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Abstract

Aiming at reducing the CNC machining vibration and increasing machining quality, an inter-
polation method for parametric tool paths with confined jounce, jerk, acceleration, and speed is
proposed. An acceleration/deceleration profile with confined jounce, jerk, acceleration, and speed
is proposed and it is shown that this profile is time-optimal to change the speed from one value
to another under the given constraints. For a given parametric tool path, the velocity function
is obtained by first computing the critical points of the tool path where the radius of curvature
reaches extremal values, then determining the feasible maximal speeds at the critical points, and
finally using the jounce confined acceleration/deceleration profile to connect the speeds at the ad-
jacent critical points. A vibration experiment is conducted, which shows that vibration of the
CNC machine decreases significantly for motions under confined jounce than that under confined
acceleration and jerk. Simulation for two real CNC models are given to show the feasibility of the
method.

Keywords. Interpolation, velocity planning, confined jounce, time-optimal, parametric curve,
vibration, high-precision CNC machining.

1 Introduction

Interpolation algorithms, which control how the CNC machine tool moves along the machining path,
is one of the important factors in high speed and high precision CNC machining. In particular, proper
kinematic controls and interpolation algorithms are essential to reduce vibration and achieve high-
precision CNC machining [13]. An interpolation algorithm in the CNC controller usually consists of
two phases: velocity planning and parameter computation. Let C(u)u ∈ [0, 1] be the machining path.
The phase to determine the velocity function v(u) along C(u) is called velocity planning. When the
velocity function v(u) is known, the phase of sampling or computing the next interpolation point at
parametric value ui+1 = ui + △u during one sampling period is called parameter computation.

A key factor to compute the velocity function during velocity planning is to choose an accelera-
tion/deceleration (abbr. AD) profile. An AD profile is the procedure to use different acceleration
and deceleration modes to change the speed from one value to another under certain constraints.
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The simplest AD profile is the linear AD profile, where the acceleration and speed are bounded
or confined. Using a linear AD profile for each axis, Borow [2], Shiller et al [14], and Farouki and
Timar [15] presented a time-optimal velocity planning method for a parametric path. Zhang et al
simplified the method in [15] for quadratic B-splines and realized real-time machining on an industrial
CNC machine [22]. Yuan et al presented a time-optimal velocity planning method with confined
acceleration and chord error [19].

In a linear AD profile, the acceleration can change instantaneously from its maximal value A to
−A, resulting in large vibration of the CNC machine and decreasing the machining quality. A better
AD profile is the S-shape profile, where the jerk is confined. The S-shape AD profile is widely used in
velocity planning [3, 6, 8, 10, 11, 12, 16, 20] to generate motion with confined jerk. Another method
to obtain velocity functions with confined jerk is to use trigonometric function profiles [7]. Comparing
to the S-shape profile, the acceleration function obtained with trigonometric function profiles is not
differentiable. It also does not have the time-optimal property of the S-shape profile similar to Theorem
2.5 in this paper.

The S-shape AD profile increases the smoothness of the velocity function. However, the jerk can
jump from its maximal value to its minimal value. Since change of the jerk reflects the non-smooth
change of acceleration, the profile could still result in vibration and decrease machining quality. Gai
et al [5] used an average filter to improve the S-shape AD profile to obtain a continuous jerk in some
extent. But this method fails to guarantee the continuity of acceleration and is not time-optimal.

A natural way to obtain smoother velocity functions is to use confined jounce. Let F be the
driving force of the CNC servo and Fc the combined cutting force and friction force. Denote the mass
of the axes to be m and let j be jerk. Differentiate j to obtain

d2(F − Fc)

d2t
= m

dj

dt
= ms, (1)

where s is called the jounce or snap, which reflects the instantaneous change of jerk. If the jounce is
confined, a motion with continuous jerk, differentiable acceleration, and C2 velocity will be obtained.

The main contribution of this paper is to design and investigate an AD profile with confined jounce,
and to present an interpolation algorithm for parametric tool paths based on the jounce confined AD
profile.

The key component of the AD profile is a 7-period acceleration profile to increase the speed from
one value to another. The whole AD profile first uses a 7-period acceleration profile to increase the
speed from the initial value to its maximal value, then stays at the maximal value for a while, and
finally uses a 7-period deceleration profile to decrease the speed from its maximal value to the end
value. This paper analyzes the properties of the AD profile in detail and prove that this profile is
time-optimal to change the speed from one value to another under the given constraints.

For a curved tool path given by a set of parametric equations, the sensitive corner approach similar
to that used in [7, 18] is used to compute its velocity function. Firstly, the critical points of the
tool path, where the radius of curvature reaches extremal values, are computed. From these extremal
values and a given sampling period, the maximal speeds that can be reached in these critical points
are determined. Secondly, a backtracking procedure is used to check the reachabillity of the maximal
speeds at each pair of neighboring critical points, that is, whether it is possible to change the maximal
speed at one critical point to the maximal speed at the next critical point within the given tool path
length. In the unreachable case, the speeds at the critical points are adjusted to make them reachable.
Finally, between each pair of critical points, use the jounce confined AD profile to bridge their speeds,
and the final velocity function is the combination of these AD profiles.

A vibration test experiment is carried out to compare AD profiles with confined acceleration, jerk,
and jounce, which shows that the AD profile with confined jounce indeed can be used to reduce
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the vibration of the CNC machine tools and hence is useful to improve CNC machining quality.
Furthermore, simulation results are given for two CNC models to show the feasibility of the proposed
method.

The rest of this paper is organized as follows. In Section 2, the 7-period AD profile with confined
jounce is designed and analyzed. In Section 3, the interpolation algorithm for parametric tool paths
is proposed. In Section 4, experimental and simulation results are given. In Section 5, the paper is
concluded.

2 An AD profile with confined jounce, jerk, acceleration, and speed

In this section, an AD profile for the speed to change from a start value vs to an end value ve within a
distance dm and under confined jounce will be presented. The profile is time optimal under the given
conditions. Since the obtained velocity function has confined jounce, it is C2 continuous.

2.1 A 7-period acceleration profile

In this section, a 7-period acceleration profile to increase the speed from zero to a given value vm > 0
is introduced. The profile will serve as a basic step of our AD profile to be presented in Section 2.4.

The 7-period acceleration profile is given in Figure 1, where the horizontal axis is time t. The
profile is used to increase the speed from zero to vm > 0 in seven periods as marked in the figure. If
the speed is decreased from vm to zero, then the reverse procedure can be used.

Make the basic assumption that the jounce is bounded by a given value Sm:

|s(t)| ≤ Sm. (2)

At the start and end points, the acceleration and jerk are made to be zero, in order to form C2

continuous velocity function with similar velocity profiles. That is

as = ae = 0; js = je = 0.

As shown in Figure 1, the first period with duration t1 is used to increase the jerk from zero to
its maximal value jm with the maximal jounce Sm. In the second period with duration t2, the jerk
has constant value jm and the acceleration is further increased. In the third period with duration
t1, the minimal jounce is used to decrease the jerk from jm to zero and at the same time to increase
the acceleration to its maximal value am. The fourth period with duration t3 and with a constant
acceleration am is used to further increase the speed. The last three periods are anti-symmetric
with respect to the first three periods, which are used to increase the speed to its maximal value
vm and at the same time to decrease the acceleration from am to zero. The whole procedure lasts
tm = 4t1 + 2t2 + t3. It is clear that the 7-period acceleration profile is “bang-bang” in the sense that
at any time, at least one of the quantities v(t), a(t), j(t), s(t) reaches its boundary value.

The 7-period profile is uniquely determined by the three parameters (t1, t2, t3) and the maximal
jounce Sm. Therefore, the triplet (t1, t2, t3) is used to represent such a profile. After a triplet (t1, t2, t3)
is given, it is easy to obtain the expressions for v0(t), a(t), j(t), s(t), (t ∈ [0, tm]), which can be found in
(28) to (31) in the appendix of this paper. It is clear that these expressions have the following form:

s(t) = 6m0

j(t) = 6m0t + 2m1

a(t) = 3m0t
2 + 2m1t + m2

v0(t) = m0t
3 + m1t

2 + m2t + m3
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Figure 1: jounce(s), jerk(j ), acceleration(a), and speed(v)

where mi are constants depending on Sm, s(t) is piecewise constant with three values 0, Sm,−Sm,
j(t) is piecewise linear, a(t) is the integration of j(t) about t and is C1 piecewise linear or quadratic
polynomials in t, v(t) is the integration of a(t) about t and is C2 continuous piecewise linear, quadratic,
or cubic polynomials in t.

