe
and the machine tool from the history evidence or experience.
It is inapplicable to adopt a fixed bound to implement the
velocity planning considering the potential risk during the
cutting process. The fixed bound can easily bring about the
negative consequence such as the vibration, severe wear or
poor accuracy. All of these negative it may generate is named
as the “insecurity consequence” in this paper. Here, we intend
to ensure a conservative bound though it may sacrifice an
allowable cutting time in order to reconcile the efficiency and
the security dilemma.

Via the fuzzy set theory, we consider the bound pair
(Vmax, Amax) ∈ V × A to be defined upon a fuzzy set,
and also we denote a corresponding membership function
µs, s = v, a, T as well. Specifically, the membership function
is endowed with a special meaning, i.e. it denotes the security
level about each kinematic variable s ∈ S . If µs = 0,
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it denotes under this condition the choice of s is “riskiest”;
when µs = 1, it denotes under this condition the choice of s
is “safest”. Besides, the rest “fuzzy situation” parallels to the
number µs ∈ (0, 1).

Based on the angle above, we describe the imprecise
right-hand side by fuzzy sets. Thus the fuzzy model of the
time optimal problem can be drawn as:

min T s.t. |vτ |≤̃Ṽ max , |aτ |≤̃ Ãmax . (III.2)

The “≤̃” is a comparison symbol in the meaning of fuzzy
set, which is defined according to the membership function
of velocity and acceleration, i.e. µv(x) and µa(x). For further
preparation, we have to predefine the sliding window of Vmax
and Amax, which requires that the permissable relaxed value
must be given. Thus if we assume that V = [Vmax, Vmax +dV ]

and A = [Amax, Amax + d A], the membership function of
s = v, a can be obtained:

µv(x) =


1, x < Vmax,

µ1(x), Vmax ≤ x ≤ Vmax + dV,

0, Vmax + dV < x .

µa(x) =


1, x < Amax,

µ1(x), Amax ≤ x ≤ Amax + d A,

0, Amax + d A < x .

Here µi , i = 1, 2 are two decreasing continuous function;
V = Vmax , A = Amax are the safest limitations; dV, d A are the
permissive slipping bounds. In order to further obtain relevant
theoretical results, we need to make the following assumptions.

Assumption 1: µi , i = 1, 2 are non-increasing functions.
This is mainly based on the experience that the higher the

speed, the faster the tool wear and the shorter the service life.
Compared with the machining form, the influence of cutting
speed and tool material on the tool wear mechanism is more
prominent ([28], [29]). For example, among physical models
describing tool life, an important branch is around Taylor’s
tool life equation ([30]), which relates tool life to cutting speed
in a reverse exponential relationship. Latest development on
Taylor’s equation can be found in [31]. Hence, here we can
assume that the relationship between the maximum speed of
the tool and the safety membership function is non-increasing.

D. Problem Conversion

It is not always to solve the fuzzy optimization problem
(III.2), however in most case which can be converted into a
MO (multi-objective) optimization by considering the follow-
ing relationship:

x≤̃Ṽ ⇔

{
x ≤ V + dV ,

Max{µv(x)}.

x≤̃ Ã ⇔

{
x ≤ A + d A,

Max{µa(x)}.

Here dV and d A are given. We found that while relaxing
the boundary of kinematics, we introduced a corresponding
indicator function, which are µv and µa .

This conversion can be understood in this way, we need to
choose a certain boundary that meets the needs from a more
relaxed boundary. This required boundary is characterized by
the value of the membership function. This method de-fuzzy
the right side of the inequality however introducing additional
optimization goal. Properly speaking, one fuzzy inequality
claims one optimization goal. Accompanied by the defuzzifi-
cation of kinematic constraints, it is also necessary to defuzzify
the objective function. Although the original objective function
is deterministic, after the kinematics fuzzy side is determined,
the objective function needs to be considered within the
more relaxed constraints, i.e., the corresponding membership
function µJ is required. For convenience, we define J = −T ,
then the fuzzy optimization problem (III.2) can be converted
into the following MO problem:

Max{µJ }, Max{µv(vτ )}, Max{µa(aτ )}

s.t |vτ | ≤ Vmax + dV, |aτ | ≤ Amax + d A. (III.3)

Remark 3.1: We have to clarify the fact that if x(u) is a
function with respect to parameter u ∈ 0, then µv(x) is a set,
which is defined as µv(x) = {µv(x(u))|u ∈ 0}. Correspond-
ingly, at this time, max{µv(x)} = max{µv(x(u))|u ∈ 0}. The
same definition is also valid for µa .

