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Abstract. In this paper, a new algorithm is proposed to interpolate G01 codes
in 2D milling. Without resorting to smooth curve approximation, the algo-
rithm makes full use of the acceleration bounds to change directions with
optimal velocities at the cutter location points designated by the G01 codes,
and then makes global lookahead and optimization to generate time-optimal
interpolation of the G01 codes. The algorithm is realized and tested on NC
wood carving machine, showing that when compared with the classical equal-
velocity corner-turning method, the current method can reduce the machining
time by 14%-115%, while maintaining better details than the classical method.
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1. Introduction

G01 code interpolation is a basic task in NC machining [1], [2], [4], [8], [9], [12]. A
series of G01 codes for 2D Cartesian machining gives a piecewise linear trajectory
in the plane composed of edges and vertices. Under bounded accelerations in the
x-axis and y-axis, for fixed interpolation period, feedrate bound and shape error
tolerance, for a series of G01 codes with zero boundary velocity constraints, a time-

optimal interpolation algorithm outputs a new series of G01 codes whose piecewise
linear trajectory is within the shape error tolerance with the input trajectory, such
that on the new trajectory, the motion on each new edge takes one interpolation
period, the motion along the whole trajectory obey the acceleration, feedrate and
boundary velocity constraints, and the whole motion time is minimal among all
motions satisfying above constraints.

This work was partially supported by Program 2011CB302404, NSFC 10925105, 60821002/F02.



2 Hongbo Li, Xiaoshan Gao, Lixian Zhang and Ruiyong Sun

There are three kinds of algorithms generating time-optimal interpolations
of G01 codes. The first kind is by smoothing the trajectory globally, making
time-optimal interpolation on the smooth trajectory, and then sampling along
the smooth trajectory for each interpolation period [6], [11], [14]. The second kind
is by smoothing the trajectory locally, i.e., at each vertex of the input piecewise
linear trajectory, constructing a smooth curve blending the two edges of the vertex,
then making time-optimal interpolation and sampling on the smooth trajectory
[3], [16], [17].

The above two kinds of algorithms cause two shape errors, one from the
approximation by smooth curve, and the other from sampling along the smooth
curve to generate new G01 codes. The third kind of algorithm is by discrete in-

terpolation and direct corner turning [5], [10], [15]. By discrete interpolation we
mean generating new G01 codes without resorting to any smooth approximation
of the input trajectory. By direct corner turning we mean at each vertex of the
input piecewise linear trajectory, the motion from one edge to the other is within
one interpolation period. As a consequence, the new G01 codes have all their ver-
tices on the input trajectory. This kind of interpolation has the advantage of small
shape error in that the new vertices approximate the old ones along the edges of
the input trajectory.

At each vertex of a piecewise linear trajectory, the displacement sa along one
edge to the vertex in one interpolation period T gives the incoming velocity sa/T ,
and the displacement sb from the vertex along the other edge in one interpolation
period gives the outgoing velocity sb/T . The difference between the two velocities
gives the acceleration of the corner turning: a = (sb − sa)/T 2. Conversely, an
acceleration vector at the vertex gives the incoming velocity and outgoing velocity
by vector decomposition into the two edges. Obviously the two velocities need
not be zero. The goal is to maximize them under given acceleration, feedrate and
boundary velocity constraints.

The following equal-velocity method is classical in direct corner turning: at
each vertex, the incoming velocity always equals the outgoing velocity as scalars
[13]. Then the acceleration at each vertex is caused only by the change of direction
of the motion, so it always follows the bisector direction of the angle formed by
the two edges at the vertex.

It turns out that this choice of acceleration at corner turning does not max-
imize the allowable incoming velocity and outgoing velocity. This is the starting
point of our research on discrete interpolation. We find out that optimizing the
sum of incoming velocity and outgoing velocity is a problem of linear programing
for linear object function, no matter if the constraints upon the dynamics of the
two axes of the machine is acceleration, jerk, jounce and the like.

In this paper, we propose to adopt different velocities at different edges of
a vertex. The purpose is to maximize the sum of incoming velocity and outgo-
ing velocity for the motion to change direction from one edge to another in one
interpolation period. This is our different-velocity corner-turning method.
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To develop a time-optimal interpolation algorithm from the different-velocity
method, the following problems need to be solved: (1) how to construct the corner-
turning acceleration vector at each vertex under given acceleration, feedrate and
boundary velocity constraints; (2) if the maximal allowable velocity at one edge
of a vertex cannot be reached by the motion from the other end of the edge, how
to make velocity-optimal corner turning under the same dynamic constraints?

In this paper, we first investigate the basic problem of time-optimal discrete
interpolation within a line segment under bounded accelerations, feedrate and
fixed endpoint velocities. The difficulty lies in minimizing the motion time which
is an integer variable. This is the content of Section 2 and Section 3. We then
consider velocity-optimal corner turning under given acceleration bounds. This is
the content of Section 4. These are local optimal considerations of the interpolation
problem. In particular, the velocity-optimal corner turnings provide upper bounds
for each of the velocities at the ends of the edges in the input trajectory.

For a whole piecewise linear trajectory with zero boundary velocity con-
straints, in order for the motion starting from one end of the trajectory to reach
the other end with zero terminal velocity, a lookahead strategy is necessary. This
strategy updates the upper bounds for the velocities at the ends of the edges in
the whole trajectory. With these endpoint velocity upper bounds, a forward chas-
ing algorithm is designed to globally optimize the endpoint velocities (not their
upper bounds!). Then an interpolation procedure is carried out to every edge and
every corner of the trajectory, leading to a series of interpolated G01 codes that is
time-optimal. These are the central part of the paper and is in Section 5.