From Figure 1 and the formulas (28) to (31), the maximal values jm, am, vm for j(t), a(t), v0(t) can
be respectively obtained:

jm = Smt1, (3)

am = Sm(t1t2 + t21), (4)

vm = 2Smt31 + Smt1t
2
2 + 3Smt21t2 + Smt1t2t3 + Smt21t3 (5)

where Sm is from (2). As mentioned above, jm is reached at t = t1, am is reached at t = 2t1 + t2, and
vm is reached at t = tm = 4t1 + 2t2 + t3. The distance needed for the procedure can be computed as
follows

dm = 4Smt41 + 8Smt31t2 + Smt1t
3
2 + 5Smt21t

2
2 +

9

2
Smt21t2t3 +

3

2
Smt1t

2
2t3

+
1

2
Smt1t2t

2
3 + 3Smt31t3 +

1

2
Smt21t

2
3 (6)

=
vm

2
(4t1 + 2t2 + t3).

Now, suppose that the starting speed is vs and the end speed is ve. From (5),

ve = vs + 2Smt31 + Smt1t2t3 + Smt1t
2
2 + 3Smt21t2 + Smt21t3. (7)

Furthermore, it is easy to show that the distance of finishing the 7-period process is

dmin = 4Smt41 + 8Smt31t2 + Smt1t
3
2 + 5Smt21t

2
2 +

9

2
Smt21t2t3 +

3

2
Smt1t

2
2t3
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+
1

2
Smt1t2t

2
3 + 3Smt31t3 +

1

2
Smt21t

2
3 + vs(4t1 + 2t2 + t3) (8)

=
vs + ve

2
(4t1 + 2t2 + t3) =

vs + ve

2
tm. (9)

2.2 The acceleration profile for the speed to increase from vs to ve

This section will determine how to use the 7-period acceleration profile to increase the speed from vs

to ve when the basic parameters of the CNC machine are given. It will be shown that the acceleration
procedure is time-optimal.

Three basic parameters of the CNC machine will be considered: the maximal jounce Sm, the
maximal jerk Jm, and the maximal acceleration Am. So, the constraints are

|a(t)| ≤ Am, |j(t)| ≤ Jm, |s(t)| ≤ Sm. (10)

Since the 7-period acceleration profile is used, the initial conditions are

as = a(0) = ae = a(tm) = 0; js = j(0) = je = j(tm) = 0. (11)

Without loss of generality, assume that vs ≤ ve.

The purpose of this section is to determine a 7-period acceleration profile to increase the speed
from vs to ve under the constraints (10) and (11). The distance needed for the acceleration procedure
is also given. But the constraint on the distance is not considered in this section. As mentioned before,
to determine the 7-period acceleration profile, one just need to determine (t1, t2, t3).

Firstly, check whether t2 = 0 based on the values of Sm, Jm, Am. From (3) and (4),

Smam = Smjmt2 + j2
m. (12)

Three cases are considered. If Jm
2 > SmAm, then the jerk cannot reach Jm and t2 must be zero.

Assume the contrary, from (12), J2
m + Smt2Jm = Smam. Since 0 ≤ am ≤ Am, t2 = (Smam −

J2
m)/(SmJm) must be negative, which is impossible. As a consequence, t2 = 0.

If Jm
2 = SmAm, j reaches Jm at t1 = Jm/Sm and t2 = 0. When t = 2t1, the acceleration reaches

Am.

If Jm
2 < SmAm and under the assumption that there exist no constraints on the final speed and

the distance, then from (3) and (12), the jerk reaches Jm at t1 = Jm/Sm, the acceleration reaches Am

at t = 2t1 + t2, and t2 = (SmAm − J2
m)/(SmJm) > 0. Of course, if there exist constraints on the final

speed vm, then t2 might be zero, which will be discussed later.

Summarize the above analysis as the following proposition.

Proposition 2.1 1. If Jm
2 ≥ SmAm, then t2 = 0. In this case, the jerk j cannot reach the

maximal value Jm unless the equal sign holds.

2. If Jm
2 < SmAm and there exist no other constraints, then the jerk reaches Jm at t1 = Jm/Sm,

the acceleration reaches Am at t = 2t1 + t2, and t2 = (SmAm − J2
m)/(SmJm) > 0.

In the above analysis, the constraint raised from the final speed vm is not considered. Now consider
how to increase the speed from zero to vm with the 7-period acceleration profile by taking into account
of vm. Two cases are considered due to Proposition 2.1.
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Figure 2: Jerk functions for all possible acceleration profiles

Case 1. Jm
2 ≥ SmAm. By Proposition 2.1, t2 = 0. If the acceleration reaches Am, then from (4)

t1 =
√

Am/Sm. Let

v0 = 2Smt31 = 2Sm(
Am

Sm
)

3

2

.

Then (t1, t2, t3) can be determined as follows

Case 1.1 If vm > v0, then a(t) reaches Am at t = 2t1 = 2
√

Am

Sm
. In order to reach vm, there

exists a constant acceleration phase t3 which can be computed from (5) as follows

t3 =
vm − 2Smt31

Smt21
=

vm − 2Smt31
Am

=
vm − v0

Am
> 0, (13)

where t1 =
√

Am

Sm
.

For i = 1, 2, 3, introduce the symbol t̂i = + if ti 6= 0 and t̂i = − if ti = 0. Then use (t̂1, t̂2, t̂3)
to denote the shape of the 7-period acceleration profile. In case 1.1, the acceleration profile
is (+,−,+) which is shown in Figure 2(c).

Case 1.2 If vm ≤ 2Sm(Am

Sm
)

3

2 , then the acceleration will not reach Am unless the equality holds.
Assume the contrary, from (13), t3 will be negative, which is impossible. Therefore t3 = 0

and t1 will be determined by vm with formula (5): t1 = 3

√
vm

2Sm
. Then, the acceleration

profile is (+,−,−, ) which is shown in Figure 2(d).

Case 2. Jm
2 < SmAm. By Proposition 2.1, if the jerk reaches Jm then t1 = Jm/Sm and if the accel-

eration reaches Am then t2 = (SmAm − J2
m)/(SmJm). Under the above mentioned conditions,
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set

v1 = 2Smt31 =
2J3

m

S2
m

.

v2 = 2Smt31 + Smt1t
2
2 + 3Smt21t2 =

Am(SmAm + J2
m)

SmJm
.

Then (t1, t2, t3) can be determined as follows

Case 2.1 If vm > v2, then both the jerk and the acceleration reach their maximal values and
t3 6= 0 can be computed from (5) as follows

t3 =
vm − v2

Am
=

vm

Am
− (

Jm

Sm
+

Am

Jm
).

The acceleration profile is (+,+,+) which is shown in Figure 2(a).

Case 2.2 If v1 < vm ≤ v2, then t3 = 0, the jerk can reach Jm, and a(t) cannot reach Am unless
vm = v2. Furthermore, t2 is determined by vm from (5) with the following formula

t2 =

√
t21 + 4vm

Jm
− 3t1

2
=

√
J3

m + 4vmS2
m − 3J

3

2
m

2Sm

√
Jm

The acceleration profile is (+,+,−) which is shown in Figure 2(b).

Case 2.3 If vm ≤ v1, then neither the jerk (unless vm = v1) nor the acceleration reaches their
maximal values and t2 = t3 = 0. Furthermore, t1 is determined by vm from (5) as follows:

t1 = 3

√
vm

2Sm
.

The acceleration profile is (+,−,−) which is shown in Figure 2(d).

Based on the above analysis, the algorithm to increase the speed from vs to ve with the 7-period
acceleration profile can be given. If vs > ve, a decrease profile can be designed similarly. Also assume
that the distance is long enough for the procedure to carry out. The constraints on the distance will
be considered in Section 2.4.

Algorithm 2.2 PRO VV(vs,ve)

Input: Parameters Sm, Jm, Am in (10), the start speed vs and end speed ve.

Output: The parameters (t1, t2, t3) of the 7-period acceleration profile.

1. Let v∗ = |ve − vs|. If Jm
2 ≥ SmAm, then go to Step 2, else go to Step 3.

2. Compute t1, t2, t3 by the following formulas and output (t1, t2, t3).




t1 =

√
Am

Sm
, t2 = 0, t3 =

v∗−2Smt3
1

Am
, if v∗ > 2Sm(Am

Sm
)

3

2 ,

t1 = 3

√
v∗

2Sm
, t2 = 0, t3 = 0, if v∗ ≤ 2Sm(Am

Sm
)

3

2

3. Compute t1, t2, t3 by the following formulas and output (t1, t2, t3).





t1 = Jm

Sm
, t2 =

Am−
J
2
m

Sm

Jm
, t3 =

v∗−(2Smt3
1
+3Smt2

1
t2+Smt1t2

2
)

Am
,

if v∗ > A2
m

Jm
+ AmJm

Sm
,

t1 = Jm

Sm
, t2 =

√
t2
1
+ 4v∗

Jm
−3t1

2 , t3 = 0, if 2J3
m

S2
m

< v∗ ≤ A2
m

Jm
+ AmJm

Sm
,

t1 = 3

√
v∗

2Sm
, t2 = 0, t3 = 0, if v∗ ≤ 2J3

m

S2
m
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Use the notation (t̂1, t̂2, t̂3), Algorithm PRO VV can be summarized as the flowchart in Figure 3.
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Figure 3: Flowchart for Algorithm PRO VV

It is clear that the selections of the parameters t1, t2, t3 are not unique. For instance, in Case 1, we
can increase the jerk to a value jm < Jm and then include a constant jerk part t2 > 0. Also, in Case
2, if mode (+,+,+) fails, it seems that both (+,+,−) and (+,−,+) can be chosen. The following
theorem will show that our choosing method for the parameters leads to a time-optimal solution to
the problem. The proof of the theorem can be found in Appendix A.2 of this paper.