We will discuss how to define µJ . At this point, the
choice of the membership function of the objective function
is more subjective, which we will discuss in detail later in
the experimental part. Here we discuss theoretically how to
choose the membership function of the objective function.
Intuitively speaking, it is similar to the membership function of
the kinematics constraint, we need to first calculate the value
range of the index function. According to the characteristics
of the time-optimal problem, we can easily find that these
two boundaries should be the solutions of the following two
problems P1 and P2:

P1 :

Max J
s.t
|vτ | ≤ V, |aτ | ≤ A.

P2 :

Max J
s.t
|vτ | ≤ V + dV, |aτ | ≤ A + d A.

Hence, considering each bound pair (Vmax, Amax) ∈ V ×A
to be defined upon a fuzzy set corresponding to a certain index
J , we can define the membership function of the objective
function as following:

µJ (x) =


0, x < J−,

µ0(x), J−
≤ x ≤ J+,

1, J+ < x .

Here, J− and J− are the corresponding solution of P1 and
P2; µ0(x) is an increasing function to be given. Therefore, the
original fuzzy problem is transformed into a Problem(III.3).

Problem (III.3) is a standard multi-objective optimization,
which is the computational process of simultaneously opti-
mizing two or more conflicting objectives subject to a set of
constraint functions. Gerenally, for non-trivial multi-objective
problems, there is not a single solution that simultaneously
optimizes all objectives. Instead, there is set of solutions
for which, when attempting to improve an objective, other
objectives get worse. These solutions are called Pareto opti-
mal or Pareto efficient solutions. The solution methods can
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be categorized into many groups including methods with
a priori articulation of preferences, methods for a posteriori
articulation of preference, methods with no articulation of
preferences and genetic algorithms. Most of these either reflect
decision-maker’s priori or posteriori preferences to represent
the complete Pareto optimal set. Given the variety of methods
in this section, the question arises as to which method is
the best. Unfortunately, there is no distinct answer. In this
paper, from the practical angle as well as the induction facility
we adopt Max-Min method, which is a method with no
articulation of preferences. It is worth mentioning that the
analysis in the following part is representative, similar results
can also be established through other multi-objective optimiza-
tion conversion method. Hence, we consider the following
max-min problem (MMP):

Max Min {µJ , µv(vτ ), µa(aτ )}

s.t |vτ | ≤ V + dV, |aτ | ≤ A + d A. (III.4)

Thus if we define:

λ = Min {µJ , µv(vτ ), µa(aτ )},

then the Max-Min problem (III.4) can be reduced into a crisp
single objective optimization:

Max λ

s.t



|vτ | ≤ V + dV,

|aτ | ≤ A + d A,

λ ≤ µ0(J ),

λ ≤ µ1(|vτ |),

λ ≤ µ2(|aτ |),

0 ≤ λ ≤ 1.

(III.5)

we denote which as λ − M M P or Q0. The conversion is
based on the Lemma below, detail about which can be referred
to [32].

Lemma 3.2: The optimal problem MMP (III.4) is equal to
λ − M M P (III.5).

E. Property of the Converted Problem

In this section, our aim is to establish the relationship
between the proposed model and the traditional one. As what
we have discussed above, the Max-Min conversion is one of
the considered methods, however whose exploring techniques
is representative. Thus, we take interest in some properties
of the λ − M M P . To begin with, we introduce some useful
concepts and lemmas:

Lemma 3.3: The optimal velocity curve of the problem P0
is unique and maximum at each point.
Proof: According to the result from [8]. ■

Definition 3.4: For any pair Vmax , Amax , problem
P0(Vmax , Amax ) is bang-bang with respect to velocity
and acceleration, if and only if the velocity(axis or both) and
acceleration(axis or both) curve of the optimal solution from
this problem reach their bounds both. We call this situation
the “same bang-bang”, or “S-bang-bang”.

We have to make a detailed description of this definition.
The “bang-bang” defined here is unlike the traditional def-
inition, which is much more strong. As it is know to all,
in the acceleration constraint case, the traditional bang-bang
will surely occur, i.e. acceleration must reach its bound alter-
natively. However, S-bang-bang also claims that the velocity
reaches its bound even if there is just one point on the velocity
curve reaches the bound. We have to give an assumption as a
fundamental hypothesis to develop a key theorem.

Assumption 2: If the problem P0(V + dV, A) is S-bang-
bang, thus for any pair (Vmax , Amax ) ∈ V × A = [V, V +

dV ] × [A, A + d A], P0(Vmax , Amax ) is also S-bang-bang.
Especially at this time, we say V × A is cross-valid.

This assumption can ensure the S-bang-bang occurring in
a domain if the pair of the upper bound of V and the lower
bound of A is S-bang-bang. Intuitively, this inference estab-
lished itself in one dimension, nevertheless this assumption is
a little strong in some sense. The case becomes much more
complex in the multi-axis case, and strict proof is to be given.
However, the assumption used here will not undermine the
universal property of the following results.

