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Abstract

In this paper, the problem of optimal feedrate planning along a curved tool path for 3-
axis CNC machines with the acceleration and jerk limits for each axis and the tangential
velocity bound is addressed. It is proved that the optimal feedrate planning must be
“Bang-Bang” or “Bang-Bang-Singular” control, that is, at least one of the axes reaches
its acceleration or jerk bound, or the tangential velocity reaches its bound throughout
the motion. As a consequence, the optimal parametric velocity can be expressed as a
piecewise analytic function of the curve parameter u. The explicit formula for the velocity
function when a jerk reaches its bound is given by solving a second order differential
equation. Under a “greedy rule”, an algorithm for optimal jerk confined feedrate planning
is presented. Experiment results show that the new algorithm can be used to reduce the
machining vibration and improve the machining quality.

Keywords. Feedrate optimization, parametric tool path, confined jerk, velocity limit
surface, analytical solutions for feedrate function.

1 Introduction

The feedrate optimization along curved tool paths is an important problem in CNC ma-
chining. In the feedrate planning, the acceleration on each axis of the machine must be
constrained, because the torque (or force) capabilities of the axes drives are limited. There-
fore, the problem is that how to identify the feedrate along a given path such that the
machining time is minimal without exceeding the capabilities of the actuators.

Bobrow et al [1], Shiller and Lu [2] gave algorithms to determine the minimum-time mo-
tion for a robot manipulator along a specific path (at least a smooth curve) with actuator
torque constraints. Farouki and Timar [3, 4] planned the feedrate for CNC machining with
acceleration bounds on x, y, z axes, and gave a piecewise-analytic expression of the optimal
velocity planning function. Zhang et al simplified the method in [4] for quadratic B-splines
and realized real-time manufacturing on industrial CNC machines [5]. Yuan et al [6] pro-
vided a time optimal feedrate planning method with tangential acceleration and chord error
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bounds. All of the methods mentioned above used the velocity limit curve and its switch-
ing points in the u-u̇ phase plane to obtain an optimal solution which is a continuous time
optimal velocity function along a specific path. Dong and Stori [7] gave a discrete greedy al-
gorithm for the above problem with parametric velocity and acceleration constraints. These
methods are all based on the idea of “Bang-Bang” control, that is, at least one of the axes
reaches its acceleration bound (or torque limit) throughout the motion.

However, the acceleration profile obtained with the above methods has discontinuities,
since the acceleration may change from the maximum A to the minimum −A instantly. These
discontinuities correspond to step changes in the force output demanded of the drive, cause
vibrations and then large contouring errors. One method to reduce vibrations is introducing
jerk constraints along each axis to the original problem, which can generate a continuous
acceleration profile.

When jerk constraints are added, the analysis must be performed in the u-u̇-ü phase
space instead of the u-u̇ phase plane. The new optimization problem becomes more difficult.
However, it is much easier when considering the constraints of the tangential acceleration
and jerk. Such problems have received much attention in the robotics and manufacturing
literature. Altintas and Erkorkmaz [8] presented a quintic spline trajectory generation al-
gorithm that produces continuous position, velocity, and acceleration profiles with confined
tangential acceleration and jerk. Macfarlane and Croft [9] developed and implemented an
online method to obtain smooth, jerk-bounded trajectories with fifth-order polynomials for
industrial robot applications. Their method is near time optimal with confined tangential
jerk and acceleration. Nam and Yang [10] presented a recursive trajectory generation method
that estimates an admissible path increment and determines the initiation of the final de-
celeration stage according to the distance left to travel estimated at every sampling time,
resulting in exact feedrate trajectory generation through tangential jerk-confined accelera-
tion profiles for the parametric curves. Lin et al [11] proposed a dynamics-based interpolator
with real-time look-ahead algorithm to generate a smooth and tangential jerk-confined ac-
celeration/deceleration feedrate profile. Emami and Arezoo [12] introduced a look-ahead
trajectory generation method which determines the deceleration stage according to the fast
estimated arc length and the reverse interpolation of each curve at every sampling time.
They obtained a feedrate trajectory with tangential jerk-confined acceleration profiles for
the NURBS curves. Lai et al [13] further proposed a method which can generate velocities
with jerk limits as well as chord error, speed, and acceleration limits. The method uses a
discrete model and satisfies all these constraints by backtracking at each step.

In order to make full use of the capabilities of the machine tool, it is desirable to solve
the problem with jerk constraints on each axis, because the drivers of the axes of a CNC
machine are controlled independently. Using a jerk limit on each axis will lead to a continuous
acceleration curve for each axis. Dong et al [14] extended their discrete greedy algorithm
[7] by adding parametric jerk constraints. However, none of these prior approaches have
attempted to get an analytical solution for a continuous model with jerk constraints on each
axis.

In this paper, the problem of optimal feedrate planning along a specific curved tool path
~r(u) with at least C2 continuity under the acceleration and jerk limits for each axis and the
tangential velocity bound for a 3-axis machine is considered. First, it is proved that the time-
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optimal feedrate planning must use “Bang-Bang” or “Bang-Bang-Singular” control, that is,
at least one of the axes reaches its acceleration or jerk bound, or the tangential velocity
reaches its bound throughout the motion. Then an optimal feedrate planning algorithm is
given under a “greedy rule”: using the maximal jerk as much as possible.

This algorithm has two key components, which are also the main contribution of this
paper. The first one is how to compute the parametric velocity function after the control
axis and maximal (or minimal) jerk are given. To compute the parametric velocity function,
it is necessary to solve a second-order differential equation, and the analytic solutions are
given. The CASS (control axis switching surface) is also introduced in this paper. The
control axis should be changed when the velocity integration trajectory passes through a
CASS. The second key component is to introduce and use the VLS (velocity limit surface)
for the feedrate planning. It is similar to the VLC (velocity limit curve) in the feedrate
planning with acceleration constraints [1, 2, 3, 4]. The VLS is a surface in the u-u̇-ü space
which limits the parametric velocity and acceleration.

The general idea of this algorithm is to compute the integration trajectory forward from
(0, 0, 0) in the u-u̇-ü space under the limit of VLS and a “greedy rule”; then to compute
the integration trajectory backward from (1, 0, 0) in a similar way; and finally to obtain a
complete velocity integration trajectory with continuous acceleration by connecting the two
integration trajectories.

Experiments are contacted to compare the algorithm with confined jerk with the similar
algorithm with confined acceleration in a CNC machine. The results show that with confined
jerk, the machining vibration can be reduced and the machining quality can be improved
significantly.