The algorithms are implemented in C language and integrated with the Blue-
sky NC system developed by Shenyang Blue-sky NC Co. Ltd. for wood carving
machine. Real-time wood carving of different surface designs show that when com-
pared with the equal-velocity corner turning method, the new different-velocity
corner turning method can reduce the the milling time by 14%-115%, depending
on the choice of acceleration and feedrate bounds. Meanwhile, the carved wood de-
signs have much clearer details and fewer errors than by the equal-velocity corner
turning method.

2. Continuous model and discrete model

Let there be a 2D cutter motion and an interpolation period T in NC machining.
In this paper we usually set T = 1 for convenience, and call it the sampling period.

The continuous model of G01 codes refers to sampling the motion trajectory
by assuming the time variable to be continuous. This model is currently used by
many NC systems. For example, if a motion on a straight line follows a constant
velocity v, then the position sequence is by sampling x = vt + x1, and is

x1, x1 + v, x1 + 2v, . . . , x1 + tv. (2.1)

If a motion follows a constant acceleration a, then the velocity sequence and po-
sition sequence are by sampling v = at + vx1

and x = at2/2 + vx1
t + x1, and for
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x1 = 0 and vx1
= 0, are respectively

0, a, 2a, . . . , ta,
0, 0.5a, 2a, 4.5a, . . . , 0.5t2a.

(2.2)

The discrete model of G01 codes refers to defining velocity and acceleration
respectively by first-order and second-order differences of positions on the motion
trajectory. In discrete geometry, the velocity vector v(t) and acceleration vector
a(t) at instance t where t is an integer, are defined by the position vector x(t) at
instance t by

v(t) := x(t) − x(t − 1),
a(t) := v(t) − v(t − 1).

(2.3)

The discrete model is also used frequently in CNC systems. In comparison,
for a motion on a straight line with constant velocity, the motion plan based on
the continuous model is identical to that based on the discrete model. However, for
a motion of constant acceleration, the position sequence in the second row of (2.2)
indicates that in the discrete sense, the motion no longer has constant acceleration,
as by (2.3), the sequences of discrete velocity and acceleration are respectively

0, 0.5a, 1.5a, 2.5a, . . . , ta − 0.5a,
0, 0.5a, a, a, . . . , a.

(2.4)

The discrete velocity vd(t) in (2.4) is related to the sampling sequence of continuous
velocity vc(t) in the first row of (2.2) by

vd(t) =
vc(t) + vc(t − 1)

2
. (2.5)

Given a line segment [x1, x2], if the motion from x1 to x2 has constant velocity,
the motion time described by the discrete model is the same with that by the
continuous model. If the motion has constant acceleration a and initial velocity
vx1

, then in the continuous model, the motion time tc satisfies

x2 − x1 = tcvx1
+

t2c
2

a, (2.6)

while in the discrete model, the motion time td satisfies

x2 − x1 = (vx1
+ a) + (vx1

+ 2a) + · · · + (vx1
+ tda) = tdvx1

+
td(td + 1)

2
a. (2.7)

Hence td < tc.

Let td = tc − τ . Substituting it into (2.7), we get

a

2
(t2c − 2τtc + τ2) + (

a

2
+ vx1

)(tc − τ) − (x2 − x1) = 0. (2.8)

By (2.6),

tc + τ2

2
= τ(

1

2
+

vx1

a
+ tc). (2.9)
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So

τ =
1

2
+

vx1

a
+ tc −

√

(
1

2
+

vx1

a
+ tc)2 − tc ≤

2tc

1 + 2tc +
√

1 + 4t2c
. (2.10)

If tc ≥ 1, then td and tc differ by less than half the sampling period. Because of
this, for very small sampling period and constant acceleration or velocity motion
on a line segment, the difference between the two models are negligible.

3. Discrete interpolation on a line segment

We start with the simplest 1D case of linear interpolation. Given a line segment
[x1, x2] on the x-axis, let the maximal velocity and maximal acceleration on the axis
be vm, am respectively, and let the initial velocity at point x1 and the terminating
velocity at point x2 be vx1

, vx2
respectively. The motion interpolation problem

contains three aspects:

1. Under the distance, speed and acceleration limits on the line segment, deter-
mine whether or not the initial speed can be changed into the terminating
speed at a point before the terminal x2. This is the reachability problem.

2. If vx1
< vx2

and no motion can reach vx2
at x2, determine the maximal

reachable velocity at x2.
3. If the terminating speed can be reached, design a motion plan which is com-

posed of a velocity sequence

v(0), v(1), v(2), . . . , v(t), (3.1)

where
• t > 0 is an integer,
• 0 ≤ v(i) ≤ vm is the speed at time i,
• v(0) = vx1

, v(t) = vx2
,

• the acceleration from v(i) to v(i + 1) is within am,
and a position sequence

x(0), x(1), x(2), . . . , x(t), (3.2)

where
• x(0) = x1,
• x(i) is the position at time i,
• x(i) < x(i + 1) ≤ x2,
• if x(t) < x2, then any motion from x(t) to x2 with initial and terminal

velocities both equal to vx2
takes time more than T = 1.

A motion plan is said to be time-optimal if either (a) x(t) = x2 and t is
the smallest among all the motions plans satisfying x(t) = x2, or (b) x(t) <
x2, no motion plan satisfies x(t + 1) = x2 and v(t + 1) = vx2

simultaneously,
and t is the smallest among all motion plans.
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3.1. Reachability

Given initial velocity and terminal velocity vx1
, vx2

, if vx1
= vx2

, the reachability
is trivial. Without loss of generality, assume vx1

< vx2
.

Starting from x1 and accelerating by constant a, the motion at integer in-
stance t arrives at position x with velocity v. In the continuous model,

v = vx1
+ at,

x = x1 + tvx1
+ t2

a

2
.

(3.3)

Define a real function ⌈ ⌉ on R as follows:

⌈x⌉ :=

{

x, if x is an integer;
[x] + 1, otherwise.