Theorem 2.3 Algorithm PRO VV is a time-optimal procedure to increase the speed from vs to ve

under the constraints (10) and (11).

2.3 The acceleration profile with initial speed vs and distance dm

In this section, an acceleration profile will be given to compute the maximal speed that can be reached
with a start speed vs and a given distance dm.

Similar to Section 2.2, we need to compute the parameters (t1, t2, t3) for the 7-period acceleration
profile by considering two cases.

Case 1. Jm
2 ≥ SmAm. By Proposition 2.1, t2 = 0. If the acceleration reaches Am, then from (4)

t1 =
√

Am/Sm. Let

d0 = 4Smt41 + 4vst1 = 4
A2

m

Sm

+ 4vs

√
Am

Sm

. (14)

Then (t1, t2, t3) can be determined as follows

Case 1.1 If dm > d0, then Am is reachable and t1 =
√

Am/Sm. Furthermore, there exists a
constant acceleration period t3 6= 0. From (9), t3 can be computed by solving the following
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quadratic equation in t3:

dm = 4Smt41 + 3Smt31t3 +
1

2
Smt21t

2
3 + vs(4t1 + t3). (15)

It is easy to show that the above equation has a unique positive solution due to the fact
dm > d0. The acceleration profile is (+,−,+) which is shown in Figure 2(c).

Case 1.2 If dm ≤ d0, then Am is not reachable (unless dm = d0) and t3 = 0. Furthermore, t1 is
determined by dm based on (9) by solving the following equation in t1:

dm = 4Smt41 + 4vst1. (16)

The acceleration profile is (+,−,−) which is shown in Figure 2(d).

Case 2. Jm
2 < SmAm. By Proposition 2.1, if the jerk reaches Jm then t1 = Jm/Sm and if the accel-

eration reaches Am then t2 = (SmAm − J2
m)/(SmJm). Under the above mentioned conditions,

set

d1 = 4Smt41 + 4vst1 = 4
J4

m

S3
m

+ 4vs
Jm

Sm

d2 = 4Smt41 + 8Smt31t2 + Smt1t
3
2 + 5Smt21t

2
2 + vs(4t1 + 2t2) (17)

= Am(
Am

Jm
+

Jm

Sm
)2 + 2vs(

Am

Jm
+

Jm

Sm
).

Then (t1, t2, t3) can be determined as follows

Case 2.1 If dm > d2, then both the jerk and acceleration can reach their maximal values and
the constant acceleration phase t3 6= 0 which can be computed by solving the quadratic
equation (9) in t3. The acceleration profile is (+,+,+) which is shown in Figure 2(a).

Case 2.2 If d1 < dm ≤ d2, then the jerk can reach Jm and the acceleration cannot reach Am

unless dm = d2. Therefore, the stage of constant acceleration t3 = 0 and t2 is determined
from (9) with dm by solving the quadratic equation in t2

dm = 4Smt41 + 8Smt31t2 + Smt1t
3
2 + 5Smt21t

2
2 + +vs(4t1 + 2t2).

The acceleration profile is (+,+,−) which is shown in Figure 2(b).

Case 2.3 If dm ≤ d1, then neither the jerk (unless dm = d1) nor the acceleration reaches their
maximal value and t2 = t3 = 0. Further, t1 is determined from (9) with dm by solving
the equation: dm = 4Smt41 + 4vst1. The acceleration profile is (+,−,−) which is shown in
Figure 2(d).

Based on the above analysis, we give the algorithm to determine the end speed with a start speed vs

and a distance dm. Again, the output of the algorithm is the parameters (t1, t2, t3), with which the end
speed ve can be computed with (7) and the speed function v(t) can be computed as v(t) = vs + v0(t)
where v0(t) is defined in (31).

Algorithm 2.4 PRO VD(vs,dm)

Input: Parameters Sm, Jm, Am in (10), the start speed vs, and a distance dm.

Output: The parameters (t1, t2, t3) of the 7-period acceleration profile.

1. If Jm
2 ≥ SmAm, then go to Step 2, else go to Step 3.
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2. Let t2 = 0 and d0 be given by (14). If dm > d0, set t1 =
√

Am/Sm and compute t3 with equation
(15); otherwise set t3 = 0 and compute t1 with equation (16). Output (t1, t2, t3).

3. Let d1 and d2 be given in (17).






t1 = Jm

Sm
, t2 =

Am−
J
2
m

Sm

Jm
, solve equation (9) to find t3, if dm > d2

t1 = Jm

Sm
, t3 = 0, solve equation (9) to find t2, if d1 < dm ≤ d2

t2 = t3 = 0, solve equation (9) to find t1, if dm ≤ d1

Output (t1, t2, t3).

Similar to Theorem 2.3, it can be shown that the algorithm is optimal in that it can give the
maximal end speed when using the 7-period acceleration profile.

Theorem 2.5 Algorithm PRO VD outputs the maximal speed that can be reached with the start
speed vs and the distance dm with the 7-period acceleration profile.

Algorithm PRO VD(vs,dm) can be modified easily to compute the minimal speed that can be
reached from vs within distance dm.

2.4 The AD profile with confined jounce, jerk, acceleration, and speed

With the preparations given in Sections 2.2 and 2.3, now a complete AD profile can be given to change
the speed from vs to ve with distance dm and under the given jounce, jerk, acceleration, and speed
bounds.

As shown in Figure 4, the AD profile consists of three phases composed by 15 periods. Firstly,
the speed is increased from the start speed vs to the maximal speed Vm with a 7-period acceleration
profile; secondly, the speed keeps the constant value Vm; and thirdly, the speed decreases from Vm

to the end speed ve with a 7-period deceleration profile. Let (t1, t2, t3) be the parameters for the
7-period acceleration profile in the first phase, t4 the time for the constant speed phase, and (t5, t6, t7)
the parameters for the 7-period deceleration profile in the third phase. Then the AD profile can be
uniquely determined by the seven parameters (t1, t2, t3, t4, t5, t6, t7) and its velocity function can be
computed with formula (18). Due to the initial conditions (11) of the 7-period profile, the velocity
function of the AD profile is C2 continuous.

v̄(t) =






vs + v0(t), v0(t) is from (31) with (t1, t2, t3), t ∈ [0, tm1
]

Vm, t ∈ [tm1
, tm1

+ t4]

Vm − v0(t − tm1
− t4), v0(t) is from (31) with (t5, t6, t7), t ∈ [tm1

+ t4, tm]

(18)

where tm1
= 4t1 + 2t2 + t3, tm2

= 4t5 + 2t6 + t7, tm = tm1
+ t4 + tm2

. From (9), the distance for the
AD profile is

d =
(vs + Vm)tm1

2
+ t4Vm +

(ve + Vm)tm2

2
. (19)

10



 
 

t

j

0
  

Figure 4: Jerk function for 15-period AD profile

First, a brief introduction to the algorithm is given. Without loss of generality, assume vs ≤ ve.
Firstly, check the reachability of ve from vs within distance dm. The minimal distance dmin for
accelerating from vs to ve can be determined using Algorithm PRO VV(vs, ve). If dm ≥ dmin, then
ve is reachable; otherwise the algorithm terminates.

Now suppose ve is reachable. Algorithms PRO VV(vs, Vm) and PRO VV(ve, Vm) can be used
to compute the minimal distances di and dd for the speed to increase from vs to Vm and to decrease
from Vm to ve. If di + dd ≤ dm, then Vm is reachable and there is a phase of constant speed Vm.

If di +dd > dm, then Vm is not reachable and one need to compute the practical reachable maximal
speed vm. The speed vm can be computed by solving a set of algebraic equations. But due to the
complicated selection procedure for the parameters ti, i = 1, 2, 3, 5, 6, 7, this approach is not practical.
Instead, an iteration procedure will be used to compute vm. Set v0 = Vm, v1 = ve, and v2 = (v0+v1)/2.
Then compute the distances di and dd for the speed to increase from vs to v2 and to decrease from
v2 to ve. If di + dd ≤ dm, then v2 is reachable and set v0 = max{v0, v1}, v1 = v2. Otherwise,
v2 is unreachable and set v1 = min{v0, v1}, v0 = v2. Repeat the above bisection procedure until
|di0 + dd0 − dm| is smaller than a given precision, and use the last computed value of v2 as vm.

With the above analysis, the algorithm to find the AD profile is given below.

Algorithm 2.6 PRO AD(vs, ve, dm)

Input: Parameters Sm, Jm, Am, Vm, the start speed vs, the end speed ve, and the distance dm.

Output: The speed ve is unreachable, or the parameters (t1, t2, t3, t4, t5, t6, t7) for the AD profile.