The rest of this paper will be organized as follows. Section 2 gives the description
and theoretical analysis of the feedrate optimization problem. Section 3 gives the feedrate
planning algorithm. Section 4 gives the experimental results. Section 5 concludes the paper.

2 Problem description and theoretical analysis

2.1 Problem description

For brevity, the tool path is considered to be a plane piecewise parametric curve:

~r(u) = (x(u), y(u)), 0 ≤ u ≤ 1,

where x(u), y(u) ∈ C2([0, 1]). Furthermore, each segment of the curve is assumed to be
infinitely differentiable. For instance, a cubic B-spline curve and most NURBs curves satisfy
the conditions. In this paper, the tangential velocity bound and the bounds on the x and y
acceleration and jerk components are considered. The extension to spatial paths is relatively
straightforward but more tedious. Denote the derivatives with respect to time t and the
parameter u by dots and primes, respectively:

u̇ = du/dt, x′ = dx/du.

Then, it is obvious that

u̇′ =
ü

u̇
, (1)

3



ü′ =
...
u

u̇
, (2)

and

u̇′′ = (
ü

u̇
)′ =

...
u

u̇2
− ü2

u̇3
. (3)

The tangential velocity is:

v = |d~r/dt| = |~r′|u̇ = σu̇, (4)

where σ =
√

x′2 + y′2. With the tangential velocity bound Vmax, the constraint is

0 ≤ σu̇ ≤ Vmax. (5)

The accelerations on the x and y axes are:
{

ax = ẍ = (x′u̇)′u̇ = x′′u̇2 + x′u̇u̇′,

ay = ÿ = (y′u̇)′u̇ = y′′u̇2 + y′u̇u̇′.
(6)

Substituting (1) into (6), ax, ay can be expressed as
{

ax = x′′u̇2 + x′ü,

ay = y′′u̇2 + y′ü.
(7)

The jerks on the x and y axes are:
{

jx =
...
x = ((x′u̇)′u̇)′u̇ = x′′′u̇3 + 3x′′u̇2u̇′ + x′u̇(u̇′)2 + x′u̇2u̇′′,

jy =
...
y = ((y′u̇)′u̇)′u̇ = y′′′u̇3 + 3y′′u̇2u̇′ + y′u̇(u̇′)2 + y′u̇2u̇′′.

(8)

Similarly, substituting (1) and (3) into (8), jx, jy can be expressed as
{

jx = x′′′u̇3 + 3x′′u̇ü + x′...u ,

jy = y′′′u̇3 + 3y′′u̇ü + y′...u .
(9)

In this paper, u̇, ü, and
...
u are called parametric velocity, parametric acceleration, and

parametric jerk, respectively. Then the feedrate optimization problem becomes to plan the
parametric velocity u̇ ∈ C1([0, 1]), such that the machining time is minimal:

min tf =
∫ 1

0

du

u̇
(10)

under the following constraints: {
u̇|u=0,1 = 0,

ü|u=0,1 = 0,
(11)





0 ≤ u̇ ≤ Vmax/σ,

|ax| ≤ Ax, |ay| ≤ Ay,

|jx| ≤ Jx, |jy| ≤ Jy,

(12)

where Ax, Ay, Jx, Jy are positive constants, denoting maximal accelerations and jerks of x, y
axes, respectively.
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2.2 Optimal solution is “Bang-Bang” or “Bang-Bang-Singular” control

In the optimal problem (10), the control variables are jx, jy. When the solution satisfies
jx = ±Jx or jy = ±Jy on an interval in [0, 1], it is “Bang-Bang” control on the interval.
Otherwise, it is singular control on the interval. If the solution satisfies jx = ±Jx or jy = ±Jy

on the whole interval [0, 1], the solution is called “Bang-Bang” control. If it satisfies jx = ±Jx

or jy = ±Jy only in a proper subset of [0, 1] and satisfies ax = ±Ax, ay = ±Ay or v = Vmax

in its complementary set, the solution is called “Bang-Bang-Singular” control.
This section proves that the solution of the optimal problem must be “Bang-Bang” or

“Bang-Bang-Singular” control, that is, at least one of the axes reaches its acceleration or
jerk bound, or the tangential velocity reaches its bound throughout the motion. In other
words, at least one of equalities ax = ±Ax, ay = ±Ay, jx = ±Jx, jy = ±Jy and v = Vmax

satisfies at every time. When there is an axis whose jerk reaches its bound, it is called the
control axis.

The claim is proved by contradiction. Assume that the optimal parametric velocity
function is u̇, and there exists an interval [u1, u2] in [0, 1], such that none of the v, ax, ay, jx

and jy reaches its bound for u ∈ [u1, u2], i.e., the inequalities in (12) are all strict. Then, for
u ∈ [u1, u2], there exists a positive constant ε0, such that

u̇ + ε0 ≤ Vmax/σ. (13)

From (6) and (8), ax, ay, jx, jy can be expressed as functions in u, u̇, u̇′, u̇′′, denoted by
p1, p2, p3, p4, respectively:





ax = p1(u, u̇, u̇′) = x′′u̇2 + x′u̇u̇′,

ay = p2(u, u̇, u̇′) = y′′u̇2 + y′u̇u̇′,

jx = p3(u, u̇, u̇′, u̇′′) = x′′′u̇3 + 3x′′u̇2u̇′ + x′u̇(u̇′)2 + x′u̇2u̇′′,

jy = p4(u, u̇, u̇′, u̇′′) = y′′′u̇3 + 3y′′u̇2u̇′ + y′u̇(u̇′)2 + y′u̇2u̇′′.

So, for every u ∈ [0, 1], p1, p2, p3, p4 are polynomials in u̇, u̇′, u̇′′. Using (12), there exist
positive constants D1, D2, D3, D4, such that





|p1(u, u̇, u̇′)| ≤ D1 < Ax,

|p2(u, u̇, u̇′)| ≤ D2 < Ay,

|p3(u, u̇, u̇′, u̇′′)| ≤ D3 < Jx,

|p4(u, u̇, u̇′, u̇′′)| ≤ D4 < Jy

(14)

is established for u ∈ [u1, u2].
For every positive ε, construct a parametric velocity function as

∆u̇ =

{
ε(1 + cos π(2u−u1−u2)

u2−u1
) u1 ≤ u ≤ u2;

0 otherwise.