(3.4)

Define another function ⌊ ⌋ taking values in [ 0, 1) as follows:

⌊x⌋ := ⌈x⌉ − x. (3.5)

For example, [0.3] = 0, ⌈0.3⌉ = 1, ⌊0.3⌋ = 0.7.
Eliminating t from (3.3), we get

v2 = v2
x1

+ 2a(x − x1). (3.6)

When v = vx2
, solving for t from the first equality in (3.3), we get

t = ⌈
vx2

− vx1

a
⌉. (3.7)

It is the minimal number of sampling periods to accelerate from vx1
to vx2

.
When (vx2

− vx1
)/a is an integer, as long as

x2 − x1 ≥
v2

x2
− v2

x1

2a
, (3.8)

the velocity vx1
at x1 can reach vx2

at x2.
When (vx2

−vx1
)/a is not an integer, the non-decelerating motion of minimal

displacement with initial and terminal velocities vx1
, vx2

in 1 + [(vx2
− vx1

)/a]
sampling periods is first moving with constant velocity vx1

in time ⌊(vx2
−vx1

)/a⌋,
then moving with constant acceleration a in time (vx2

− vx1
)/a. So as long as

x2 − x1 ≥ ⌊
vx2

− vx1

a
⌋ vx1

+
v2

x2
− v2

x1

2a
, (3.9)

the velocity vx1
at x1 can reach vx2

at x2. Obviously (3.9) contains (3.8) as a
special case.

In the discrete model, (3.7) is still valid, while (3.6) is replaced by

x − x1 =
v2 − v2

x1

2a
+

v − vx1

2
. (3.10)

When (vx2
− vx1

)/a is an integer, the reachability is equivalent to

x2 − x1 ≥
v2

x2
− v2

x1

2a
+

vx2
− vx1

2
. (3.11)
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v

vx1

a

vx2

0 t

v

vx1
v’

vx2

a

Figure 1. Reachability: continuous model (left), discrete model (right).

When (vx2
−vx1

)/a is not an integer, the velocity vx2
takes time [(vx2

−vx1
)/a]

to decrease with constant acceleration −a to

v′ = vx2
− [

vx2
− vx1

a
]a = vx1

+ (1 − ⌊
vx2

− vx1

a
⌋)a. (3.12)

The motion of minimal displacement with initial and terminal velocities vx1
, vx2

in 1 + [(vx2
− vx1

)/a] sampling periods is first accelerating vx1
to v′ in the first

sampling period, then in [(vx2
− vx1

)/a] sampling periods accelerating v′ to vx2

with constant acceleration a. The reachability is equivalent to

x2 − x1 ≥
v2

x2
− v′

2

2a
+

vx2
− v′

2
+ v′

=
v2

x2
− v2

x1

2a
+

vx2
− vx1

2
+ ⌊

vx2
− vx1

a
⌋(vx1

+
a

2
(1 − ⌊

vx2
− vx1

a
⌋)).

(3.13)
Obviously, (3.13) contains (3.11) as a special case.

3.2. Maximal reachable terminal velocity

Consider the following problem: given an initial velocity vx1
at x1, for fixed L =

x2 − x1, determine the maximal reachable velocity V at x2, such that the time
(integer) spent from (x1, vx1

) to (x2, V ) is minimal.
In the continuous model, the motion is described by (3.3), so

L = tvx1
+ t2

a

2
, (3.14)

where t is the motion time. When t is an integer, then by (3.6),

V 2 = v2
x1

+ 2aL. (3.15)

When t is not an integer, in our later application of linear interpolation, it is
sufficient to take

V =
√

v2
x1

+ 2aL′, where L′ = [t]vx1
+ [t]2

a

2
, (3.16)

as the maximal reachable velocity.
Of course, (3.16) leaves room for improvement. When t is not an integer,

the minimal motion time to arrive at x2 is [t] + 1. The non-decelerating motion
with maximal terminal velocity at x2 is the following: first accelerate with some
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constant value a′ < a in some time t′ < t, then accelerate with maximal value a in
time [t] + 1 − t′. The t-x graph is similar to Figure 1 right. In the discrete model,
computing integer variable t′ symbolically is difficult.

Below we compute a′, t′ in the continuous model. At time t′, let the velocity
and traveled distance be v′, L′. Then

{

v′ = vx1
+ t′a′,

L′ = t′vx1
+ t′

2 a′

2
.

(3.17)

Similarly, at time [t] + 1,

V = v′ + ([t] + 1 − t′)a,

L − L′ = ([t] + 1 − t′)v′ + ([t] + 1 − t′)2
a

2
.

(3.18)

Solving for a′, t′ from (3.17) and (3.18), we get


















a′ =
L − vx1

([t] + 1) − a
2 ([t] + 1 − t′)2

t′([t] + 1 − t′

2 )
,

V = vx1
+ a([t] + 1) +

L − vx1
([t] + 1) − a

2 ([t] + 1)2

[t] + 1 − t′

2

.

(3.19)

Since L − vx1
([t] + 1) − a([t] + 1)2/2 < 0, V becomes maximal if and only if t′ is

minimal. Although t′ is bounded by 0 < t′ < t and 0 ≤ a′ ≤ a. only a′ ≥ 0 is
nontrivial for t′.

Parabola f(t′) = L−vx1
([t]+1)−a(t′−[t]−1)2/2 has the following properties:

(1) f(∞) = −∞, (2) f(t′) < 0 when t′ ≤ 0. As a′ ≥ 0 is equivalent to f(t′) ≥ 0, t′

is bounded below by the left zero point of the parabola. So when

t′ = [t] + 1 −

√

2(L − vx1
([t] + 1))

a
, (3.20)

V becomes maximal.