1. Compute (t1, t2, t3) with Algorithm PRO VV(vs, ve). Set dmin to be the distance computed with
formula (9) and (t1, t2, t3). If dmin > dm, then ve is unreachable and the algorithm terminates.

2. Let (t1, t2, t3) and (t5, t6, t7) be the outputs of Algorithm PRO VV(vs, Vm) and Algorithm
PRO VV(ve, Vm) respectively, and di and dd the distances for the speed to increase from vs to
Vm and to decrease from Vm to ve computed with formula (9).

3. If di+dd ≤ dm, then Vm is reachable. Compute t4 = (dm−di−dd)/Vm. Outputs (t1, t2, t3, t4, t5, t6, t7).

4. Now di + dd > dm and Vm is unreachable. Set t4 = 0, v0 = Vm, v1 = ve, ǫ = 10−4.

(a) Set v2 = (v0 + v1)/2.
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(b) Let (t1, t2, t3) and (t5, t6, t7) be the outputs of Algorithms PRO VV(vs, v2) and PRO VV(ve, v2)
respectively, and di and dd the distances for the speed to increase from vs to v2 and to de-
crease from v2 to ve computed with formula (9).

(c) If |di + dd − dm| < ǫ, outputs (t1, t2, t3, t4, t5, t6, t7).

(d) If di + dd ≤ dm, then v2 is reachable. Let v0 = max{v0, v1}, v1 = v2. Goto Step (a).

(e) Now di + dd > dm and v2 is unreachable. Let v1 = min{v0, v1}, v0 = v2. Goto Step (a).

Based on Theorems 2.3 and 2.5, it can be shown that the above algorithm is time-optimal.

Theorem 2.7 Algorithm PRO AD outputs a time-optimal procedure for the speed to change from
vs to ve with distance dm under the constraints (10) and (11).

3 Interpolation of parametric tool path with confined jounce

In this section, an interpolation method along a parametric tool path with confined jounce, jerk,
acceleration, and speed will be proposed.

The algorithm works as follows. Firstly, by a transversal of the tool path, the critical points of
the too path, where the radius of curvature reaches local extremal values are obtained. Due to the
relation between the chord error and speed, the maximal machining speed also reaches local extremal
values at these points, which are called limit speeds. Secondly, by a backtracking algorithm, the limit
speeds of the critical points are adjusted to make them reachable. Finally, Algorithm PRO VV or
Algorithm PRO AD is used to interpolate a segment of the tool path between two adjacent critical
points.

3.1 Critical points on the tool path

This section will show how to compute the points on the tool path where the limit machining speed
reaches local extremal values.

Let the tool path be a kth-order B-spline curve with expression

C(u) = {x(u), y(u), z(u)} =

n∑

i=0

QiNi,k(u), 0 6 u 6 1 (20)

where Qi (i = 0, 1, . . . , n) are the n + 1 control points, Ni,k(u) are the basis functions of kth-order
B-splines based on the knot vector T = {t0, t1, . . . , tn+k+1}, u is the parameter. Note that other
parametric curves such as NURBS can be treated similarly.

Denote the parametric speed of C(u) to be

σ(u) =
ds

du
= |C ′(u)|,

where ′ is the derivative w.r.t. u. The curvature and radius of curvature are defined to be

κ(u) =
|C ′(u) × C ′′(u)|

σ(u)3
, ρ(u) =

1

k(u)
. (21)

It is well known that at a point u = u0 of the tool path C(u), the interpolation speed is limited by the
given chord error δ. Expanding C(u) in the neighborhood of C(u0) with the following Taylor formula:

C(u0 + ∆u) = C(u0) + a0∆u +
1

2
κ0b0(∆u)2 +

1

6
(−κ2

0a0 + κ̇0b0 + κ0τ0c0 + ǫ)(∆u)3, (22)
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where κ0, τ0 are the curvature and torsion respectively, a0, b0, c0 are the values of tangential vector
a, the principal normal vector b, the binormal vector c at u = u0, and ǫ is a tiny quantity.

According to (22), when using line segments to approximate the spline curve, the second-order
residual term is only related with the curvature and the third-order term is related with the torsion.
Therefore, a circle whose radius is ρ(u0) can approximate the curve locally. The contour error of the
interpolation is limited by the chord error δ which is caused by approximating the real curve using
the short line segment within one sampling period.

Let δ be the chord error bound, and ∆u the maximal possible increase of the parameter u without
violating the chord error bound. Thus the following well-known relationship is obtained [19]:

∆L(u) = |C(u)C(u + ∆u)| ≈
√

8ρδ.

Let T be the sampling period. So the maximal possible speed at point C(u) constrained by the chord
error bound is

vlim(u) = ∆L(u)/T =
√

8ρ(u)δ/T. (23)

The speed vlim(u) is called the limit speed at point C(u).

According to (23), vlim(u) has the same extremal points with the radius of curvature function ρ(u),
which has the same extremal points with the curvature function κ(u) by (21). These extremal points
are called critical points of the tool path. The extremal points of vlim(u) can be computed by solving
the following algebraic equations in u for each piece of the curve C(u).

κ(u)′ = 0. (24)

Furthermore, if the continuity of the spline at the connection point is less than C2, then these points
need to be treated as critical points and the minimal value of the limit speeds of the two curve segments
at the connect point is taken as the limit speed.

The extremal points can also be computed in a discrete way as follows. First make a traversal of
the curve C(u), u ∈ [0, 1] with the speed vlim(u) and a given sampling period T to find interpolation
points u0 = 0, u1, . . . , un = 1. Then we may find the extremal points from the values vlim(ui). Based
on the above analysis, the following algorithm is given to compute the extremal points.

Algorithm 3.1 CR PTS(C(u), u ∈ [0, 1])

Input: B-spline curve C(u), u ∈ [0, 1], the sampling period T , the maximal speed Vm of the CNC
machining.

Output: Parametric values of the critical points ui, i = 0, . . . , N .

1. Use Algorithm 3.5 with inputs C(u), u ∈ [0, 1] and vlim(u), u ∈ [0, 1] (step size at u = u0 can be
found as ∆L = min(vlim(u0), Vm)T ) to find the interpolation points ū0 = 0, ū1, . . . , ūm = 1.

2. Select the parameters ūk correspond to the extremal points. That is, the ūk satisfying

(vlim(ūk) − vlim(ūk−1))(vlim(ūk) − vlim(ūk+1)) ≥ 0.

Denote these parameters as u1, . . . , uN−1. Output u0 = 0, u1, . . . , uN−1,uN = 1.

Remark 3.2 When the parametric curve is simple, the extremal points can be found by directly
solving equation (24). For parametric curves with high degrees, use Algorithm 3.1 to compute the
extremal points.

Let C(ui), i = 0, . . . , N be the points found with the above algorithm. If the limit speed vlim(u)
achieves a local minimal (maximal) value at ui, then ui is called a minimal (maximal) critical point.
If the curve C(u) is at least second order differentiable, minimal and maximal critical points occur
alternatively.
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3.2 Reachability test

The limit speeds at the critical points might not be reachable due to the constraints of distance between
two adjacent critical points. It is necessary to check reachability of the speeds at two adjacent critical
points and adjust the unreachable speeds to make them reachable.

Consider the reachability from point C(uk) with limit speed vk to C(uk+1) with limit speed v̂k+1.
Let Lk be the length of the curve segment C(u), u ∈ [uk, uk+1]. With Algorithm PRO VD(vk, Lk),
compute the maximal speed v+ that can be reached from vk within distance Lk and the minimal
speed v− that can be reached from vk within distance Lk. If v− ≤ v̂k+1 ≤ v+, then vk+1 = v̂k+1 is
reachable. If v̂k+1 > v+, then vk cannot increase to v̂k+1 and set vk+1 = v+. If v− > v̂k+1, then vk

cannot decrease to vk+1 = v̂k+1 and it is necessary to do a backtracking by checking the reachability
starting from point uk+1 in the backward direction.

Based on the above analysis, the reachability test and adjustment algorithm is given below.

Algorithm 3.3 REACH(ui, i = 0, . . . , N)

Input: Critical points ui, i = 0, . . . , N of the tool path C(u) assuming u0 = 0 and uN = 1. The
sampling period T and the maximal speed Vm of the CNC machining.

Output: Reachable speeds vk, i = 0, . . . , N at the critical points.

1. Set i = 0, v0 = 0, vN = 0.

2. If i = N , then terminate the algorithm; otherwise let Li be the length of the curve segment
C(u), u ∈ [ui, ui+1].

3. Using Algorithm PRO VD(vi, Li) to compute the maximal speed v+ and minimal speed v− that
can be reached from vi with distance Li.

4. If i + 1 = N then set v̂i+1 = 0, else set v̂i+1 = min{vlim(ui+1), Vm}, where vlim is defined in
(23).

5. If v− ≤ v̂i+1 ≤ v+, then v̂i+1 is reachable, set vi+1 = v̂i+1, i = i + 1, goto Step 2.

6. If v̂i+1 > v+, then set vi+1 = v+, i = i + 1, goto Step 2.

7. If v̂i+1 < v−, then set vi+1 = v̂i+1, i = i+1, j = i, and execute the following backtracking steps.

(a) Using Algorithm PRO VD(vj , Lj−1) to compute the maximal speed v∗ that can be reached
from vj with distance Lj−1.