It is easy to show that {
∆u̇|u1,u2 = 0,

(∆u̇)′|u1,u2 = 0,
(15)
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Figure 1: Black curve: original velocity function. Red curve: a better velocity function.

and 



0 ≤ ∆u̇ ≤ 2ε,

|∆u̇′| ≤ B1ε,

|∆u̇′′| ≤ B2ε,

(16)

where B1, B2 are positive constants. In Fig. 1, ∆u̇ is represented by the red curve segment
and (̇u) is represented by the black one.

Let u̇∗ = ∆u̇+ u̇, it is obvious that u̇∗ ∈ C1([0, 1]) from (15). As illustrated by Fig. 1, u̇∗

has the same value as u̇ outside (u1, u2) and is strictly larger than u̇ in (u1, u2). We claim
that when choosing the parameters properly, u̇∗ also satisfies the constraints (11)(12) and as
a consequence, a contraction will be obtained.

For every u ∈ [u1, u2], use first-order Taylor expansion of p3 to u̇, u̇′, u̇′′ to obtain

p3(u, u̇∗, u̇∗
′
, u̇∗

′′
) = p3(u, u̇, u̇′, u̇′′) + ∆u̇

∂p3

∂u̇
(u, ξ(u), η(u), τ(u))

+ ∆u̇′
∂p3

∂u̇′
(u, ξ(u), η(u), τ(u))

+ ∆u̇′′
∂p3

∂u̇′′
(u, ξ(u), η(u), τ(u)),

(17)

where ξ(u) is between u̇ and u̇∗, η(u) is between u̇′ and u̇∗′ , and τ(u) is between u̇′′ and u̇∗′′ .
So ξ(u), η(u), τ(u) are bounded for u ∈ [u1, u2]. Because the partial derivatives of p3 in (17)
are all polynomials in u̇, u̇′, u̇′′, there exist constants F1, F2, F3 such that ∀u ∈ [u1, u2]:





|∂p3

∂u̇
(u, ξ(u), η(u), τ(u))| ≤ F1,

|∂p3

∂u̇′
(u, ξ(u), η(u), τ(u))| ≤ F2,

| ∂p3

∂u̇′′
(u, ξ(u), η(u), τ(u))| ≤ F3.

(18)

Use (14) (16) (17) (18) to obtain

|p3(u, u̇∗, u̇∗
′
, u̇∗

′′
)| ≤ D3 + C3ε,
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where C3 = 2F1 + B1F2 + B2F3. In a similar way, there exist C1, C2, C4 such that:

|p1(u, u̇∗, u̇∗
′
)| ≤ D1 + C1ε.

|p2(u, u̇∗, u̇∗
′
)| ≤ D2 + C2ε.

|p4(u, u̇∗, u̇∗
′
, u̇∗

′′
)| ≤ D4 + C4ε.

Choosing

ε = min{ε0/2, (Ax −D1)/C1, (Ay −D2)/C2, (Jx −D3)/C3, (Jy −D4)/C4},
it can be shown that u̇∗ also satisfies the constraints (11)(12) and the continuity condition.
From (10) and u̇∗ ≥ u̇ for u ∈ [0, 1], u̇∗ > u̇ for u ∈ (u1, u2), it is easy to show that u̇∗ is
a better solution, which contradicts the original claim of optimality of u̇. So the optimal
solution of the problem is “Bang-Bang” or “Bang-Bang-Singular” control.

3 Feedrate planning algorithm

3.1 Integration trajectory

Since the solution to the optimal problem uses “Bang-Bang” or “Bang-Bang-Singular” con-
trol, it is necessary to deduce the parametric velocity function u̇ when any of ax = ±Ax,
ay = ±Ay, jx = ±Jx, jy = ±Jy and v = Vmax satisfies. Using (1), it is easy to show that
once the parametric velocity function u̇ in u is known, the parametric acceleration function
ü in u is determined. Then the two functions u̇ and ü in u determine a curve in the u− u̇− ü
space, which is called integration trajectory. This subsection will discuss how to compute the
parametric velocity function.

Firstly, the solution of parametric velocity function u̇ when any axis reaches its jerk
bound is considered. For example, if the x-axis reaches its jerk bound Jx, the following
second-order differential equation need to be solved :

((x′u̇)′u̇)′u̇ = Jx. (19)

Let f = x′u̇. The differential equation becomes

d

dx
(
df

dx
f)f = Jx.

Let g = df
dx . It becomes

g2f + gf2 dg

df
= Jx.

Let h = g2. The equation above is

dh

df
=

2Jx

f2
− 2h

f
.

Solve the differential equation to obtain

h =
2Jx

f
− C1

f2
, (20)
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where C1 is an integration constant. The above equation can be rewritten as

df

dx
= ±

√
2Jxf − C1

f
.

Solve it to obtain

x− C2 = ±
∫

fdf√
2Jxf − C1

= ±(C1

√
2Jxf − C1 +

1
3

√
2Jxf − C1

3
)/2J2

x , (21)

where C2 is an integration constant. Solve the equation above to obtain

u̇ =
1

2Jxx′
[ω(U +

√
U2 + C3

1 )
2
3 + ω2(U −

√
U2 + C3

1 )
2
3 − C1], (22)

where U = 3J2
x(x− C2), ω3 = 1.

Now the expressions of these integration constants C1, C2 in u, u̇, ü will be deduced for
the later algorithm. Substitute

h = (
df

dx
)2 = (

x′′u̇2 + x′ü
x′u̇

)2.

into (20) to get
C1 = 2Jxf − hf2 = 2Jxx′u̇− (x′′u̇2 + x′ü)2. (23)

Use (21) (23) to obtain

C2 = x± ((x′′u̇2 + x′ü)3 − 3Jxx′u̇(x′′u̇2 + x′ü))/3J2
x . (24)

Then from (23) (24), the integration constants C1, C2 are determined by specifying a known
point on the integration trajectory in the u− u̇− ü space.

If the y-axis reaches its jerk bound Jy, solve the parametric velocity function in the same
way to get

u̇ =
1

2Jyy′
[ω(U +

√
U2 + C3

1 )
2
3 + ω2(U −

√
U2 + C3

1 )
2
3 − C1], (25)

where U = 3J2
y (y − C2), ω3 = 1. It is similar that

C1 = 2Jyy
′u̇− (y′′u̇2 + y′ü)2, (26)

C2 = y ± ((y′′u̇2 + y′ü)3 − 3Jyy
′u̇(y′′u̇2 + y′ü))/3J2

y . (27)

In (22) or (25), if U2 + C3
1 is negative in some interval of u, the expression of u̇ should

be converted, for the convenience of computation. Taking (25) for example, substitute ω by
e

2
3
ikπ (k = 0, 1, 2) to obtain

u̇ =
−C1

2Jyy′
[e

2
3
ikπ(

U

(−C1)3/2
+ i

√
1− U2

(−C1)3
)2/3 + e−

2
3
ikπ(

U

(−C1)3/2
− i

√
1− U2

(−C1)3
)2/3 + 1]

=
−C1

2Jyy′
[e

2
3
ikπe

2
3
i arccos U

(−C1)3/2 + e−
2
3
ikπe

− 2
3
i arccos U

(−C1)3/2 + 1]

=
−C1

2Jyy′
[2 cos

2
3
(arccos

U

(−C1)3/2
+ kπ) + 1].