3.3. Motion plan on a line segment

In this section we always assume the reachability from (x1, vx1
) to (x2, vx2

), but
no longer assume vx1

< vx2
. If not considering the constraint that the motion time

is an integer, then the time-optimal motion is the following [7]:

In the x-v plane, the motion to the right starting from (x1, vx1
) with constant

acceleration a meets the motion to the left starting from (x2, vx2
) with constant

acceleration a at a point (X, V ). If V ≤ vm then the whole motion is the con-
catenation of the first motion and the inverse of the second motion, else the two
motions each can reach maximal velocity vm, and the interval not passed by the
two motions in [x1, x2] is passed by the motion of constant velocity vm.

Below we discretize the whole motion by sampling the time variable.

Continuous model:
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(3.6) represents the x-v curve (hodograph) starting from (x1, vx1
). The hodo-

graph starting from (x2, vx2
) is similar:

v2 = v2
x2

− 2a(x − x2). (3.21)

Combining (3.6) and (3.21), we get the values of (X, V ) as following:

X =
x1 + x2

2
+

v2
x2

− v2
x1

4a
,

V 2 =
v2

x1
+ v2

x2

2
+ a(x2 − x1).

(3.22)

By (3.8), V ≥ max(vx1
, vx2

).

0 t

v

v1

v

v2

am
-am

0 t

v

v1

vm

v2

am
-am

Figure 2. Time-optimal 1D motion in the continuous model.
Left: vm cannot be reached. Right: vm can be reached.

If V ≤ vm, from (3.22) we get the time t1, t2 spent by starting from x1, x2 to
arrive at velocity V :

t1 =
V − vx1

a
, t2 =

V − vx2

a
. (3.23)

If t1 + t2 is an integer, the motion on [x1, x2] is sampled as follows: for integer
0 ≤ t ≤ t1 + t2,

x(t) =







x1 + vx1
t +

a

2
t2, if t ≤ t1,

x2 − vx2
(t1 + t2 − t) −

a

2
(t1 + t2 − t)2, if t > t1.

(3.24)

If t1 + t2 is not an integer, then when t = [t1 + t2], the motion (3.24) cannot
reach speed vx2

, while when t = ⌈t1 + t2⌉, the motion goes beyond x2. If vx1
≥ vx2

,
a simple method to solve this problem is to preserve an interval [x′, x2] within
[x1, x2], where

x′ = x2 − vx2
−

a

2
, (3.25)

as long as (i) x′ ≥ x1, (ii) (x′, vx2
) can be reached from (x1, vx1

). If vx1
< vx2

, the
interval is replaced by [x1, x1 +vx1

+a/2]. By symmetry, we consider only the case
vx1

≥ vx2
.

If the above conditions (i), (ii) are satisfied, the motion on [x1, x
′] before

sampling is planned according to the initial and terminal velocities vx1
, vx2

, so
that if the arrival time at x′ is not an integer, then with one of the accelerations
0, a, the motion reaches speed vx2

before arriving at x2. If the two conditions are
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not both satisfied, the motion on [x1, x2] before sampling is identical to the motion
of minimal displacement in the reachability analysis.

After sampling, the motion from x1 to a point x12 < x2 reaches speed vx2
.

The motion of constant velocity from x12 to x2 takes less than two sampling
periods. Distance x2 − x12 is called the residue of velocity vx2

at point x2.
In the sampling sequence of positions from x1 to x12, if there exists three

neighboring positions xi1 < xi2 < xi3 such that

min(xi3 − xi2 , xi2 − xi1 ) ≤ x2 − x12 ≤ max(xi3 − xi2 , xi2 − xi1 ), (3.26)

then the subsequence xi1 , xi2 , xi3 can be replaced by xi1 , xi2 , xi2 +(x2−x12), xi3 +
(x2 − x12), so that when arriving at position x2, the residue of speed vx2

becomes
zero. This replacement is called residue absorption.

A B

C D

E A BE=C D

Figure 3. Assimilation of residue: displacement CD is assimi-
lated between displacements AE and EB in the sequence of dis-
placements of a motion plan.

If the residue at x2 cannot be assimilated as above by the motion on [x1, x12],
then starting from x12, the motion with constant velocity vx2

continues [(x2 −
x12)/vx2

] sampling periods. If the motion still does not reach x2, then

ǫ = ⌊
x2 − x12

vx2

⌋ (3.27)

is called the residue ratio of velocity vx2
at x2. In the next section, it will be shown

how the residue ratio can be propagated to the next line segment.
If V > vm, the time tm1, tm2 spent by starting from vx1

, vx2
separately to

reach velocity vm is

tm1 =
vm − vx1

a
, tm2 =

vm − vx2

a
. (3.28)

The total displacements are respectively (v2
m − v2

x1
)/(2a), (v2

m − v2
x2

)/(2a). The
middle segment on [x1, x2] that is not covered by the displacements has length

Lm = x2 − x1 −
v2

m

a
+

v2
x1

+ v2
x2

2a
. (3.29)

It can only be passed with constant velocity vm, and the time taken is Lm/vm.
Below we sample the motion composed of the three stages.

Let

tsum = tm1 + tm2 +
Lm

vm

. (3.30)



Discrete Interpolation of G01 Codes in 2D Machining 11

If tsum is an integer, the sampling sequence of positions is the following: for 0 ≤
t ≤ tsum,

x(t) =



















x1 + vx1
t +

a

2
t2, if t ≤ tm1,

(x1 + vx1
tm1 +

a

2
t2m1) + vm(t − tm1), if tm1 < t ≤ tm1 + Lm/vm,

x2 − vx2
(tsum − t) −

a

2
(tsum − t)2, if t > tm1 + Lm/vm.