Lemma 3.5: Supposing that V × A = [V, V + dV ] ×

[A, A + d A] is cross-valid, thus for P0(Vmax , Amax ), denote
functions with two variables:

πs = Minµs(Fs(Vmax , Amax )).

Here, s = v, a, j . Thus πv and πa are continuous functions
with respect to Vmax and Amax respectively; π j is strict
monotonous function with respect to (Vmax , Amax ).

Proof: It is easy to check that πv =

Minµv(v(Vmax , Amax )) = µv(Maxv(Vmax , Amax )) =

µv(Vmax ). The first equation holds because of the definition
of Fs , the second equation holds because that µv is a
decreasing function, and the last equation holds because
that V × A = [V, V + dV ] × [A, A + d A] is cross-valid.
It is continuous under the definition of µv . The affirmation
establishes to πa as well.

Besides, according to Lemma (3.3) it is easy to verify that
π j is strict monotonous function with respect to (Vmax , Amax ).
■

Assumption 3: π j is continuous with respect to
(Vmax , Amax ).

In fact, Assumption 2 is necessary for us to develop the
following ratiocination, which is weak however can not always
holds since we know the monotonous property does not
implies the continuity. Based upon the condition above, we can
obtain the following interesting properties.

Theorem 3.6: Under Assumption 1 and Assumption 2, if s∗

is the optimal solution of the λ−M M P , then πs∗ are the same.
Proof: According to the denotation, we only have to prove

that

π∗

j = µ j (J (V ∗

max , A∗

max )), π
∗

v = µv(V ∗

max ), π
∗

a = µa(A∗

max )

are the same.
In the light of Lemma (3.5) and the Assumption 1 and

Assumption 2, we can conclude that πv is decreasing if and
only if Vmax is increasing, πa is decreasing if and only if Amax

is increasing, and π j is strictly decreasing if and only if either
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Fig. 2. Illustration of the proof in Theorem (3.6). Given any three different
initial values of µs , the optimal value can always be found by fixing one
of them and transforming the other two values. In fact, it is always possible
to obtain the same value for all three µs at the optimum point after a finite
number of steps.

Vmax or Amax is increasing. Thus, we can obtain that if πv

or πa is increasing (or decreasing), then π j is decreasing (or
increasing).

Considering the meaning of λ−M M P , according to Lemma
(3.5) it is equal to find an optimal solution that maximize the
minimal among πs . We consider such a case, in the optimal
point if π j is the smallest one, say π j < πv . Thus, let us
fix Amax , and then as Vmax increasing πv will decreasing and
π j will increasing. In the light of Assumption 2, there exists
such a time that π j = πv . In this time, this renewed state (πs)

is obviously much more optimal than the initial one. This is
a contradiction to the definition of the optimal solution of
λ − M M P . Likewise, if π j > πv we can adopt the same
strategy to fine another feasible solution of λ−M M P which is
supreme than the original one. This means the optimal solution
of λ − M M P must have the property that π j = πv .

Similarly, πa can not be the minimal or maximal strictly
too. Based on the analysis above, the proof is complete. ■

Remark 3.7: Theorem (3.6) is a very important result,
which demonstrate a necessary condition for the optimal
solution with respect to the proposed model. Besides, it is
very convenient for us to check this feature from the optimal
solution. In the result section, we will test this necessary
condition to verify the effectiveness of the model as well as
the numerical method.

IV. FUNCTIONAL FORMS AND PARAMETRIZATION

A. Set Function Selection

Decision in a fuzzy environment is given as an option
that simultaneously fulfills the goal and the constraints of the
problem. Therefore the optimal decision to our problem should
be the element that has the highest membership degree in the
fuzzy set intersection of fuzzy sets representing the objective
function and the constraints ([33], [34], [35]). According to
our theory the set function for velocity and acceleration must
reflect the “safety” concern, which are claimed to be decreas-
ing about these kinematic bounds as the penalty. However,
the set function for the optimal index must be the otherwise
situation. Generally speaking, the choice for this function is
not univocal as long as it can be applied to indicate the

interpretation between the safety and the kinematic bound.
To verify the effectiveness in our model, the set function we
choose here for µ0(x), µ1(x), µ2(x) are monotonous and lin-
ear, which maybe the simplest forms to meet the requirement
of the properties:

µ0(x) =
x

d J
−

J
d J

, x ∈ [J, J + d J ],

µ1(x) =
(V + dV )2

(V + dV )2 − V 2 −
x

(V + dV )2 − V 2 ,

x ∈ [V 2, (V + dV )2
],

µ2(x) =
A + d A

d A
−

x
d A

, x ∈ [A, A + d A].