8



If the x (or y)-axis reaches its jerk bound −Jx (or −Jy), it just need to replace Jx (or
Jy) by −Jx (or −Jy) in the solutions above. In the u-u̇-ü space, the integration trajectories
determined by jx = ±Jx or jy = ±Jy are called type one integration trajectory (abbr. ITR1).

Secondly, the situation when any axis reaches its acceleration bound is considered. For
example, if the x-axis reaches its acceleration bound Ax, the following first-order differential
equation need to be solved:

(x′u̇)′u̇ = Ax. (28)

The above first-order ODE is solved following [1, 2, 3, 4]. Multiplying x′ to both sides of
(28), it becomes

x′u̇(x′u̇)′ = Axx′.

The above equation can be rewritten as

d

du
(x′u̇)2 = 2Axx′.

Solve it to obtain
(x′u̇)2 = 2Axx + C0.

Then the solution is

u̇ =
√

2Axx + C0

|x′| , (29)

where the integration constant C0 = (x′u̇)2−2Axx at a known point (u, u̇) on the trajectory.
The solutions of ax = −Ax and ay = ±Ay are similar. In the u-u̇-ü space, the integration
trajectories determined by ax = ±Ax or ay = ±Ay are called type two integration trajectory
(abbr. ITR2).

Finally, it is easy to know that when v = Vmax satisfies, the parametric velocity function
is

u̇ = Vmax/σ. (30)

The trajectory determined by v = Vmax in the u-u̇-ü space is denoted by ITR3. Note that
the ITR3 determines a unique curve in the u-u̇-ü space.

3.2 Velocity limit surface

Before proposing the algorithm for feedrate planning along curved tool paths, three kinds of
velocity limit surfaces in the u-u̇-ü space due to the velocity, acceleration, and jerk constraints
need to be deduced. The velocity switching curves on the velocity limit surfaces and control
axis switching surfaces will also be introduced in this subsection.

Use (9) to rewrite the jerk limits to be constraints of the parametric jerk
...
u :

(a) When x′y′ 6= 0, the jerk limits are equivalent to
{

f1(u, u̇, ü) ≤ ...
u ≤ g1(u, u̇, ü),

f2(u, u̇, ü) ≤ ...
u ≤ g2(u, u̇, ü),

(31)
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where

f1(u, u̇, ü) =
{

(−Jx − x′′′u̇3 − 3x′′u̇ü)/x′ x′ > 0;
(Jx − x′′′u̇3 − 3x′′u̇ü)/x′ x′ < 0.

g1(u, u̇, ü) =
{

(Jx − x′′′u̇3 − 3x′′u̇ü)/x′ x′ > 0;
(−Jx − x′′′u̇3 − 3x′′u̇ü)/x′ x′ < 0.

f2(u, u̇, ü) =
{

(−Jy − y′′′u̇3 − 3y′′u̇ü)/y′ y′ > 0;
(Jy − y′′′u̇3 − 3y′′u̇ü)/y′ y′ < 0.

g2(u, u̇, ü) =
{

(Jy − y′′′u̇3 − 3y′′u̇ü)/y′ y′ > 0;
(−Jy − y′′′u̇3 − 3y′′u̇ü)/y′ y′ < 0.

Let {
J−(u, u̇, ü) = max{f1, f2},
J+(u, u̇, ü) = min{g1, g2}.

(32)

Then constraints (31) become

J−(u, u̇, ü) ≤ ...
u ≤ J+(u, u̇, ü). (33)

It shows that in every point of the u-u̇-ü space,
...
u has an upper bound J+ and a lower bound

J−.
(b) When x′ = 0, the jerk limits become

{
−Jx ≤ x′′′u̇3 + 3x′′u̇ü ≤ Jx,

f2(u, u̇, ü) ≤ ...
u ≤ g2(u, u̇, ü).

(34)

The first equation of (34) indicates the range of (u̇, ü) on the u section where u satisfies x′ = 0.
The range is limited by two curves x′′′u̇3+3x′′u̇ü = −Jx and x′′′u̇3+3x′′u̇ü = Jx in the u-u̇-ü
space. These curves are called type one velocity switching curve (abbr. VSC1). The second
equation of (34) still shows the upper and lower bounds of

...
u , where now J+ = g2, J− = f2.

(c) When y′ = 0, the analysis to the following equations are similar:
{

f1(u, u̇, ü) ≤ ...
u ≤ g1(u, u̇, ü),

−Jy ≤ y′′′u̇3 + 3y′′u̇ü ≤ Jy.
(35)

The first equation of (35) shows the upper and lower bounds of
...
u , where J+ = g1, J− = f1.

The second equation of (35) indicates the range of (u̇, ü) on the u section where u satisfies
y′ = 0. It is limited by two curves y′′′u̇3 +3y′′u̇ü = −Jy and y′′′u̇3 +3y′′u̇ü = Jy in the u-u̇-ü
space. These curves are also VSC1.

Let J−(u, u̇, ü) and J+(u, u̇, ü) be the expressions defined in (32). The surface J−(u, u̇, ü) =
J+(u, u̇, ü) is called type one velocity limit surface (abbr. VLS1). Obviously, the integration
trajectories cannot go beyond the VLS1.

Using (7), the acceleration limits are
{
−Ax ≤ ax(u, u̇, ü) ≤ Ax,

−Ay ≤ ay(u, u̇, ü) ≤ Ay.
(36)

10



(a) VLS1 and VSC (b) VLS2 and ITR2 (c) VLS3 and ITR3

Figure 2: Three kinds of velocity limit surfaces.

The surfaces ax(u, u̇, ü) = ±Ax and ay(u, u̇, ü) = ±Ay are called type two velocity limit sur-
face (abbr. VLS2). The integration trajectories also cannot go beyond the VLS2. However,
it is easy to see that the ITR2 are on the VLS2. Actually, from any point of the VLS2, there
exists an ITR2 on the VLS2.