(3.31)

If tsum is not an integer, then similar to the case V ≤ vm, the motion can be
modified by either preserving a line segment [x′, x2] if vx2

≤ vx1
, or preserving a line

segment [x1, x
′′] if vx2

> vx1
, or adopting the motion of minimal displacement on

[x1, x2] in the reachability analysis. The occurrence, assimilation and propagation
of residue at x2 are similar to those in the case V ≤ vm.

Discrete model:

The motion plan in the discrete model does not rely on discrete sampling of
a continuous curve, and the time spent to arrive at the destination is always an
integer. In the discrete model, the motion plan relies on the v-x curve, while in the
continuous model, the motion plan relies on both the v-x curve and the v-t curve.

(3.10) is the hodograph of the motion accelerating from (x1, vx1
). The hodo-

graph of the motion accelerating from (x2, vx2
) is obtained from

v = vx2
+ at,

x = x2 − vx2
t −

a

2
t(t − 1)

(3.32)

by eliminating t, and is

x2 − x =
v2 − v2

x2

2a
−

v − vx2

2
. (3.33)

Combining (3.6) and (3.33), we get the maximal velocity v = V as following:

V 2 =
v2

x1
+ v2

x2

2
+

a(vx1
− vx2

)

2
+ a(x2 − x1). (3.34)

By (3.11), V ≥ max(vx1
, vx2

).
If V ≤ vm, from (3.34) we get the time t1, t2 spent from vx1

, vx2
separately to

reach speed V , which is just (3.23). Hence the first subsequence of displacements
starting from vx1

is

vx1
+ at, t = 1, 2, . . . , [t1], (3.35)

and the last subsequence of displacements finishing at vx2
is

vx2
− at, t = [t2], . . . , 2, 1, 0. (3.36)

For i = 1, 2, assume that when t = [ti], the motion starting from (xi, vxi
)

reaches (Xi, Vi). Then X1 ≤ X2, and Vi ≤ V < Vi + a. Hence |V1 − V2| < a, and

X2 − X1 < V1 + V2 + a. (3.37)
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The interval [X1, X2] can always be passed in two sampling periods, and in par-
ticular,

X2 − X1

min(V1, V2) + a
< 2. (3.38)

If the left side of (3.38) is greater or equal to 1, then a new displacement of
length min(V1, V2) + a can be inserted between the two subsequences (3.35) and
(3.36), forming a new sequence S together with the two subsequences. The leftover

X2 − X1 − [
X2 − X1

min(V1, V2) + a
](min(V1, V2) + a) (3.39)

can either be assimilated by the sequence S, or form a residue of vx2
at x2.

If V > vm, let t′m1, t
′

m2 be respectively the time taken by accelerating from
vx1

, vx2
to vm. For i = 1, 2, let the motion starting from (xi, vxi

) arrives at
(Xmi, Vmi) at instance t = [tmi]. Then Xm1 < Xm2, and |Vm1 − Vm2| < a.

If Xm2 − Xm1 < Vm2, then it is the residue of Vm2 at Xm2, and may be
assimilated by the sequence of displacements starting from x1 or x2. If Xm2 −
Xm1 ≥ Vm2, then the displacement from Xm2 − Vm2 to Xm2 takes one sampling
period, while the motion of constant velocity vm on [Xm1, Xm2−Vm2] takes [(Xm2−
Xm1 − Vm2)/vm] sampling periods; the residue

Xm2 − Xm1 − Vm2 − [
Xm2 − Xm1 − Vm2

vm

]vm (3.40)

of vm, if nonzero, may be assimilated by the sequence of displacements starting
from x1 or x2, or form a residue ratio of vx2

at x2.

4. Corner turning in 2D motion

A G01 code series gives a 2D motion whose trajectory is a piecewise linear curve in
the x-y plane composed of vertices and edges. Locally, the motion plan of the curve
is composed of that on each line segment and that at each vertex. The former has
been considered in the previous section. The latter is the content of this section.

In the continuous model, if the velocity of a motion at a vertex is nonzero,
then since the two edges containing the vertex have different directions, the ac-
celeration at the vertex is infinite. If the velocity at each vertex is zero, then the
motion plan of the whole piecewise linear curve is simply the union of the motion
plans each on a different edge. This motion plan does not have good performance
in improving the machining time. So only the discrete model is valid in order for
the velocities at the vertices to be nonzero.

In the discrete model, a corner turning at a vertex P2 refers to moving
from a point P1 on one edge to its vertex P2 in one sampling period, and then
moving from P2 to another point P3 on the other edge in another sampling period.
va = P2 − P1 is called the input velocity, and vb = P3 − P2 is called the output
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velocity. Their lengths and directions are denoted by

va = |P2 − P1|, vb = |P3 − P2|, ea =
va

va

, eb =
vb

vb

. (4.1)

Let ax, ay be respectively the maximal accelerations in the x, y directions.
The acceleration reaches the maximum at the diagonal directions of the rectangle
bounded by the limits, and is

am =
√

a2
x + a2

y. (4.2)

There are all together four vertices of the rectangle:

aI = axex + ayey,
aII = −axex + ayey,
aIII = −axex − ayey,
aIV = axex − ayey.

(4.3)

At a corner turning, the acceleration is related to the input and output ve-
locities as following:

a = vb − va = vbeb − vaea, (4.4)

from which we get

va =
det(eb,a)

det(ea, eb)
,

vb =
det(ea,a)

det(ea, eb)
.

(4.5)

Since va ≥ 0, vb ≥ 0, the zone of allowable accelerations of the corner turning is
the intersection of the rectangle bound with the wedge area bounded by the two
rays −ea, eb, as shown in Figure 4.

By the bang-bang control principle [11], in a time-optimal interpolation and
with the absence of velocity bound, the acceleration at every instant must be on
the boundary of the box [−ax, ax] × [−ay, ay]. We first analyze the relationship
between a, va, vb when a varies along a boundary line segment of the box.