(IV.1)

Noticing here that the constraint |vτ | ≤ V + dV has been
replaced with |vτ |

2
≤ (V + dV )2, because the latter form

is more convenient for us to implement the numerical in the
following procedure. With this transformation, constraints on
velocity can be expressed linearly.

B. Problem Reformulation

Under our choice of the function form, the corresponding
constraints in Problem (III.5) can be equivalent to:

µ0(−T ) ≥ λ ⇔
(−T )

d J
−

J
d J

≥ λ ⇔ λd J + J + T ≤ 0.

Considering vτ = vτ (u),aτ = aτ (u), then for every u ∈

[0, 1] we have:

µ1(|v
2
τ )| ≥ λ ⇔

(V + dV )2

(V + dV )2 − V 2 −
|v2

τ |

(V + dV )2 − V 2 ≥ λ

⇔ λ(2V + dV )dV + |v2
τ | ≤ (V + dV )2,

µ2(|aτ |) ≥ λ ⇔
A + d A

d A
−

|aτ |

d A
≥ λ ⇔ λd A

+ |aτ | ≤ A + d A.

Thus, the final form of the original problem can be described
in the following form:

Maxλ

s.t



|v2
τ | ≤ (V + dV )2,

|aτ | ≤ A + d A,

λd J + J + T ≤ 0,

λ(2V + dV )dV + |v2
τ | ≤ (V + dV )2,

λd A + |aτ | ≤ A + d A,

0 ≤ λ ≤ 1.

(IV.2)

in which vτ = vτ (u),aτ = aτ (u); and here the function
inequality hold for each u ∈ [0, 1].

C. Parameterization

In this section, we will rewrite problem in a discrete form
which is more convenient for numerical solution. Denoting “′”
to be “ d

du ”, we introduce another two new functions a(u), b(u)

with respect to parameter u:

a(u) = u̇(u)2
=

(
du
dt

)2

,

b(u) = ü =
du̇
dt

=
1
2

(
u̇2)′

=
1
2

a′(u).
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Thus, the kinematic quantities can be written as functions with
respect to a, b:

vτ = τ ′u̇ = τ ′
√

a(u),

aτ = τ ′′u̇
2
+ τ̇ ü = τ ′′a(u) + τ ′b(u).

where τ ∈ {x, y}.
Based upon the preparation above, the infinite optimization

Problem (IV.2) can be approximately converted to a finite state
optimization problem. Preliminarily, the parametric interval
[0, 1] is divided into N equal parts with knots ui =

i
N , i =

0, 1, . . . , N . The length of each sub-interval is 1 =
1
N . Thus,

if 1 is sufficient small, the constraints can be approximately
transformed into a discrete inequalities at each point ui .
Therefore, we use bi = b(ui ), i = 0, . . . , N as the control
variables and the state variables ai = a(ui ), i = 0, . . . , N can
be calculated via bi ≈

ai+1−ai
21

. Noting that the initial values
of a(u) are a(0) = a(1) = 0, for i = 1, . . . , N − 1, we have

ai+1 = 21
i∑

k=1
bk . As a consequence, Problem (IV.2) can be

approximated by the following finite programming problem:

Maxλ

s.t



|τ ′

i
2ai (u)| ≤ (V + dV )2

|τ ′′

i ai (u) + τ ′

i bi (u)| ≤ A + d A

λd J + J ≤ (−
∑ 1

√
ai (u)

)

λ(2V + dV )dV + |τ ′

i
2ai (u)| ≤ (V + dV )2

λd A + |τ ′′

i ai (u) + τ ′

i bi (u)| ≤ A + d A
0 ≤ λ ≤ 1

(IV.3)

in which τ ∈ {x, y}, i = 0, . . . , N .

D. Property of the Solution

Similar to the discussion in the traditional optimal time
planning with kinematic constraint problem, in this section we
intend to establish the existence and the uniqueness condition
of the Problem (IV.3). To begin with, we confirm that if the
solution of the Problem (IV.3) exists, then it is global.

Lemma 4.1: The problem λ − M M P (IV.3) is a convex
optimization.

Proof: The optimized variables are bi (u) and λ. Since
the variables ai (u) are the linear combination of bi (u), thus it
only has to verify the left side of the following constraint is
convex:

λd J + J +

∑ 1
√

ai (u)
≤ 0.