The tangential velocity limit (5) induces the type three velocity limit surface (abbr. VLS3)

v = σu̇ = Vmax, (37)

which is a cylinder in the u-u̇-ü space. The integration trajectories also cannot go beyond
the VLS3. Obviously, the unique ITR3 is on the VLS3.

Now there are three kinds of VLS, which are all algebraic surfaces in the following region
of the u-u̇-ü space:

D = {(u, u̇, ü)|0 ≤ u ≤ 1, u̇ ≥ 0}.
It is stated above that the integration trajectories cannot go beyond any of the three kinds
of VLS, that is, the integration trajectories can only be planned in the region determined by

J−(u, u̇, ü) ≤ J+(u, u̇, ü),
−Ax ≤ ax(u, u̇, ü) ≤ Ax,−Ay ≤ ay(u, u̇, ü) ≤ Ay,

σu̇ ≤ Vmax.

Intuitively, this region is just a part of D divided by the VLS, which contains (0, 0, 0), (1, 0, 0)
(see Fig. 2).

Besides VSC1 defined above, there are two kinds of velocity switching curves VSC2 and
VSC3 on the VLS1. Since the tool path is considered to be a piecewise C2 curve, there
may exist discontinuities for x′′′ or y′′′. From (31) (32), they will cause discontinuities of the
VLS1 along certain curves, which are called VSC2. Because each segment of the piecewise
parametric curve is infinitely differentiable, the discontinuities for x′′′ or y′′′ can only occur
in the nodes or connection points of the piecewise parametric curve.

Besides, the set of points (in fact, curves) where the ITR1 are tangent to the VLS1 are
called VSC3. For i = 1, j = 2 or i = 2, j = 1, the ITR1 which are tangent to fi = gj are just

11



the solutions of
...
u = fi or

...
u = gj . Differentiate fi − gj = 0 with respect to u, and use (1)

(2) to obtain:
∂

∂u
(fi − gj) +

ü

u̇

∂

∂u̇
(fi − gj) +

...
u

u̇

∂

∂ü
(fi − gj) = 0.

Substitute
...
u = fi into the equation above to obtain

u̇
∂

∂u
(fi − gj) + ü

∂

∂u̇
(fi − gj) + fi

∂

∂ü
(fi − gj) = 0. (38)

The intersection of (38) and the VLS1: fi = gj is the VSC3.

It will be shown how to decide the control axis. There are two problems: determining
control axis at the starting point and axis switching during the motion.

If integrate
...
u = J+(u, u̇, ü) forward from (0, 0, 0) in the u-u̇-ü space as the current

integration trajectory, it is easy to determine the control axis from (u, u̇, ü) = (0, 0, 0) and
the three cases (a),(b),(c) in section 3.2. For example, when x′(0) > 0, y′(0) > 0, x-axis is
the control axis if and only if g1(0, 0, 0) = Jx/x′ < g2(0, 0, 0) = Jy/y′.

From (32), when integrate
...
u = J+(u, u̇, ü), the expression of the parametric velocity

may change if the values of g1, g2 vary. It means that the control axis should be switched.
So g1 = g2 is called the control axis switching surface (abbr. CASS). For example, if the
integration trajectory passes through a CASS from the region g1 < g2 to the region g1 > g2,
the control axis should be switched from x to y, and vice versa.

The situation is similar when integrating
...
u = J−(u, u̇, ü), and the CASS is then f1 = f2.

When the integration trajectory passes through the CASS from the region f1 > f2 to the
region f1 < f2, the control axis should be switched from x to y, and vice versa. It will
not be mentioned about how to deal with the CASS when integrating

...
u = J+(u, u̇, ü) or

...
u = J−(u, u̇, ü) in the later algorithm.

3.3 Feedrate planning algorithm

The feedrate planning algorithm is designed under a “greedy rule”: use the maximal para-
metric jerk

...
u as much as possible, that is, use the minimal parametric jerk and singu-

lar control only when it has to. The optimal feedrate planning problem with acceleration
bounds [1, 2, 3, 4] uses a similar rule, but the difference is that it cannot be proved that the
“greedy rule” generates a globally optimal solution for the problem. It will be discussed in
the conclusion.

Firstly, the framework of the feedrate planning algorithm under confined jerk is presented.
The specific computational methods in the algorithm will be given later.

Algorithm FP CJ. Feedrate planning with velocity, acceleration and jerk constraints.
Input: ~r(u) = (x(u), y(u)), 0 ≤ u ≤ 1; Vmax, Ax, Ay, Jx, Jy.
Output: The integration trajectory for u ∈ [0, 1].

Step0: Let S = (0, 0, 0).

Step1: Generate a J+ trajectory in the u-u̇-ü space with the maximal jerk by integrating
...
u = J+(u, u̇, ü) forward from S, until the trajectory (if it passes through the CASS

12



first, then change the control axis as previously mentioned) intersects the VLS. Denote
the first intersection point of the J+ trajectory and the VLS by R. If the J+ trajectory
does not intersect the VLS before u = 1, then a forward trajectory for u ∈ [0, 1] is
obtained . Denote its parametric velocity function by u̇f , and go to step4.

Figure 3: This illustrative forward integration trajectory consists of eight segments. The
first segment OR is a trajectory with maximal jerk. The second segment RP is an ITR2

which meets a VLS1. The third segment PQ is a trajectory with minimal jerk started from
a VSC. The fourth segment is also a maximal trajectory which meets a VLS3 but not on
ITR3. The fifth segment is a minimal trajectory started from the ITR3. The sixth segment
is an ITR3 which meets VLS1. The seventh segment is also a minimal trajectory started
from a VSC. The eighth segment is a maximal trajectory ending at u = 1.

Step2: Consider three cases (See Fig. 3 for an illustration):

1) If R ∈ VLS2, then generate an ITR2 from R on this VLS2. There are two cases. If
the ITR2 intersects the VLS1 or VLS3 at a point T , then add the ITR2 between
R and T to the forward velocity function, set R = T , and goto step2. If the ITR2

terminates at u = 1, then add the ITR2 to the forward velocity function and go
to step4.

2) If R is on VLS3 and ITR3, then set the trajectory after R to be the ITR3 until the
ITR3 intersects the VLS1, VLS2 at a point T , or the ITR3 terminates at u = 1.
In the first case, add the VLS3 to the velocity function, set R = T , and goto step
2. In the second case, add the ITR3 to the velocity function and go to step4.