(b) If vj−1 ≤ v∗, then from vj−1 to vj is reachable. Goto Step 2.

(c) If vj−1 > v∗, then from vj−1 to vj is not reachable. Set vj−1 = v∗, j = j − 1, and if j ≥ 2,
then goto step (a); else goto Step 2.

Let C(ui), i = 0, . . . , N be the critical points. After the adjustments, the speeds at certain critical
points are decreased and the property of alternating minimal and maximal speeds is not true anymore.
So delete some of the critical points to make the speed alternatively minimal and maximal again. That
is, a point ui is removed if (vi−vi−1)(vi−vi+1) < 0. Note that this strategy enhances the interpolation
speed.
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3.3 Interpolation with confined jounce

In this section, an algorithm will be given to achieve interpolation with confined jounce, jerk, accel-
eration, and speed. And the chord error is kept as small as possible. As usual, the interpolation
procedure is divided into two phases: the velocity planning phase to find the velocity function and the
parameter computing phase to find the interpolation points.

First, consider the velocity planning phase. Let C(ui), i = 0, . . . , N be the critical points of the
tool path C(u). Then, from point C(ui) to C(ui+1), the limit speed is either monotonously increasing
or monotonously decreasing. As a consequence, Algorithm PRO VV can be used to interpolate the
tool path segments between two adjacent critical points.

Let v(t), t ∈ [0, tm] be the speed function obtained with Algorithm PRO VV(vi, vi+1), dm com-
puted with (9), and Li the length of the curve segment C(u), u ∈ [ui, ui+1]. Then v̄(t) = v( tdm

Li
), t ∈

[0, tmLi

dm
] is a speed function which increases the speed from vi to vi+1. Since the distance for this

procedure is Li, v̄(t) interpolates the curve segment C(u), u ∈ [ui, ui+1]. Note that between two adja-
cent critical points, v̄(t) and the velocity limit curve vlim(u) are both monotone and are equal at the
end points. Then, the chord error is approximately kept within the give bound. Due to the initial
conditions (11) of the 7-period profile, the speed function thus obtained is C2 continuous.

If the maximal speed Vm is reached at certain critical point, the above algorithm does not use the full
power of the machine. Let us explain this in detail. Suppose the vlim(ui) < Vm and vlim(ui+1) > Vm

and there is a u∗ ∈ (ui, ui+1) such that the limit speed at each point in [u∗, ui+1] is larger than
Vm. Then the above algorithm cannot reach Vm at any point in [u∗, ui+1). In general, to find u∗

is computationally costs. A simple and improved idea is to use Algorithm PRO AD instead of
Algorithm PRO VV. If vi < Vm and vj = Vm, j = i + 1, . . . , i + s, then Algorithm PRO AD is used
to interpolate C(u), u ∈ [ui, ui+s+1]. Notice that Algorithm PRO AD will find an approximate value
u∗ after which the maximal speed Vm will be used.

Based on the above analysis, the following velocity planning algorithm with confined jounce is
given.

Algorithm 3.4 VP CJ(C(u), u ∈ [0, 1])

Input: B-spline curve C(u), u ∈ [0, 1] as the tool path, the parameters Sm, Jm, Am, Vm, T , and the
chord error bound δ.

Output: A velocity function for the tool path, which satisfies the constraints.

1. s = 1, u1 = 0, k = 1.

2. Use Algorithm CR PTS(C(u), u ∈ [0, 1]) to compute the critical points ûi, i = 1, . . . , p.

3. Use Algorithm REACH(ûi, i = 1, . . . , p) to compute the reachable speeds vi, i = 1 . . . , p, at these
points.

4. If vk+1 < Vm, goto step 5, else goto step 6.

5. Interpolation with Algorithm PRO VV.

(a) Use Algorithm PRO VV(vk, vk+1) to find (t1, t2, t3).

(b) Let v0(t) be the speed function in (31) determined with parameters (t1, t2, t3), tm = 4t1 +
2t2 + t3, and dm computed with (9). If vk ≤ vk+1, the velocity function is v(t) = vk + v0(t);
else the velocity function is v(t) = vk − v0(t).
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(c) Let L be the length of the curve segment C(u), u ∈ [uk, uk+1].

(d) Let t̄m = tmL
dm

and set v̄(t) = v( tdm

L
), t ∈ [0, t̄m] to be the velocity function for the curve

segment C(u), u ∈ [uk, uk+1].

(e) Set k = k + 1 and goto step 4.

6. Interpolation with Algorithm PRO AD.

(a) Let w be the largest number satisfying vk+j = Vm, j = 1, . . . , w.

(b) Let L be the length of the curve segment C(u), u ∈ [uk, uk+w+1].

(c) Use Algorithm PRO AD(vk, vk+w+1, L) to find (t1, t2, t3, t4, t5, t6, t7).

(d) Let dc = (4t1 +2t2 + t3)(vk +Vm)/2+Vmt4 +(4t5 +2t6 + t7)(vk+w+1 +Vm)/2 be the distance
of the AD profile from (19).

(e) Let v(t) be the speed function computed with (18) with parameters (t1, t2, t3, t4, t5, t6, t7).

(f) Let tm = 4t1 + 2t2 + t3 + t4 + 4t5 + 2t6 + t7 and t̄m = tmL
dc

. Set v̄(t) = v(dct
L

), t ∈ [0, t̄m] to
be the velocity function for the curve segment C(u), u ∈ [uk, uk+w+1].

(g) Set k = k + w + 1 and goto step 4.

After the velocity function is obtained, the parameter values of the interpolation points need to be
computed. Suppose the curve segment to be interpolated is C(u), u ∈ [u1, u2] and a velocity function
v̄(t), t ∈ [0, tm] is obtained with Algorithm VP CJ. Let T be the sampling period. Then the speed
at the interpolation points can be obtained as vj = max(v̄(T · j), 0.1) for j = 0, 1, . . .. Note that we
need to take 0.1 as the minimal interpolation velocity to ensure that the cutter can start to move at
the beginning of a spline curve.

Suppose that the current parameter value is u0 which corresponds to the interpolation speed vj .
To find the next parametric value u0 + ∆u, first compute the step size

∆L = vjT ≈ |C(u0)C(u0 + ∆u)|,

where T is the sampling period. Because the interpolation distance ∆L in one period can be ap-
proximately treated as the arc length, the approximate relationship between two adjacent parameters
about arc distance is [17]

∆u =
∆L

σ(u0)
− C ′(u0) · C ′′(u0)∆L2

2σ(u0)4
+ o(∆L2). (25)

Since ∆L is a small quantity, from (25) we can compute ∆u with the first order Taylor approximation

∆u =
∆L

σ(u0)
(26)

or with the second order Taylor approximation

∆u =
∆L

σ(u0)
− D∆L2

2σ(u0)4
(27)

where D = (dx
du

d2x
du2 + dy

du
d2y
du2 + dz

du
d2z
du2 )u=u0

. If the approximation fails, then use Newton’s iterative
method or the dichotomy to find u0 + ∆u.

Based on the above analysis, the following algorithm to compute the next interpolation point is
given.
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Algorithm 3.5 NEXT U(C(u), u0,∆L)

Input: B-spline curve C(u) u ∈ [0, 1], the current parameter u0, and the next step size ∆L.

Output: The next interpolation parameter un.

1. Compute the second order approximate ∆u with (27).

2. If ∆u > 0, set un = u0 + ∆u and return un.

3. If ∆u < 0, then use Newton iterative method to find the next parametric value.

(a) Construct the following objective function in u

f(u) = (x(u) − x(u0))
2 + (y(u) − y(u0))

2 + (z(u) − z(u0))
2 − ∆L2.

(b) Use Newton’s iterative method to find the next interpolation parametric value with initial
value u = u0 + ∆L

σ(u0) (first order approximation)

u∗ = u − f(u)

f ′(u)
.

(c) If f(u∗) > ε, u∗ < u0, or u∗ ≫ u0, then the method fails, where ε is a given tiny positive
number; otherwise set un = u∗ and return un.

4. If the Newton method fails, then use the dichotomy to compute a solution un of f(u) = 0 in
(u0, ur), where ur = u0 + k ∆L

σ(u0) and k is the smallest natural number such that f(ur) > 0.
Return un.

In most cases, formula (27) gives a nice approximation and the iterative methods are not needed.

Remark 3.6 The proposed method can be implemented in CNC controllers in the following way.
Firstly, the velocity functions are computed off-line with Algorithm VP CJ. Then the velocity func-
tions are used as parts of the input to the CNC controllers to achieve real-time interpolation. Of
course, the CNC controller must be modified to accept the new G codes. This strategy is adopted
by many existing work such as [6, 19, 20, 22]. In particular, industrial CNC machining is realized
in [19, 22] using this approach. The idea of the above approach is to use a pretreatment to add the
velocity function to the G codes and then use the new G codes for CNC machining.