This is equal to that
i∑

j=1

1√
a j (u)

is convex about bi (u)

and λ. Further, if we prove that for any given i , f =
1

√
ai (u)

is convex and then we can obtain the conclusion

considering the linear combination of the convex function
is still a convex function. In fact, we can calculate that:

∂2 f
∂b j ∂bk

=
3
4 a

−
5
2

i

(
∂ai
∂b j

∂ai
∂bk

)
, ∂2 f

∂b j ∂λ
= 0 and ∂2 f

∂λ2 = 0. Accordingly,

the Hessian Matrix H of the function f is:

H =
3
4

a
−

5
2

i


∂2ai
∂b2

1
. . . ∂ai

∂b1

∂ai
∂bN

0
. . . . . . . . . 0

∂ai
∂bN

∂ai
∂b1

. . . ∂2ai
∂b2

N
. . .

0 0 . . . 0


(N+1)×(N+1)

Hence, H =
3
4

a
−

5
2

i ηT η is a positive semi-definite matrix,

where η =

(
∂ai
∂b1

∂ai
∂b2

. . . ∂ai
∂bN

0
)

. As mentioned above, this
completes our proof. ■

Thus, we can draw the following result without render any
proof.

Lemma 4.2: The optimal solution of the λ − M M P (IV.3)
is global.

In fact, the discrete form we used here can be applied the
traditional problem P0 obviously. Here, what intrigues us most
is the relationship between these two solution, which will be
manifested in the following Lemma.

Lemma 4.3: The optimal solution of the λ − M M P (III.5)
is one optimal solution from P0 (in its discrete form).

Proof: Let λ = Min{π∗

j , π
∗
v , π∗

a } is the optimal solution
of λ − M M P (III.5). At this time, we choose the upper
bound of solution with its velocity and acceleration as µ−1

v (π∗
v )

and µ−1
a (π∗

a ). The denotation µ−1
s (·) here means the reverse

function of µs(·), which is reasonable because of the mono-
tonicity of the set function. Thus, we only have to prove that
µ−1

j (π∗

j ) is the optimal index with respect to the Problem
P0(µ

−1
v (π∗

v ), µ−1
a (π∗

a )).
On the contrary, if not, consider the optimal solution index

J ∗
= J (µ−1

v (π∗
v ), µ−1

a (π∗
a )) with respect to the problem

P0(µ
−1
v (π∗

v ), µ−1
a (π∗

a )). Recalling that J ∗
= −T ∗, hence due

to its optimality, we have

J (µ−1
v (π∗

v ), µ−1
a (π∗

a )) > µ−1
j (π∗

j ).

This means we find a three-number set (µ j (J ∗), π∗
v , π∗

a ),
which is a feasible solution of λ − M M P (III.5),i.e. there
exists λ̄ = Min{µ j (J ∗), π∗

v , π∗
a }. Thus, according to the proof

process in Theorem (3.6), λ can not be the optimal solution
for the λ − M M P (III.5). Combined with the Lemma (4.2),
we can obtain the contradiction. ■

So far, we have obtained several lemmas and results, which
are contributed to the final result. The following result entails
the existence and the uniqueness of the proposed model, which
is also the foundation to ensure the further numerical method.

Theorem 4.4: The optimal solution of the λ−M M P exists,
and moreover it is unique.

Proof: The existence can be obtained from the proof
process in Lemma (4.3) or (3.6). Besides, according to Lemma
(4.3) we can see the solution of λ − M M P is just a solution
in P0, which is unique according to Lemma (3.3). ■

V. ALGORITHM IMPLEMENTATION

The entire problem-solving route is shown in the Fig.(3),
and we will explain it step by step.
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Fig. 3. Model and algorithm flowchart.

A. Algorithm Description

According to the final Problem (IV.3), a convex program-
ming can be written as following.

Min cT x

s.t.


Ax ≤ b;

f (x) ≤ 0;

L ≤ x ≤ U.

Here c, b, L and U are constant column vectors; A is
constant matrixes; f is a convex function and x is the decision
variable vector. Moreover, x = [b1(u), b2(u), . . . , bn(u), λ]

T ,
and all of the const vectors and matrixes can be calculated
according to the constraint conditions in model (IV.3). Besides,
we can find the only nonlinear inequility in the programming
is λd J + J ≤ (−

∑ 1
√

ai (u)
), which is contained in the

function f (x). Compared with the tradition work such as [3],
we can confirm that there is no significant difference in the
computational complexity. The efficiency of the algorithm will
be discussed further in the next subsection. In the light of
the result in Theorem (4.4), we can turn to the numerical
method solve the Problem (IV.3), which in fact is based on
the algorithm in section III-C and the sequential quadratic
programming (SQP) ( [36]). All the numerical solution pro-
cesses are running in Matlab environment, personal PC with
32-bit system, 2.10 GHz inter(R) Core(TM)2 Duo T6570
processor, and 2GB of RAM memory. After the optimal
solution obtained by solving the convex programming problem
(IV.3), the axis velocity at each sampling positions can be
obtained by calculating u̇i =

√
ai (u). Using cubic B-spline

to fit the velocity parameter curve, we can obtain the final
velocity profile with the given interpolation time.