3) Now R ∈ VLS1 or R ∈ VLS3\ ITR3, which means it cannot continue to integrate
with the maximal jerk. Generate a J− trajectory by integrating

...
u = J−(u, u̇, ü)

backward from each point on VSC or the ITR3 after R. If the J− trajectory
starting from point Q on a VSC or the ITR3 intersects the previous trajectory
at point P , where P has the greatest parameter u, then update the trajectory
between P and Q to be the J− trajectory from P to Q.

13



Step3: Let S = Q. Iterate the process of steps 1-3 until u = 1. Denote the parametric
velocity function of the whole forward trajectory by u̇f (see Fig. 3).

Step4: Generate a backward trajectory in the u-u̇-ü space starting from (1, 0, 0) in a similar
way as steps 1-3 until u = 0. Denote the parametric velocity function of the backward
trajectory by u̇b.

Step5: Connect the two trajectories of u̇f and u̇b by J− trajectories. A complete integration
trajectory for u ∈ [0, 1] is obtained.

Remark. The “greedy” rule is used in step 2. When the trajectory meets the VLS1 at a
point, it will pass through the VLS1 and violate the limits if it continues to use the same jerk
control. In other words, it has to decelerate before this happens. According to the definition,
the integration trajectory can meet the VSC at a point in a VSC. That is why the algorithm
generates a J− integration trajectory starting from a point in the next VSC and try to use
this trajectory to decelerate. When the trajectory meets the VLS2 and VLS3, it tries to be
on the VLS since the ITR2 are on the VLS2 and the ITR3 is on the VLS3. In other words,
the algorithm uses the maximal parametric jerk to accelerate as long as possible and then
uses the minimal parametric jerk and singular control such that the velocity, acceleration
and jerk limits (VLS) are not violated.

Concrete computational methods of step2 and step5 in the algorithm are given below. It
will be shown how to connect two J+ trajectories by J− trajectories in step5 firstly.

For step5, because the control of the forward and backward trajectories may have been
switched for several times, u̇f and u̇b are both piecewise-analytic functions. It is needed to
traverse and choose each analytic segment of the forward and backward trajectories respec-
tively, and to connect these two segments by a J− trajectory if there exists such a solution.
After choosing one segment in u̇f and u̇b respectively, there are two cases:

1) The J− trajectory for connection does not pass through CASS. Assume the J− trajec-
tory starts from point (u1, u̇f (u1), üf (u1)) on the forward trajectory to point (u2, u̇b(u2), üb(u2))
on the backward trajectory in the u-u̇-ü space. From (23) (24) or (26) (27), the integration
constants of the J− trajectory can be expressed as C1(u, u̇, ü), C2(u, u̇, ü). The following
algebraic equation system

{
C1(u1, u̇f (u1), üf (u1)) = C1(u2, u̇b(u2), üb(u2)),
C2(u1, u̇f (u1), üf (u1)) = C2(u2, u̇b(u2), üb(u2))

(39)

need to be solved to obtain u1, u2. Then the integration constants of the J− connection tra-
jectory are C1(ū1, u̇f (ū1), üf (ū1)), C2(ū1, u̇f (ū1), üf (ū1)), where ū1 is a solution of equation
(39). Then the J− trajectory for the connection in step5 is obtained.

2) The J− trajectory for connection passes through an CASS. Now the expressions of
the J− trajectory and its integration constants are different in the two sides of the CASS.
Suppose the left side is controlled by jx = −Jx and the right side is controlled by jy = −Jy.
Denote the integration constants of the jx = −Jx trajectory by Cx

1 , Cx
2 and the integration

constants of jy = −Jy trajectory by Cy
1 , Cy

2 . Assume the J− trajectory for connection passes
through the CASS at the point (uc, u̇c, üc), and it starts from the point (ul, u̇f (ul), üf (ul))
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on the forward trajectory to the point (ur, u̇b(ur), üb(ur)) on the backward trajectory. Then,
the following algebraic equation system





f1(uc, u̇c, üc) = f2(uc, u̇c, üc),
Cx

1 (ul, u̇f (ul), üf (ul)) = Cx
1 (uc, u̇c, üc),

Cx
2 (ul, u̇f (ul), üf (ul)) = Cx

2 (uc, u̇c, üc),
Cy

1 (ur, u̇b(ur), üb(ur)) = Cy
1 (uc, u̇c, üc),

Cy
2 (ur, u̇b(ur), üb(ur)) = Cy

2 (uc, u̇c, üc)

(40)

need to be solved to obtain ul, uc, ur, u̇c, üc and the two sets of integration constants of the J−
trajectory for the connection: Cx

1 (uc, u̇c, üc), Cx
2 (uc, u̇c, üc) and Cy

1 (uc, u̇c, üc), C
y
2 (uc, u̇c, üc).

It is similar to deal with the case when the J− trajectory passes through the CASS more
than once.

In general, the solutions of the above equation systems are finite. It just need to compare
these solutions to get an optimal one according to the machining time in (10).

For step2, denote the parametric velocity function of the previous trajectory by u̇1. There
are two cases:

1) Point Q is on a VSC1 or a VSC2. If u = u0 at Q, assume the coordinate of Q
is (u, u̇, ü) = (u0, b, c) and denote the expression of VSC1 or VSC2 on the u0 section by
h1(u̇, ü) = 0 as previously mentioned. Assume u = a at P . Then the coordinate of P is
(a, u̇1(a), ü1(a)). The integration constants of the J− trajectory are C1(u, u̇, ü), C2(u, u̇, ü)
as above. It just need to solve the following algebraic equation system





C1(u0, b, c) = C1(a, u̇1(a), ü1(a)),
C2(u0, b, c) = C2(a, u̇1(a), ü1(a)),

h1(b, c) = 0
(41)

to obtain a, b, c. If the equation system has more than one solutions or there are more VSCs,
the solution with maximal parametric a should be chosen according to the “greedy rule”.
The equation systems occurring later will be dealt with in the same way. The integration
constants of the J− trajectory can be computed by C1(u0, b, c), C2(u0, b, c). Then the J−
trajectory in step2 is obtained.