3.4 An illustrative example

An example is used to illustrate the algorithm. The tool path in Figure 5(a) is a planar quadratic
B-spline (x(u), y(u)), u ∈ [0, 1] with C1 continuity and consisting of six pieces of quadratic curve
segments. Use the following parameters: Vm = 50mm/s, Am = 1500mm/s2, Jm = 2 × 105mm/s3,
Sm = 2 × 108mm/s4, T = 1ms, δ = 0.2µm.

Firstly, compute the critical points of the B-spline curve with Algorithm CR PTS, and the param-
eter values ui of the critical points are given in the first column of Table 1. The y and z coordinates
of critical points are listed respectively in the second and third columns. vi = vlim(ui) is listed in the
fourth column. At u = 0, the velocity is set to be 0.1mm/s to ensure that cutter can move at the
beginning. In Step 3, check the reachability of the limit speeds vlim(ui) at the critical points using
Algorithm REACH, and the adjusted velocity is shown in the fifth column of Table 1. Note that
the speeds at u = 0.7208, 0.8354, 0.9069, 0.9438 are obtained by the backtracking step of Algorithm
REACH due to the final speed at u = 1.0.
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Figure 5: Velocity, acceleration, jerk, jounce and chord error functions of a quadratic spline. The
horizontal axis is the parameter u for the tool path in (b), (c), (d), (e), and (f).

The speed function obtained is shown in Figure 5(b). Its acceleration, jerk, and jounce are shown
in Figures 5(c), 5(d), 5(e) respectively. From Figures 5(b-e), it is not difficult to see that either the
jounce, jerk, acceleration, or the velocity reaches their maximal values except in I1 = [0, 0.1407]. By
the results proved in Section 3, this means that the velocity is time-optimal except in I1. In the
parameter interval I1, the tool-path length L is larger than the length dm of the 7-period profile to
increase the speed from zero to the limit speed at u = 0.1407 in Step 6(d) of Algorithm VP CJ. As
a consequence, the velocity function over I1 is not time optimal. Figure 5(f) gives the theoretic chord
error under the planned velocity and the sampling period T , which is less than the given bound δ for
all parameter values.
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Table 1: Information of critical points (unit for speed: mm/s)
ui y(ui) (mm) z(ui) (mm) vi adjusted vi

0 47.62 −2.39 49.654 0.1

0.1407 48.2112 −2.06188 32.3387 32.3387

0.2303 48.6154 −2.13848 93.2816 38.124

0.4017 49.4231 −2.40066 91.7538 50

0.4724 49.7656 −2.47271 92.0354 50

0.6071 50.3573 −2.69218 47.2607 47.2607

0.7208 50.7513 −3.04704 140.729 41.2157

0.8354 51.1049 −3.46825 48.4228 31.1962

0.9069 51.3000 −3.75227 51.5066 24.8385

0.9438 51.4077 −3.88634 23.9501 22.9357

1.0000 51.66 −3.98 31.4245 0.1

The velocity of the key point given by Algorithm REACH can be improved. Before doing the
reachability test, delete some useless key points according to whether its velocity is constrained by
the others. Precisely, if the velocity of parameter ui is v(ui), then from this point, under a given
length l, the velocity is limited. So use an acceleration profile from the start point (ui, v(ui)), with
j(ui) = a(ui) = 0, form a forward velocity function v+(t) or v+(u). Check whether v+(ui+1) < v(ui+1).
If v+(ui+1) < v(ui+1) and v+(ui+1) < Vm, then the key point (ui+1, v(ui+1)) can be deleted since the
final velocity at ui+1 will never exceed v(ui+1). Finally, use the renewed key points to do the velocity
planning.

By this improved method, the selected critical points and new velocities are given in Table 2. The
key points u = 0.2303, u = 0.8354 and u = 0.9069 are deleted according to the above rule. The
velocity functions of the improved method and Algorithm 3.4 are given in Figure 6, which shows that
the velocity function obtained with the improved method is better than the previous one.

Table 2: Information of critical points with the improved method (unit for speed: mm/s)
ui y(ui) (mm) z(ui) (mm) vi selected or

deleted
adjusted vi

0 47.62 −2.39 49.654 selected 0.1

0.1407 48.2112 −2.06188 32.3387 selected 32.3387

0.2303 48.6154 −2.13848 93.2816 deleted −
0.4017 49.4231 −2.40066 91.7538 selected 50

0.4724 49.7656 −2.47271 92.0354 selected 50

0.6071 50.3573 −2.69218 47.2607 selected 47.2607

0.7208 50.7513 −3.04704 140.729 selected 50

0.8354 51.1049 −3.46825 48.4228 deleted −
0.9069 51.3000 −3.75227 51.5066 deleted −
0.9438 51.4077 −3.88634 23.9501 selected 22.9357

1.0000 51.66 −3.98 31.4245 selected 0.1
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Figure 6: Red one: velocity function of Algorithm 3.4. Blue one: velocity function of the improved
method

4 Experimental results

In this section, experimental results will be presented. The first experiment shows that confined jounce
indeed can be used to reduce vibration of the CNC machine tools. The second experiment shows the
feasibility of the interpolation method by simulating two real CNC machining models.

4.1 Vibration test

In this section, we will compare three AD profiles with confined acceleration, confined jerk, and
confined jounce in a CNC machine to show that confined jounce indeed can be used to reduce vibration
comparing to confined jerk and acceleration.

The equipment used to test vibration is LMS SCADAS3 which is a fast signal acquisition and
analysis system, including hardware and software components. The hardware component consists of
sensors, exciters, data acquisition tools, and a laptop PC. The software component can be used for
real-time signal acquisition, calculation, analysis, display, record, and output. Figure 7 shows the LMS
SCADAS3 sensor attached to a CNC machine.

Figure 7: The CNC machine and the sensor attached on the machine

In the vibration test, the tool path is a line segment of 100mm, and the CNC machine tool will
idly move along the line segment. Three AD profiles are used respectively to generate the velocity
function: the linear AD profile with confined acceleration, the S-spate AD profile with confined jerk,
and the AD profile with confined jounce introduced in this paper. The maximal speed Vm, acceleration
Am, jerk Jm, jounce Sm, and the machining time t are given in Table 3. The three velocity functions
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are shown in the right hand side of Figure 8.

Table 3: Parameters of tests (a), (b), (c) and the interpolation time
Test Sm(mm/s4) Jm(mm/s3) Am(mm/s2) Vm(mm/s) d(mm) t(s)

(a) − − 1000 50 100 2.051

(b) − 20000 1000 50 100 2.101

(c) 200000 20000 1000 50 100 2.201

The sampling time of LMS SCADAS3 is one second and the sampling frequency is 4096Hz. Since
the machining time is about two seconds, we record the signals from machining the first half of the
line segment only. The vibration frequency spectrum diagrams of the three tests are given in the left
hand side of Figure 8, where the vertical axis is the vibration intensity whose unit is g/Hz and g is
the gravitational acceleration, and the unit of horizontal axis is Hz. The spectrum diagram gives the
distribution of the intensity of the vibration at difference frequencies. For instance, from Figure 8(a),
the strongest vibration with intensity 0.016g/Hz occurs when the machine tool vibrates at frequency
980Hz.
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(a) Vibration frequency spectrum and velocity of motion profile  under confined acceleration 

(b) Vibration frequency spectrum and velocity of motion profile under confined jerk

(c) Vibration frequency spectrum and velocity of motion profile under confined jounce
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Figure 8: The vibration frequency spectrum diagrams and the corresponding velocity functions

From Figure 8, one can see that for confined acceleration, the maximal vibration is 0.016g/Hz, and

21



the machine vibrates relatively strong (> 0.004g/Hz) in the frequency intervals [0, 200] and [820, 1450].
For confined jerk, the maximal vibration is 0.0145g/Hz, and the machine vibrates relatively strong
(> 0.004g/Hz) in the frequency intervals [0, 180] and [850, 1430]. For confined jerk, the maximal
vibration is 0.008g/Hz, and the machine vibrates relatively strong (> 0.004g/Hz) in the frequency
intervals [0, 180] and [870, 1220]. It is very clear that in the case of confined jerk, the machine vibrates
significantly less than that of confined acceleration, and in the case of confined jounce, the machine
vibrates significantly less than that of confined jerk.

From Table 3, the machining times for confined acceleration, confined jerk, and confined jounce
are 2.051s, 2.101s, 2.201s respectively. Comparing to the confined acceleration and confined jerk, the
machining time with confined jounce increases about 7.3% and 4.8% respectively.

In summary, using confined jounce, with the loss of not much machining time, we can reduce the
vibration significantly comparing with confined acceleration and confined jerk.

It is known that the machining quality is affected by many factors, and vibration of the machining
tool is certainly one of the important factors. We choose to test vibration instead of machining quality
directly for the following reason. By running the CNC machine tool idle, the affect of the adopted
AD profile on the vibration becomes more significant, and from which we can see more clearly the
difference of the three AD profiles.