B. Algorithm Efficiency

As we have described in the previous section, the proposed
model can reconcile the dilemma involving the kinematic

performance and security performance. According to the result
in Theorem (3.6) and the Definition (3.4), the result of
the planning curves are also “bang-bang” or “S-bang-bang”.
The algorithm indeed helps us to find a reasonable bound
in the sense of the safety. In order to use the SQP method
to solve Problem (IV.3), the number N of discretizations need
to be given. The selection of N is closely related to the lengths
1si = r(ui ) − r(ui−1) of the line segments r(ui )r(ui+1).
According to the theory of the finite element method, these
lengths need to satisfy 1si ≤ 0.1 mm in order to achieve
high-accuracy computation for most CNC machining. Hence,
a lower bound Nl for N is the smallest integer such that
1si ≤ 0.1 mm for i = 1, . . . , N . Furthermore, N should be
large enough for the tool-path to be sufficiently subdivided.
Combining these two factors, an experimental lower bound
for N = Max{50, Nl}.

In this section, we select the number of the discretied
points to compromise between accuracy and efficiency. When
considering both accuracy and efficiency, the lower bound
Nl are chosen from 100 to 800, with which we can test
the planning time using the algorithm. As we have known,
a low discrete level can result in an unsmooth curve, especially
for the acceleration at the bang-bang switching junction. This
natural dent on the curve can break the intended bound in the
planning process, though in a small magnitude. We introduce
the overshoot off the bound to be a criterion to test the
planning accuracy. The related result are illustrated in the
Table (I). The time is recorded after the implementation of
the programming by 50 steps.

We can find that the numerical efficiency will be decreas-
ing drastically as the Nl increasing. This is mainly due
to the nonlinear part in the programming. However, it can
be viewed from the results that the optimal index will
be stable after the 200 discretizations, and at the same
time the corresponding planning time and the overshoot are
satisfied.
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TABLE I
ALGORITHM EFFICIENCY TO SOLVE THE PROBLEM (IV.3)

C. Experiment Setup

In this section, we use the proposed method to cope with
a practical problem. The cutting curve “Hat” is in Fig.(6)
generated using a spinle with the knots and the coefficients
as follows:

Knots:

[0, 0, 0, 2/48, 10/48, 14/48, 20/48,

28/48, 30/48, 32/48, 40/48, 1, 1, 1].

Coefficients:[
0 −60 −20 0 60 60 20 20 0
0 20 20 60 60 0 −20 −60 0

]
.

We consider the kinematic constraints in three situations:
(1) the safest case: Vmax = 100mm/m, Amax =

300mm/m2;
(2) the riskiest case: Vmax = 150mm/m, Amax =

600mm/m2.
(3) the fuzzy case: the slip window are dV = 50mm/m,

d A = 300mm/m2.
The choice of membership function usually requires more

considerations. As discussed in Section (III-C), empirical
methods and statistical procedures are important methods for
constructing membership functions. If we have further tool and
material information, we can construct other types of fuzzy
functions to better reflect the characteristics of the problem,
for instance [37] and [38]. No matter what kind it chooses,
the form must comfort to Assumption (1). However, without
further information on the machine and tool material, it is
sufficient to use linear features to represent its safe motion
boundaries. In this way, we only need to calculate the values
of the two endpoints of the membership function. By solving
the two optimization problems in Eq.(IV.1), we can obtain
the corresponding kinematic membership function and index
membership function according to the formula Eq.(IV.1) as in
Fig.(4).

The initial and terminal axis velocities and axis accelera-
tions are all zero. The number N of discretizations is set to be
200 in the algorithm. A man-made CNC machine is used here
to implement the experiment, whose implementation principle
is illustrated in Fig.(5). The interpolation time chosen here
is set as 0.01s, and the encoder is set to capture the output
location. To illustrate the velocity and acceleration clearly,
a filter algorithm is also used to depict the final result.

VI. RESULTS AND DISCUSSION

In this section, we conduct two sets of experiments on the
described problems. The first set of experiments is to use the

Fig. 4. Set functions.

CNC in Fig.(5) for air cutting. Here, we intend to describe
the cutting path, but do not cut the specific object. In the
second set of experiments, we perform pocket milling with the
milling tool manufactured by cemented caribide method, and
analyzed it by observing the smoothness of the cutting objects
under different kinematic constraints. Finally, we compare and
discuss other open-loop methods.