2) Point Q is on a VSC3 (or the ITR3, the case is similar). Assume the coordinate of Q
to be (d0, b0, c0). From (38), denote the VSC3 by {(u, u̇, ü)|h2(u, u̇, ü) = 0, h3(u, u̇, ü) = 0}.
Assume u = a0 at P . Then the coordinate of P is (a0, u̇1(a0), ü1(a0)). The integration
constants of the J− trajectory can also be expressed as C1(u, u̇, ü) and C2(u, u̇, ü). It just
need to solve the following algebraic equation system





C1(d0, b0, c0) = C1(a0, u̇1(a0), ü1(a0)),
C2(d0, b0, c0) = C2(a0, u̇1(a0), ü1(a0)),
h2(d0, b0, c0) = 0,

h3(d0, b0, c0) = 0

(42)

to obtain a0, d0, b0, c0. The integration constants of the J− trajectory are C1(d0, b0, c0) and
C2(d0, b0, c0). If the J− trajectory passes through a CASS between P and Q, use the method
mentioned above for case 2) of step5 to deal with this situation.
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(a) A parabola (b) A cubic curve

Figure 4: The tool paths of the examples.

So far, a complete integration trajectory is obtained. Its parametric velocity function
satisfies (11)(12) and the “greedy rule”.

The algorithm generates a unique and optimal feedrate planning along specific tool paths
with velocity, acceleration and jerk constraints under the “greedy rule”.

4 Experimental results

In this section, experimental results are presented to compare the machining results with
confined jerk and confined acceleration.

4.1 Computing the feedrate integration trajectory

In this section, the following two examples are used to illustrate the feedrate planning algo-
rithm. First, a simple tool path (see Fig. 4(a)) with only jerk limits is given to show how
the algorithm works.

Example 1.
~r(u) = (10u, 10u2), 0 ≤ u ≤ 1,

Jx = Jy = 104 mm/s3.

The algorithm has the following steps:
1) Firstly, compute the VLS1 and the CASS :

Fig. 5(a): VLS1 J−(u, u̇, ü) = J+(u, u̇, ü);
Fig. 5(b): CASS of maximal parametric jerk g1(u, u̇, ü) = g2(u, u̇, ü);
Fig. 5(c): CASS of minimal parametric jerk f1(u, u̇, ü) = f2(u, u̇, ü).

Then, compute the three kinds of VSC :
VSC1: {(0, u̇, ü) | 104 − 60u̇ü = 0} and {(0, u̇, ü) | 104 + 60u̇ü = 0};
VSC3: {(u, u̇, ü) | 104− 60u̇ü+2 · 104u = 0, 4 · 104u̇− 30ü2 = 0} and {(u, u̇, ü) | 104 +60u̇ü+
2 · 104u = 0, 4 · 104u̇ + 30ü2 = 0};
VSC2 does not exist here.

2) Generate a J+ trajectory forward from (0, 0, 0). The trajectory is controlled by jx = Jx

in the beginning, then intersects the CASS g1 = g2 at u = 0.05 and switches to the control
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Figure 5: The VLS1 and the CASS, where ud = u̇, udd = ü. The unit for u̇ is s−1. The unit
for ü is s−2.
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Figure 6: Forward integration trajectory: (a); backward integration trajectory: (b) and (c).
In the figure, ud = u̇, udd = ü. The unit for u̇ is s−1. The unit for ü is s−2.
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Figure 7: Connect the forward and backward trajectories, where ud = u̇, udd = ü. The unit
for u̇ is s−1. The unit for ü is s−2.

(a) Feedrate (b) Solid: ax; Dotted: ay (c) Solid: jx; Dotted: jy.

Figure 8: Tangential velocity, x, y accelerations and jerks in u. The horizontal axis is the
parameter u ∈ [0, 1].

of jy = Jy. It will not intersect the VLS1 or the CASS before reaching u = 1 (see Fig. 6(a)).
The parametric velocity function of the forward integration trajectory is:

u̇f =





5(6u)
2
3 , 0 ≤ u ≤ 0.05;

5
2u((

√
9u4 − 0.5625 · 10−2u2 + 0.5625 · 10−5 + 3u2 − 0.9375 · 10−3)

2
3

+(
√

9u4 − 0.5625 · 10−2u2 + 0.5625 · 10−5 − 3u2 + 0.9375 · 10−3)
2
3

−0.0168), 0.05 ≤ u ≤ 1.

3) Generate a J+ trajectory backward from (1, 0, 0). The trajectory u̇b is controlled by
jy = Jy in the beginning. It intersects the the CASS g1 = g2 at u = 0.9253, then switches
to the control of jx = Jx. Then it intersects the VLS1 at u = 0.8104 (see Fig. 6(b)). Now,
execute step2 of the algorithm by solving the equation system (41). The only solution is a
jy = −Jy trajectory from the point (u, u̇, ü) = (0, 7.528,−22.14) on the VSC1 at u = 0 to
the point (0.9561, 1.679,−44.86) on trajectory u̇b (see Fig. 6(c)). Then the the backward
integration trajectory is:

u̇b =
{

5
2u(6(1− u2))

2
3 , 0.9561 ≤ u ≤ 1;

3.211
u (2 sin(2

3 arccos(2.0607u2 − 1) + 1
6π)− 1), 0 ≤ u ≤ 0.9561.

4) Connect the integration trajectories of u̇f and u̇b by J− trajectories. Solving the
previous equation system (40), the only solution is that the J− trajectory connects the
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(a) Feedrate (b) Solid: ax; Dotted: ay (c) Solid: jx; Dotted: jy

Figure 9: Tangential velocity, x, y accelerations and jerks in u. The horizontal axis is the
parameter u ∈ [0, 1]

integration trajectories of the second segment of u̇f and the first segment of u̇b, and it
intersects the CASS at u = 0.4336 (see Fig. 7). It is controlled by jx = −Jx for u ∈
[0.1893, 0.4336] and by jy = −Jy for u ∈ [0.4336, 0.9580]. Then the parametric velocity
function of the complete integration trajectory is:

u̇ =





5(6u)
2
3 , 0 ≤ u ≤ 0.05;

5
2u((

√
9u4 − 0.5625 · 10−2u2 + 0.5625 · 10−5 + 3u2 − 0.9375 · 10−3)

2
3

+(
√

9u4 − 0.5625 · 10−2u2 + 0.5625 · 10−5 − 3u2 + 0.9375 · 10−3)
2
3

−0.0168), 0.05 ≤ u ≤ 0.1893;
5.44(2 sin(2

3 arccos(2.6437u− 1.0877) + 1
6π)− 1), 0.1893 ≤ u ≤ 0.4336;

3.124
u (2 sin(2

3 arccos(2.1476u2 − 1.0869) + 1
6π)− 1), 0.4336 ≤ u ≤ 0.9580;

5
2u(6(1− u2))

2
3 , 0.9580 ≤ u ≤ 1.