It turns out that there are two kinds of boundary line segments of a:

Leading boundary: When a moves along the boundary line segment, va, vb are
either non-increasing simultaneously, or non-decreasing simultaneously. For
example, in the allowable zone of the top-left corner turning in Figure 4, all
the three line segments A

′
aII , aIIaIII , aIIIB

′ are leading boundaries.
Blocking boundary: When a moves along the boundary line segment, one of

va, vb increases strictly, while the other decreases strictly. For example, in the
allowable zone of the bottom-right corner turning in Figure 4, line segment
aIaII is a blocking boundary, while A

′
aII , aIB

′ are still leading boundaries.

Definition 4.1. A corner turning is said to be leading, if all the boundary line
segments of the acceleration in the allowable zone are leading, otherwise it is said
to be blocking.
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Figure 4. Zone of allowable accelerations of a corner turning.

For example in Figure 4, the first three corner turnings are leading, while the
rest are blocking.

There are two problems in the design of a corner-turning motion:

Free corner turning: Given ea, eb,P2, determine a, va, vb, or equivalently, a,P1,P3,
so that the total velocity va + vb is maximal.

Semifree corner turning: Given ea, eb,P2, va,P1, determine a and vb, or equiv-
alently, a and P3, so that vb is maximized when a takes values in the allowable
zone.

Theorem 4.2. [Free corner turning] Let directions ea, eb be given, and va, vb be
unbounded.

1. If the corner turning is leading, then va + vb is maximized only when the
acceleration vector takes the unique vertex of the rectangle bound that is in
the same quadrant with neither −ea nor eb.

2. If the corner turning is blocking, then va + vb is maximized when the accel-
eration vector takes one of the endpoints of the unique blocking boundary
within the allowable zone.
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Proof. Let the unit vectors along the x-axis and y-axis be ex, ey respectively.
The inequalities on variable a are

0 ≤ va = det(eb,a)
det(ea,eb)

≤ vm,

0 ≤ vb = det(ea,a)
det(ea,eb)

≤ vm,

−ax ≤ vbex · eb − vaex · ea ≤ ax,
−ay ≤ vbey · eb − vaey · ea ≤ ay.

(4.6)

They are all linear. Since the object function va + vb is also linear in a, the opti-
mization occurs at the vertices of the convex set defined by the inequalities.

When vm = ∞, in a leading corner turning, va and vb increases or decreases
simultaneously, and it is easy to show that the optimization occurs at a unique
vertex of the rectangle bound. In a blocking corner turning, it is easy to show that

the optimization occurs on the unique blocking boundary. 2

For example, in Figure 4, for the first three corner turnings, va + vb is max-
imized only when a = aIII . For the rest three corner turnings, the maximization
occurs at one of A

′,aI , one of A
′,B′, and one of aI ,aII respectively.

Theorem 4.2 gives an upper bound of va + vb at a corner turning. When the
corner turning is leading, the theorem gives upper bounds for va, vb. When the
corner turning is blocking, by fixing an acceleration vector optimizing va + vb and
extracting the corresponding values of va, vb, one can take them as optional upper

bounds for va, vb.

The theorem provides a different-velocity approach to corner turning. Locally
and for a leading corner turning, this approach can improve the speed of corner
turning to about three times when compared with the equal-velocity approach.
For example, in a leading corner turning,

• let the incoming ray cuts the horizontal direction by 30◦, and the outgoing
ray cuts the horizontal direction by 40◦. In the equal-velocity approach, the
maximal corner turning velocity is 7.003 times ay, while in the different-
velocity approach, the incoming and outgoing velocities are 22.92 and 19.38
times ay respectively.

• If the horizontal angle of incoming ray is changed to 60◦ while the outgoing
ray is unchanged, the maximal corner turning velocity in the equal-velocity
approach is 2.732 ay, while in the different-velocity approach, it is 9.66 and
6.732 times ay respectively.

Next consider semifree corner turning. The constraint va = P2 − P1 defines
a linear equation in a. In the a-plane, the straight line described by this equation
meets the allowable zone at a line segment. The optimization of vb occurs at
one endpoint. In the case where vb is bounded, the allowable zone is reduced
accordingly.

In the above discussion, we assume that the point of corner turning P2 is
exactly the one given by a G01 code. In general this cannot be guaranteed. Suppose
we have a sequence of displacements A0,A1,A2,A3, where A0,A1 are on the
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input ray of the corner, and A2,A3 are on the output ray, such that |A1A2| = va

is the designed input velocity at the vertex, A1 6= P2 because of error, but A1

is sufficiently close to the vertex, in the sense that traveling along line segment
A1P2 takes less than one sampling period.

The ratio ǫ = |A1P2|/va is called the residue ratio of velocity va. In general,
for a nonzero velocity V at one end B of a line segment, if a motion starting from
the other end A of the line segment reaches V at a point C within the line segment,
and continuing the motion with constant velocity V to reach the endpoint B takes
less than one sampling period, then

ǫ =
|CB|

V
< 1 (4.7)

is called the residue ratio of velocity V . If the residue |CB| cannot be assimilated
by the motion sequence on the line segment, then the residue ratio ǫ has to be
propagated to the next line segment.
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A0

B1
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1−ε
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1−ε

ε

1−ε

1−ε

Figure 5. Proportional propagation of residue ratio.