A. Air-Cutting Result

Fig.(7) and Fig.(8) are the velocities and accelerations with
the safest and riskiest bound under air cutting. Viewed from
the pictures, we can see the solutions are bang-bang, i.e. at any
time, either velocity or acceleration reach their bound, in fact
which correspond to the traditional case described in Lemma
(3.3). Also, we can find that the solutions are “S-bang-bang”
in the light of our theory (3.4). Thus, it is also reasonable
for us to choose these two bounds, which lays the foundation
of Assumption (2) and hence the solution domain V × A
is cross-valid. Besides, the cutting time are 3.46s and 5.56s
respectively. We can see that it will sacrifice the cutting time
to a great extent though using the safest bound can ensure that
the CNC machine functions well.

Fig.(9) are the velocities and accelerations with flexible
bounds. Through the fuzzy optimization method we obtain
the recoiling bound of the kinematic constraints as V =

72mm/s, A = 269mm/s2. We can find that the structure of
the solutions are the same as the traditional ones. In fact,
according to our results above (Lemma (4.3)), the results must
be bang-bang. Besides, it is easy to check that the cutting time
is 4.52s and the corresponding safety index about the optimal
index is J = −T , in which the velocity safety index and the
acceleration safety index are the same, namely:

λ∗
= Min{π∗

j , π
∗

v , π∗

a } = π∗

j = π∗

v = π∗

a = 0.64.

This result verifies our important result Theorem (3.6).
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Fig. 5. CNC machine used in the experiment.

Fig. 6. Hat curve.

Fig. 7. Safest bound solution.

B. Milling Process and Safety Test

To assess safety of machine tools and all the consumables
(e.g. tools) a simple target machining operation (e.g. milling)
should be considered. We use pocket milling operations which
require speed and acceleration profiles to be properly handled,
to avoid vibrations and quick tool wear phenomenon like
cutting edge notching. In this section, we perform pocket
milling with the proposed algorithm, and the milling tool is

Fig. 8. Riskiest bound solution.

Fig. 9. Fuzzy bound solution.

manufactured by cemented carbide. The milling results are
illustrated in Fig.(10): from left to right—risk bound, safe
bound, fuzzy bound— the red circled area we illustrate in
picture show the smoothness of machined parts.

Here we reflect the safety level of the processing process by
measuring the surface roughness. On the surface of a machined
part, there will always be many small uneven peaks and
valleys. The degree of these uneven peaks and valleys is the
so-called surface roughness of the part. The surface roughness
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Fig. 10. Milling results from left to right: risk bound, safe bound, fuzzy bound.

of machining is caused by plastic deformation during cutting
separation, high-frequency vibration of the process system,
friction between the tool and the machined surface, etc. For
precision parts, the surface roughness should be reduced as
much as possible to improve the surface quality of the parts.
This is also an important criterion for measuring the quality
of machining. For example, due to the vibration generated by
the high speed, streaks or corrugated marks will be drawn on
the processed surface, and the surface roughness value will
increase significantly.

We found that when the bound with the highest risk, that
is, the largest kinematic bound, there are obviously a lot of
rough fine lines in the circled area of the machined part,
indicating that there are various rough patterns. In the same
area, when using the safest kinematic bound, these rough
markings become blurred or disappear (middle image). When
we use fuzzy kinematic bound, the level of object wear is
in between. Some wear features are still present in the lower
circled area, but the article is overall smoother in the upper
circled area.

C. Comparison

In this section, we compare our method with the other
representative open-loop optimization method proposed in [3]
and [39]. We introduce several indexes to investigate the effec-
tiveness of our proposed method, which includes the contour
error, the overshoot over the acceleration bound, the calculate
efficiency, and the processing time.

To make a comparison, we consider the kinematic values
as follows: Vmax = 100mm/s, Amax = 400mm/s2 for the
nominal case. The number N of discretizations is set to be
150 in the algorithm as that in the proposed method. For the
fuzzy case, the value above is set to be the risky bound, and
the slipping window are dV = 50mm/s, d A = 200mm/s2 as
that in the basic case. We implement the nominal case to
obtain the tracking error, which will be used as the bound
for the dynamic constraint as that in [3]. Moreover, input in
the nominal case will be shaped using the method in [39] by
applying series of n-FIR filters for higher order trajectories.
Here, we choose n = 2 and each of the type for the filter is
as lowpass response, window with Kaiser (β = 0.5), 48KHz.
The initial and terminal axis velocities and axis accelerations
are all zero.