4.2 Simulation results on two CNC machining models

In this section, simulation results on two CNC machining models will be presented to show the
feasibility of the interpolation algorithm. All the computations are carried out using C language on a
PC with Windows XP, a 2.13GHz CPU, and 1.98GB memory.

(a) The vase model

(b) The impeller model

Figure 9: Two CNC machining models

The first model is the “vase” shown in Figure 9(a). The vase is a CNC model consisting of more
than 116000 G01 codes with total tool path length of 46.67m. Its B-spline representation consists of
more than 42000 quadratic curve segments [22]. The G01 codes and the spline representation of the
model can be found in http://www.mmrc.iss.ac.cn/˜ xgao/cnc/vase.html. The tool path of the vase
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Table 4: The machining times of “vase” model under different constraints. The unit for Sm is mm/s4.

Am Jm = 5 × 105mm/s3 Jm = 2 × 105mm/s3

(mm/s2) Sm = 2 × 108 Sm = 1 × 108 Sm = 2 × 108 Sm = 1 × 108

1000 25.1167min 26.3298min 26.4793min 27.2322min

2000 22.3648min 23.5293min 24.0420min 24.8345min

3000 21.4223min 23.1568min 23.4963min 24.2998min

6000 20.7693min 22.5608min 23.2368min 24.0440min

Table 5: The machining time of “impeller” model under different constraints. The unit for Sm is

mm/s4.

Am Jm = 5 × 105mm/s3 Jm = 2 × 105mm/s3

(mm/s2) Sm = 2 × 108 Sm = 1 × 108 Sm = 2 × 108 Sm = 1 × 108

1000 0.5757min 0.5816min 0.5830min 0.5856min

2000 0.4583min 0.4647min 0.4704min 0.4759min

3000 0.3982min 0.4153min 0.4259min 0.4297min

6000 0.3549min 0.3650min 0.3997min 0.4037min

fluctuates violently making optimal speed velocity planning difficult. The spline curve in Figure 5 is
from this model.

The second model is one piece of blade in the “impeller” shown in Figure 9(b), which is a cu-
bic B-spline with C2 continuity and consisting of 394 cubic curve segments [22]. The total tool
path length of the blade is 3.167m. The G01 codes and the spline representation of the model
can be found in http://www.mmrc.iss.ac.cn/˜ xgao/cnc/blade.html. Note that this is a 5-axis model:
(x(u), y(u), z(u), A(u), C(u))u ∈ [0, 1]. For simplicity, the velocity for the (x, y, z) tool path is planned
with the method introduced in this paper and the parameter values ui thus obtained are used to com-
pute the angular interpolation positions (A(ui), C(ui)).

In both experiments, the following parameters are used: Vm = 200mm/s, T = 1ms, δ = 0.2µm
and Sm, Jm and Am are taken different values for comparison, which are shown in Table 4.

Note that in our method, the speed decreases to zero at the connection points of two splines. This
could be further improved using the method given in [7].

Table 4 and Table 5 give the machining timings for the “vase” model and the “impeller” model
under different bounds of acceleration, jerk, and jounce.

Table 6 and Table 7 give the times needed to compute the velocity function and the interpolation
points for the “vase” and “impeller” models respectively. In Table 6 and Table 7, “tV ” and “tP ”
denote the times to compute the velocity function and the interpolation points respectively.

From Table 6 and Table 7, we can see that the computation time of the algorithm is much less than
the machining time. As mentioned in Remark 3.6, the velocity function is computed off-line and the
interpolation points are computed in real time. For the “vase” model and the “impeller” model, the
times to compute the interpolation point are 13%-18% and 5%-8% of the machining times, indicating
that the algorithm is feasible for real time implementation.
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Table 6: Time to compute velocity functions (tV ) and interpolation points (tP ) for “vase” model. The

unit for Sm is mm/s4.

Jm = 5 × 105mm/s3 Jm = 2 × 105mm/s3

Am Sm = 2 × 108 Sm = 1 × 108 Sm = 2 × 108 Sm = 1 × 108

(mm/s2) tV tP tV tP tV tP tV tP

1000 117.06s 205.42s 119.03s 207.40s 120.59s 210.21s 120.37s 211.36s

2000 131.98s 207.93s 135.73s 208.08s 136.08s 209.04s 141.16s 217.21s

3000 139.59s 204.47s 143.06s 209.28s 142.20s 210.98s 143.45s 210.13s

6000 143.34s 204.05s 147.91s 208.89s 142.57s 206.69s 147.32s 211.80s

Table 7: Time to compute velocity functions (tV ) and interpolation points (tP ) for “impeller” model.

The unit for Sm is mm/s4.

Jm = 5 × 105mm/s3 Jm = 2 × 105mm/s3

Am Sm = 2 × 108 Sm = 1 × 108 Sm = 2 × 108 Sm = 1 × 108

(mm/s2) tV tP tV tP tV tP tV tP

1000 0.594s 1.844s 0.609s 1.813s 0.690s 1.716s 0.638s 1.800s

2000 0.702s 1.735s 0.595s 1.827s 0.598s 1.855s 0.530s 1.907s

3000 0.658s 1.779s 0.671s 1.767s 0.629s 1.855s 0.592s 1.876s

6000 0.577s 1.798s 0.595s 1.795s 0.549s 1.888s 0.591s 1.877s

5 Conclusion

In this paper, an acceleration/deceleration profile with confined jounce, jerk, acceleration, and speed
is designed and its properties are studied. In particular, it is shown that the profile is time-optimal to
change the speed from one value to another under the given constraints. Based on the jounce confined
acceleration/deceleration profile, an interpolation method for parametric tool paths is given. The idea
is to compute the maximal speeds at the critical points of the tool path where the radius of curvature
reaches extremal values and to use the jounce confined acceleration/deceleration profile to connect the
speeds of two adjacent critical points. The final velocity function has C2 continuity. A vibration test
is given to show that comparing with confined acceleration and jerk, the motion profile under confined
jounce can reduce vibration more effectively.

In most existing work on interpolation, the friction force and the cutting force in (1) are assumed
to be independent of the velocity. An interesting problem is to plan the velocity by assuming the
existence of certain relation between the cutting force and the velocity. Another problem is to plan
the velocity under confined chord error and confined jounce in each axis as done in [15, 19, 20] in
simpler cases such as confined acceleration or confined jerk.

Acknowledgement. The authors are grateful to Prof. Peiqing Ye from Tsinghua University, who
provided the equipments for the vibration test reported in Section 4.1
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A Appendix.

In this appendix, the 7-periods acceleration profile and the proof of its time-optimal property are
given.

A.1 Formulas for the 7-periods acceleration profile

Assume that initial velocity vs = 0. The following formulas are the expressions of the jounce s(t), jerk
j(t), acceleration a(t), and speed v(t), t ∈ [0, tm] for the 7-period acceleration profile in Figure 1.

s(t) =






Sm, 0 ≤ t < t1,

0, t1 ≤ t < t1 + t2,

−Sm, t1 + d2 ≤ t < 2t1 + t2,

0, 2t1 + t2 ≤ t < 2t1 + t2 + t3,

−Sm, 2t1 + t2 + t3 ≤ t < 3t1 + t2 + t3,

0, 3t1 + t2 + t3 ≤ t < 3t1 + 2t2 + t3,

Sm, 3t1 + 2t2 + t3 ≤ t < 4t1 + 2t2 + t3

(28)

j(t) =






Smt, 0 ≤ t < t1,

Smt1, t1 ≤ t < t1 + t2,

Sm(2t1 + t2 − t), t1 + t2 ≤ t < 2t1 + t2,

0, 2t1 + t2 ≤ t < 2t1 + t2 + t3,

Sm(2t1 + t2 + t3 − t), 2t1 + t2 + t3 ≤ t < 3t1 + t2 + t3,

−Smt1, 3t1 + t2 + t3 ≤ t < 3t1 + 2t2 + t3,

Sm(t − 4t1 − 2t2 − t3), 3t1 + 2t2 + t3 ≤ t < 4t1 + 2t2 + t3

(29)
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a(t) =






1
2Smt2, 0 ≤ t < t1,

Smt1t − 1
2Smt21, t1 ≤ t < t1 + t2,

−1
2Sm(2t1 + t2 − t)2 + Sm(t1t2 + t21), t1 + t2 ≤ t < 2t1 + t2,

Sm(t1t2 + t21), 2t1 + t2 ≤ t < 2t1 + t2 + t3,

Sm(t1t2 + t21) − 1
2Sm(2t1 + t2 + t3 − t)2, 2t1 + t2 + t3 ≤ t < 3t1 + t2 + t3,

2Smt1t2 + 7
2Smt21 + Smt1t3 − Smt1t, 3t1 + t2 + t3 ≤ t < 3t1 + 2t2 + t3,

1
2Sm(t − 4t1 − 2t2 − t3)

2, 3t1 + 2t2 + t3 ≤ t < 4t1 + 2t2 + t3

(30)

v0(t) =






1
6Smt3, 0 ≤ t < t1,
1
2(t − t1)