As shown in Figure 5, let there be a sequence of positions A0,A1, . . ., whose
velocities and accelerations satisfy linear constraints. For i ≥ 1, let vi = Ai−Ai−1.
For i ≥ 2, let ai = vi −vi−1. Now a residue ratio 1− ǫ of v2 occurs at A2, leading
to the following new position of A1 outside line segment A1A2:

B1 = A1 + (1 − ǫ)(A1 − A2) = (2 − ǫ)A1 − (1 − ǫ)A2. (4.8)

Accordingly, the motion towards A2 is advanced to new position

B2 = A1 + ǫ(A2 − A1). (4.9)

If the residue ratio is propagated by proportion, i.e., the new sequence of
positions are

Bi = Ai−1 + ǫ(Ai − Ai−1), i ≥ 2, (4.10)

then the new velocity sequence is

v
′

1 = v1,
v
′

2 = B2 − B1 = v2,
v
′

i = Bi − Bi−1 = (1 − ǫ)vi−1 + ǫvi, i ≥ 3.
(4.11)

As they are all convex combination, all the velocities obey the velocity linear-
inequality constraints.
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The new acceleration sequence is

a
′

2 = a2,
a
′

3 = v
′

3 − v
′

2 = ǫa3,
a
′

i = v
′

i − v
′

i−1 = (1 − ǫ)ai−1 + ǫai, i ≥ 4.
(4.12)

Similarly, these accelerations obey the acceleration linear-inequality constraints.
Under bounded accelerations, if the sum of (a) the residue ratio propagated

to a line segment, and (b) the residue ratio occurred in the motion plan on the
line segment, is greater than or equal to 1, then the integer part of the sum can
be assimilated as single or multiple sampling-period displacement, the rest can
be taken as new residue ratio to continue propagation. If their sum is less than
1, then the two residue ratios can be combined to form a new residue ratio for
propagation.

Now that the residues are caused by time discretization, a natural idea is to
consider concatenating continuous motions on different line segments, combining
the residue time ⌊t⌋ where t < T = 1 with the motion time of the next line
segment, and sampling the continuous time variable. In the following, we show
that this idea does not work.

In Figure 5, suppose all the sampling points after A3 are on line segment
A2A3. Let the motion starting from A3 on the line segment have constant accel-
eration a. Then in the discrete model,

x(t) = (1 − t)A2 + tA3 +
t(t − 1)

2
a. (4.13)

Now on line A0A2, the motion with constant velocity |A1A2| has residue (1 −
ǫ)|A1A2|, and is concatenated with the motion on line A2A3 in motion time ǫ.
The new sampling points are

B
′

i = (1 − ǫ + 3 − i)A2 + (ǫ + i − 3)A3 +
(ǫ + i − 3)(ǫ + i − 4)

2
a, i ≥ 3. (4.14)

In particular,

B
′

3 = (1 − ǫ)A2 + ǫA3 +
ǫ(ǫ − 1)

2
a,

B
′

4 = −ǫA2 + (1 + ǫ)A3 +
ǫ(ǫ + 1)

2
a.

(4.15)

The new velocities are

v
′

2 = v2,

v
′

3 = (1 − ǫ)v2 + ǫv3 +
ǫ(ǫ − 1)

2
a,

v
′

4 = v3 + ǫa.

(4.16)

The new accelerations are

a
′

3 = ǫa3 + (1 − ǫ)(−
ǫ

2
a),

a
′

4 = (1 − ǫ)a3 + ǫ(
3 − ǫ

2
a),

(4.17)
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where a
′

4 definitely can go beyond the acceleration bounds.
Of course, residue ratio propagation at a vertex induces shape error when

compared with the input trajectory. By restricting the lengths of the two sides of
the triangle formed by residue ratio proportional propagation, the shape error can
be controlled within given tolerance.

5. Lookahead technique and global optimization

In the previous section, at each endpoint of an edge in the input trajectory, a
velocity upper bound is generated by local optimization of the corner turning
velocities at the endpoint. For a corner turning with incoming ray ea and outgoing
ray eb, the upper bound vam of the incoming velocity va is also the upper bound
of the terminal velocity of the motion on the incoming edge; the upper bound vbm

of the outgoing velocity vb is also the upper bound of the initial velocity of the
motion on the outgoing edge. These upper bounds do not take into consideration
the availability of the zero boundary velocities of the whole trajectory.

First consider the terminal zero boundary velocity constraint. In order for it
to be satisfied we need to update the velocity upper bound at every end of the
edges in the trajectory. This strategy is called lookahead. The input is a piecewise
linear trajectory with vertices P0,P1, . . . ,Pn, the acceleration bounds ax, ay and
feedrate bound vm, and endpoint velocity upper bounds vbm,i, vam,i+1 for every
edge PiPi+1. For the initial and terminal points of the trajectory, the velocities
are zero, so vbm,0 = vam,N = 0. The output is an update of the endpoint velocity
upper bounds for the edges.

In the lookahead strategy, the input trajectory is chased inversely in that the
motion on an edge PiPi+1 always starts from the terminal Pi+1 and finishes at
the beginning Pi, and at corner Pi with incoming ray ea,i and outgoing ray eb,i,
the motion is from −eb,i to −ea,i.

Lookahead strategy: Start from the last edge of the trajectory, do the follow-
ing:

Step 1: Let the edge be PiPi+1. Set the initial velocity at Pi+1 to be vam,i+1,
and accelerate on the edge from Pi+1 to Pi to obtain a maximal reachable
velocity Vi at Pi.

Step 2: Vi is the outgoing velocity of the current motion at corner Pi. If Vi ≥
vbm,i, then do nothing.

Step 3: If Vi < vbm,i, then set vam,i = ∞ and vbm,i = Vi. By semifree corner
turning at Pi from ray −eb,i to ray −ea,i, compute the new upper bound
vam,i.

When the above steps are finished for the current edge, continue to the next
edge in the inverse order of edges, and do the above steps to the new edge. The
loop finishes when the first edge is reached.

Next consider the initial zero boundary velocity constraint. This time the
chasing of the trajectory is from the first edge to the last, and on every edge
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PiPi+1, it is from Pi to Pi+1. The chasing purposes to fix the incoming velocity
and outgoing velocity at every corner instead of updating their upper bounds. The
procedure is called global optimization. The input is the same as in the lookahead
procedure, except that the endpoint velocity upper bounds for the edges are up-
dated by the lookhead procedure. The output is the endpoint velocities for edges.