To make reasonable comparison, we have to to describe
how to use the previous method to achieve the same effect
as the proposed method. The center issue is how to allocate
the kinematic bound Vmax and Amax to generate a similar
effect as the proposed method. Theoretically, we should
check all the pairs (Vmax, Amax) ∈ V × A to find the
optimal bound adapted to various algorithms. But this is
not practical, because this pairing is infinite. In this sense,
the fuzzy algorithm can reflect its unique advantages. Back
to our problem itself, here we consider the detection of
nodes within the confidence interval, we divide the interval
into five equal parts, and then take the corresponding pair
(Vmax, Amax) ∈ V × A . Considering the effect of different
combinations on the results, we set the testing values for
Vmax as 60, 75, 90; for Amax as 250, 300, 350. (Vmax, Amax) ∈

{(60, 250), (75, 300), (90, 350), (60, 350), (90, 250)}. These
pairs will be used for algorithm in [3] and [39]. To be specified,
the bound of tracking error in [3] is set according to these
pairs as well, which is generated after first implemented
by the algorithm in [3] and record the simulation error by
Simulink in Matlab. The results for these two methods are
shown in Table.(II) and Table.(III).

After the previous methods, we select the “good” pair
from Table.(II) and Table.(III) to make a further compar-
ison with the fuzzy bound algorithm, which is shown in
Table.(IV). Overall, from Table.(III) we can view that the FIR
method can achieve a smoothing effect on acceleration with-
out significantly increasing processing time, thereby reducing
vibration. However, the FIR method greatly increases the
contour error due to the introduction of a time-lag factor.
Viewed from Table.(II), the dynamic constraint method can
fundamentally eliminate the hidden danger of acceleration
beyond the bounds. The very reason is due to the fact that the
dynamic constraints is bang-bang which entail the reduction
of acceleration. However, the cost is increased processing
time and reduced algorithm efficiency. From the comparison
results of the final three algorithms in Table.(IV), in addition
to the acceleration curve vibration, the fuzzy bound (FB)
method does not completely achieve zero overshoot, but it
will also reduce the out-of-bounds effect to some extent as
N increases. Considering the bounds obtained in practice,
the curve obtained by FB method is also safe. Since the
optimal combination we find here is approximate, in practice
the process of finding the right combination through the other
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TABLE II
ALGORITHM COMPARISON FOR DYNAMIC BOUND CASE

TABLE III
ALGORITHM COMPARISON FOR FIR SHAPING CASE

TABLE IV
OVERALL ALGORITHM COMPARISON WITH N = 150. FB=FUZZY BOUND, DB=DYNAMIC BOUND

two methods will be more time-consuming. This is another
advantage of the FB method. Generally speaking, the proposed
method here is better than the previous two representative
methods.

VII. CONCLUSION

We knew that the direct implementation of a “bang-bang”
trajectory on a physical system with non-specialized controller
can induce tool vibrations and overshoot of the nominal
acceleration limits. This negative effect may bring about a
series of serious consequences in the process of production.
To circumvent the inherent limitation within the time-optimal
framework, we propose a time-bound optimal model to recoil
the kinematic bound and the safety of the CNC machine.
Fuzzy set theory is used here to construct the flexible bound.
This may be of great help while handling situations where
the value of the bound is imprecise due to subjective human
evaluation or to inconsistent evidence. Especially, we explore
some properties of the new model, some of which are similar
to the conventional ones however with its particularity. The
proposed safety index not only shares a favorable property,
but also its correctness is conveniently to be checked in the
practice. The whole model can be reduced into a convex
programming problem, which is trackable to implement the
numerical algorithm. Finally, we make an experiment on a real
CNC machine to verify the proposed model and the method.

As for industrial application, machine design is always
difficult to change after installation. In particular, some
old machine tool manufacturers may have gone bankrupt,
so parts manufacturers cannot get technical support. Hence,
our method is a feasible way to add preventive measures
for processing risks. This situation is more pronounced, for
instance, for many high-precision NC machining processes
which require high-order kinematic constraints, such as jerk,

jounce ([40], [41]), etc. The proposed method here can easily
obtain the high-order kinematics boundary under the safety
performance, so as to effectively avoid other problems in the
machining process, such as vibration and so on. Also, the
related domain such as the robotic manipulators can be applied
to as well ([42], [43]). For some special handling tasks, such as
storage robot path planning and large-scale repetitive planning
strategies, it is necessary to carry out a safe and continuous
working environment and meet certain efficiency. Therefore,
it is an important application to use this kind of open-loop
planning to find the speed boundary under the ideal safety
performance. Our method also has limitations. The descrip-
tion of the membership function requires a large number of
statistical results to complete, and there are fewer examples
for reference in practice, so more estimates are often based
on experience. How to efficiently estimate the membership
function requires some advanced machine learning methods,
which will be an important work for us in the future.
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