The smooth feedrate is shown in Fig. 8(a). From Fig. 8(b), the accelerations are con-
tinuous and from Fig. 8(c), the solution is “Bang-Bang” control. The five segments of the
integration trajectory are respectively controlled by Jx, Jy, −Jx, −Jy, and Jy in the u+

direction.

A more complex tool path with sharp turns (see Fig. 4(b)) is also shown. The tangential
velocity bound is added to this example such that the solution is “Bang-Bang-Singular”
control.

Example 2.
~r(u) = (10u, 100(3u3 − 4u2 + u)), 0 ≤ u ≤ 1,

Jx = Jy = 104 mm/s3, Vmax = 200 mm/s.

The smooth feedrate, x, y accelerations and jerks in u are shown in Fig. 9. The solution
is “Bang-Bang-Singular” control. The segments of the trajectory are respectively controlled
by Jy, −Jy, Jy, Vmax, Jy, −Jy, Jx, −Jx, −Jy, and Jy in the u+ direction.
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4.2 Experimental results

In this section, real CNC machining experiments are contacted to compare the interpolation
algorithm with confined jerk presented in this paper and the optimal interpolation algorithm
with confined acceleration presented in [3].

The experiment consists of three steps. Firstly, the feedrate integration trajectory v(u)
is computed with Algorithm FP CJ for a given tool path C(u), u ∈ [0, 1]. Secondly, the
interpolation points of the tool path are computed with the feedrate v(u) and a given sam-
pling period T . Finally, the interpolation points are used to manufacture the tool path on a
CNC machine. The first and second steps are performed off-line.

Note that the above procedure is only used for the convenience of testing the algorithm.
In order to use the algorithm in real CNC controllers, the following approach could be
adopted. The feedrate trajectory v(u) is computed off-line with Algorithm FP CJ. Then
new G codes are generated to include information about the feedrate trajectory. Finally,
the CNC controller is modified to accept the new G codes. If the expression for v(u) is too
complicated, a simpler function, such as the quadratic B-spline, will be used to fit v(u) and
then used as the new feedrate function. This strategy is adopted by many existing work such
as [5, 6, 13, 15]. In particular, industrial CNC machining is realized in [5, 6, 15] using this
approach.

Before describing the experiment, a procedure is given to compute the interpolation
points of the tool path when the feedrate v(u) and a sampling period T are given. If uk is
the parameter value for the k-th interpolation point to be determined and uk−1 is already
known, then the equation that determines uk is:

T =
∫ uk

uk−1

du

u̇
.

From (19), it admits a closed-form integration for jerk limits, which is similar to the accel-
eration case in [3]. Then the above equation becomes

T =
(x′u̇)′u̇

Jx
|uk
uk−1

.

The parameter value uk is computed by numerical method. Since u is a monotonously
increasing function in t, this equation has only one real root.

The experiment is contacted on a 3-axis CNC milling machine (see Fig. 10(a)). A fast
signal acquisition and analysis system LMS SCADAS3 (see Fig. 10(b)) is used to measure
the vibration during the machining.

The test tool path shown in Fig. 12(a) is the curve segment in Fig. 4(a) copied five
times and the feedrate will decrease to zero at each connection point. Two experiments
are contacted to compare the feedrate planning algorithm in [3] with confined acceleration
(abbr. FP CA) and the algorithm FP CJ proposed in this paper. The tangential velocity
bound is Vmax = 80 mm/s and the acceleration bounds are Ax = Ay = 800 mm/s2 for both
algorithms. The jerk bounds for FP CJ are set to be Jx = Jy = 104 mm/s3. The sampling
period T is 1 ms.

Since the CNC machine available to us cannot manufacture metal, wax machining is
used in the experiments. The machining results are shown in Fig. 11, where Fig. 11(a) is the
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(a) The 3-axis CNC machine (b) The vibration test equipment

Figure 10: Experiment setup.

(a) Left: FP CA; Right: FP CJ (b) FP CA (c) FP CJ

Figure 11: The machining results.

whole machined tool path, Fig. 11(b) and Fig. 11(c) are the last segments of the machined
tool pathes for the cases of confined acceleration and confined jerk respectively. Note that
the surface of the machined path is covered with small wax particles from the machining,
which are not easy to remove. Therefore, we check the machining quality from the edges
of the machined path. From Fig. 11(b) and Fig. 11(c), it can be seen that the machining
quality with confined jerk is better than that of confined acceleration.

The above comparison is not quantitative. In Fig. 12, more precise comparisons are
given. Fig. 12(b)-(f) give the theoretical jerk, acceleration, and feedrate in both cases. From
Fig. 12 (e) and (f), the feedrate of the jerk limited trajectory is smoother than that of
the acceleration limited trajectory. In Fig. 12 (g) and (h), vibration frequency spectrum
diagrams of the two tests are given, where the vertical axis is the vibration intensity whose
unit is the gravitational acceleration g, and the unit of horizontal axis is Hz. The spectrum
diagram gives the distribution of the intensity of the vibration at difference frequencies. For
instance, from Fig. 12 (g) and Fig. 12 (h), the strongest vibrations in the cases of FP CA
and FP CJ have intensities 8g and 6.5g respectively and occur when the machine tool
vibrates at frequency 100Hz. From Fig. 12 (g) and (h), vibrations for algorithm FP CA
are significantly stronger than that of FP CJ except at three isolated frequencies: 600HZ,
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Figure 12: Feedrate, acceleration, and jerk of the two algorithms. The horizontal axes for
(b)-(f) are time with unit second.
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850Hz, and 890Hz, where the vibrations in the two cases are comparable. The machining
times of using algorithms FP CA and FP CA are 1.405s and 1.815s respectively. Since
vibration of the machining tool is one of the important factors affecting machining quality, it
can be concluded that machining quality can be improved significantly by introducing jerk
limits with the costs of reducing a reasonable amount of machining time.

5 Conclusion

High speed and high quality machining requires feedrate planning algorithms which provide
continuous position, velocity, and acceleration profiles. This paper presents an optimal jerk
confined feedrate planning algorithm under a “greedy rule”, which generates a smooth and
analytical feedrate function. Experimental results show that the new algorithm can be used
to reduce the machine vibration and improve the machining quality.

It is a significant open problem to show that the algorithm is globally optimal without
the “greedy rule”. The main difficulty is that, for second-order differential equations, there
exist no results similar to the “comparison theorem” for first-order differential equations
(p.25, [16]), and as a consequence, it is not possible to prove that the time-optimal velocity
function will achieve the maximal possible value at any place as in the confined acceleration
case.
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