Global optimization: Start from the first edge of the trajectory, do the fol-
lowing:

Step 1: Let the edge be PiPi+1. Set the initial velocity at Pi and terminal
velocity at Pi+1 be vbm,i and vam,i+1 respectively. Determine if the initial
velocity at Pi can reach the terminal velocity at Pi+1.

Step 2: If reachable, then do nothing.
Step 3: If not reachable, then compute a maximal reachable velocity Vi from

(Pi, vbm,i) along the edge to Pi+1. It is the incoming velocity at corner Pi+1.
By semifree corner turning at Pi+1, compute the maximal outgoing velocity
V ′ ≤ vbm,i+1. Then set vbm,i+1 = V ′.

When the above steps are finished for the current edge, continue to the next
edge in the input trajectory, and do the above steps to the new edge. The loop
finishes when no edge is left.

Once the endpoint velocities are obtained for every edge, then linear interpo-
lations can be carried out within every edge, with residue ratio assimilation and
propagation taken into account. In this way a global linear interpolation algorithm
is obtained. All the points described by the new G01 codes are on the input trajec-
tory. In particular, if all residue ratios can be assimilated, then the old G01 codes
are subsequences of the new ones.

In the global optimization procedure, either the acceleration vector or the
feedrate reaches its bound except at some blocking corner turnings. When there
is no blocking corner turning, then the global interpolation is time-optimal. In
this case, the result is also symmetric in the sense that if the input trajectory
is reversed, then the output G01 codes are exactly the reverse of the G01 codes
obtained by interpolating the trajectory in the original order.

When blocking corner turning occurs, the current method fails to achieve
global time optimality, nor does it guarantee symmetry of the result. so far it
is still not clear how to do lookahead and global optimization in the presence of
blocking corner turning.

Summing up, the linear interpolation method described above consists of
four procedures: (1) local optimization of corner turning velocities, the output is
upper bounds of the endpoint velocities for every edge in the input trajectory;
(2) lookahead to guarantee zero velocity at the terminal of the trajectory, the
output is updated upper bounds of the endpoint velocities for the edges; (3) global
optimization to fix the endpoint velocities for the edges, at the same time guarantee
zero velocity at the beginning of the trajectory; (4) global linear interpolation
by linear interpolation within every edge, and taking into account residue ratio
assimilation and propagation.
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6. Experiments

The linear interpolation algorithm of the previous section is implemented in C
language and integrated with Shenyang Blue-Sky NC System. A 3D milling ma-
chine for wood carving equipped with this system is shown in Figure 6 left. The
maximal velocity for the X/Y/Z axes are 64/50/10 m/min.

Figure 6. Left: Wood carving milling machine equipped with
Shenyang Blue-Sky NC System. Right: a typical surface with a
vase design.

A typical surface design with an embedded vase is shown in Figure 6 right.
The tool paths of the designed surface all lie in planes parallel to the x-z plane,
so the milling along each path is a 2D task. Some typical tool paths are shown in
Figure 7. Each paths consists of 400-700 G01 codes with many micro-lines.

Figure 7. Some tool paths on the surface with vase design (highlighted).

The generation of endpoint velocities for the edges in the input trajectory can
be done in real time. For the surface with vase design, depending on the setting
of acceleration bounds and feedrate bound, when compared with the classical
equal-velocity corner-turning method, the machining time by the current different-
velocity corner-turning method can be reduced to 13.91%-81.91%.
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Figure 8 shows pictures of the carved vase designs of Figure 6. The left
is by the classical equal-velocity corner-turning method, while the right is by our
different-velocity corner-turning method. The lotus figures are clearly shown in the
right picture, but rather obscure in the left figure. Our method leads to significantly
better machining quality.

Figure 8. Carved wood designs. Left: result by classical equal-
velocity corner-turning method. Right: result by our different-
velocity corner-turning method. Many details are preserved in the
right picture, but are missing or obscure in the left picture.

The following table is a comparison of machining time by the two methods.
The figure is a circle in the x-y plane. The input is a series of G01 codes obtained
by uniform sampling in arclength.

accelerations feedrate machining time machining time improved
(mm/s2) (m/min) Diff-V method (s) Equal-V method (s) by (%)

1000/1000 12 0.139 0.191 37.41
3000/1000 12 0.129 0.184 42.64
3000/3000 12 0.08 0.143 78.75
6000/6000 12 0.057 0.123 115.79

The following table is another comparison of the two methods. The figure is
parabola y = x2 in the plane. The input is a series of G01 codes after uniform
sampling on the x-axis.

accelerations feedrate machining time by machining time by improved
(mm/s2) (m/min) Diff-V method (s) Equal-V method (s) by (%)

1000/1000 12 0.08 0.094 17.5
3000/1000 12 0.068 0.08 17.64
3000/3000 12 0.046 0.064 39.13
6000/6000 12 0.033 0.05 51.51
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7. Conclusion

In this paper, the problem of time-optimal G01 code interpolation within a line
segment by taking into consideration different motion models is first investigated.
Then the problem of 2D corner turning is probed for local optimization of corner
turning velocities, and a method of different-velocity corner turning is established.
After developing techniques for preserving the zero boundary velocity constraints
on the input trajectory, an algorithm is proposed for time-optimal interpolation
without resorting to smooth curve approximation or blending. Real wood carving
experiments show significant improvements in both machining time and machining
quality.

The extension of the method to 3D Cartesian motion is obvious in that a
corner turning in any dimension is a 2D problem. Extending to 5-axis machining
under bounded accelerations seems much the same. Extending to bounded jerk
control can be done when the input and output accelerations at a corner turning
are both zero, but otherwise difficult.
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