2Smt1 + 1
2(t − t1)Smt21 + 1

6Smt31, t1 ≤ t < t1 + t2,
1
3Smt31 + 1

2Smt21t2 − Smt21t + 1
2Smt1t

2
2 − Smt1t2t

+Smt1t
2 + 1

6Smt32 − 1
2Smt22t + 1

2Smt2t
2 − 1

6Smt3, t1 + t2 ≤ t < 2t1 + t2,

−Smt31 − 3
2Smt21t2 − 1

2Smt1t
2
2 + Smt1t2t + Smt21t,

2t1 + t2 ≤ t < 2t1 + t2 + t3,

Sm(t1t2 + t21)(t − 2t1 − t2 − t3) + 1
6Sm(2t1 + t2 + t3 − t)3

+Smt31 + 3
2Smt21t2 + 1

2Smt1t
2
2 + Smt1t2t3 + Smt21t3,

2t1 + t2 + t3 ≤ t < 3t1 + t2 + t3,

2Smt1t2t + 7
2Smt21t + Smt1t3t − 1

2Smt1t
2 − 4Smt21t2

−Smt1t
3
2 − Smt1t2t3 − 25

6 Smt31 − 5
2Smt21t3 − 1

2Smt1t
2
3,

3t1 + t2 + t3 ≤ t < 3t1 + 2t2 + t3,

−26
3 Smt31 + 4Smt1t3t − 7Smt1t2t3 + 8Smt1t2t + 2Smt2t3t

−7Smt1t
2
2 + 8Smt21t − 2Smt1t

2 − 13Smt21t2 − 7Smt21t3

−2Smt1t
2
3 − Smt2t

2 − 1
2Smt3t

2 + 2Smt22t + 1
2Smt23t

−2Smt22t3 − Smt2t
2
3 + 1

6Smt3 − 4
3Smt32 − 1

6Smt33
3t1 + 2t2 + t3 ≤ t < 4t1 + 2t2 + t3

2Smt31 + Smt1t2t3 + Smt1t
2
2 + 3Smt21t2 + Smt21t3, 4t1 + 2t2 + t3 ≤ t.

(31)

A.2 Proof for Theorem 2.3

In order to prove Theorem 2.3, the following result is needed.

Theorem A.1 [1][p.24-26] Let y, z be solutions of the following differential equations

y′ = F (x, y), z′ = G(x, z),

respectively, where F (x, y) ≤ G(x, y), a ≤ x ≤ b, and F or G satisfies Lipschitz’s condition. If y(a) =
z(a), then y(x) ≤ z(x) for any x ∈ [a, b].

Proof. of Theorem 2.3.

First of all, prove the 7-period jerk-profile is time-optimal. Denote by v(t), t ∈ [0, tm] the velocity
curve of the 7-period jerk-profile, where tm = 4∗t1+2∗t2+t3, and denote by j(t), a(t) its corresponding
jerk and acceleration. Claim that for any other velocity curve v∗(t), t ∈ [0, t∗] which satisfies the
constraints (10) and (11), t∗ ≥ tm. Also, denote by j∗(t), a∗(t), s∗(t) the jerk and acceleration and
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jounce of v∗(t) respectively. Assume on the contrary, there exists a t4 ∈ [0, t∗], such that v(t4) <
v∗(t4)(especially take t4 = t∗). Show that this t4 does not exist for t4 ∈ [0, tm].

Case 1, t4 6∈ [0, t1 + t2]. Since for t ∈ [0, t1 + t2], j(t) ≥ j∗(t), then a(t) ≥ a∗(t) and v(t) ≥ v∗(t).

Case 2, t4 6∈ (t1 + t2, 2 ∗ t1 + t2]. If this is not the case, then there exists a t5 ∈ (t1 + t2, t4]
such that a(t5) < a∗(t5). Claim that j(t5) ≤ j∗(t5). If this is not the case, that is j(t5) > j∗(t5).
Then, by Theorem A.1, j(t) = j(t5) +

∫ t5
t

Smdts > j∗(t) +
∫ t5
t

s∗(ts)dts = j∗(t) for t ∈ [t1 + t2, t5].
Then a(t5) < a∗(t5) is impossible by case 1. Let t6 = 2 ∗ t1 + t2 − t5, then by Theorem A.1,
j∗(t) = j∗(t5) −

∫ t

t5
s∗(ts)dts ≥ j(t), for t ∈ [t5, t5 + t6]. Then, by Theorem A.1,

a∗(t5 + t6) = a∗(t5) +
∫ t5+t6
t5

j∗(t)dt

≥ a∗(t5) +
∫ t5+t6
t5

j(t)dt

> a(t5) +
∫ t5+t6
t5

j(t)dt

> Am

This contradicts to the constraint (10).

Case 3, t4 6∈ (2 ∗ t1 + t2, 2 ∗ t1 + t2 + t3]. If this is not the case, there exists a t5 ∈ [0, 2 ∗ t1 + t2)
such that a(t5) < a∗(t5). This is impossible by the discussion in Cases 1 and 2.

Case 4, t4 6∈ (2 ∗ t1 + t2 + t3, tm). Denote v̄∗(t) by

v̄∗(t) =

{
0, t ∈ [0, tm − t∗)
v∗(t + t∗ − tm), t ∈ [tm − t∗, tm]

Similar to the Cases 1, 2, 3, for t ∈ [2 ∗ t1 + t2, tm], from the −t direction, v(t) uses the extremal
deceleration capability to decrease its velocity. So, v(t) ≤ v̄∗(t), t ∈ [2 ∗ t1 + t2, tm]. Since v(t) is
monotone, let t5 = 2∗ t1 + t2 + t∗− tm ∈ [0, 2∗ t1 + t2], then v(t5) < v(t5 + tm− t∗) ≤ v̄∗(t5 + tm− t∗) =
v∗(t5). This contradicts to Cases 1 and 2.

The time-optimal properties of other type acceleration profile can be proved in a similar way by
adding the different constraints.

So far, it has been proved that Algorithm PRO VV is a time-optimal procedure to increase the
speed from vs to ve under the constraints (10) and (11).

It needs to be proved that the selections of concrete jerk-profiles given in Section 2 are reasonable.
For simplicity, consider only the transitions from (+,+,+) to (+,+,−) or (+,−,+) and from (+,+,−)
to (+,−,−) or (+,−,+). Without loss of generality, let vs = 0.

First it is obvious to find that (+,+,+) is the most optimal profile if feasible. But on condition

of J2
m < SmAm, if ve < A2

m

Jm
+ AmJm

Sm
, then ve is not large enough for profile (+,+,+) and the

profile transition should be considered. If profile (+,−,+) is adopted, then t2 = 0 and t3 > 0,
jm ≤ Jm <

√
SmAm.

Obviously t1 = jm

Sm
. By (8), ve is of the following form

ve = 2Smt31 + Smt1t2t3 + Smt1t
2
2 + 3Smt21t2 + Smt21t3 = 2Smt31 + Smt21t3,

so t3 = veSm

j2
m

− 2jm

Sm
and the time of profile (+,−,+) is t(+,−,+) = t(jm) = veSm

j2
m

+ 2jm

Sm
. So according to

the value of ve, when ve < A2
m

Jm
+ AmJm

Sm
, there are two cases to be discussed.

Case a: ve > 2J3
m

S2
m

. Since t(jm) is monotonically decreasing on interval jm ∈ (0, (veS
2
m)

1

3 ] and jm ≤

Jm < (veS2
m

2 )
1

3 , t(jm) ≥ veSm

J2
m

+ 2Jm

Sm
. It is easy to find that veSm

J2
m

+ 2Jm

Sm
> Jm

Sm
+

√
J2

m

S2
m

+ 4ve

Jm
= t(+,+,−).

So t(+,−,+) > t(+,+,−). The time of profile (+,+,−) is less than that of profile (+,−,+).
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Case b: ve ≤ 2J3
m

S2
m

. In this case, profile (+,+,−) is invalid otherwise jm exceeds Jm. Now show

that the time of profile (+,−,−) is less than that of profile (+,−,+). If profile (+,−,+) is adopted,

then t1 = jm

Sm
and t2 = 0 and t3 = veSm

j2
m

− 2jm

Sm
> 0. So jm < (veS2

m

2 )
1

3 . Denote by t(jm) = 4 ∗ t1 + t3
the total acceleration time with maximal jerk jm. Since t(jm) is monotonically decreasing on interval

jm ∈ (0, (veS
2
m)

1

3 ], t(+,−,+) = t(jm) > t((veS2
m

2 )
1

3 ) = 4( ve

2Sm
)

1

3 = t(+,−,−). So the time of profile
(+,−,−) is less than that of profile (+,−,+).

Thus the optimality of profile transition in Algorithm PRO VV have been proved. Other cases
can be proved similarly. Now Theorem 2.3 is proved.

If the acceleration profile is symmetric, then time-optimal means the distance to accelerate vs to
ve is the shortest one since the distance is d = vs+ve

2 t∗, where t∗ is the total acceleration time.
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