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Abstract. Interpolation algorithms are key factors to achieve high precision and high
speed CNC machining. In this paper, two new interpolation algorithms for CNC ma-
chining along curved pathes are proposed: a time-optimal interpolation algorithm under
chord error, feedrate, and tangential acceleration bounds, and a greedy interpolation
algorithm under chord error and tangential jerk bounds. The key idea is to reduce the
chord error bound to a centripetal acceleration bound which leads to a velocity limit
curve, called the chord error velocity limit curve. Then, the velocity planning is to find
the proper velocity curve governed by the tangential acceleration or jerk bound “under”
the chord error velocity limit curve. For two types of simple tool pathes, explicit formu-
las for the velocity curve are given. We implement the methods in these two cases and
conduct real CNC machining to show the feasibility of the methods.

Keywords. CNC controller, parametric curve interpolation, time-optimal velocity plan-
ning, chord error, jerk, velocity limit curve, quadratic B-spline, cubic PH curve.

1. introduction

In modern CAD systems, the standard representation for freeform surfaces is paramet-
ric functions. While the conventional computed numerically controlled (CNC) controllers
mainly use micro line segments (G01 codes) to represent the machining path. To convert the
parametric curves into line segments may lead to problems such as large data storage, speed
fluctuation, and poor machining accuracy. Chou, Yang, and Shpitalni et al proposed to use
smooth parametric curves generated in CAD/CAM systems directly in the CNC controllers
to overcome these drawbacks [5, 18, 24]. Now, commercial CNC controller corporations,
such as Siemens [19], also provide spline interpolation methods in their high-end products.

Interpolation algorithms, which control how the machine tool moves along the manufac-
turing path, play a key role in high speed and high precisions CNC machining. An interpo-
lation algorithm in the CNC controller usually consists of two phases: velocity planning and
parameter computation. Let C(u) be the manufacturing path. The phase to determine the
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feedrate v(u) along C(u) is called velocity planning. When the feedrate v(u) is known, the
phase to compute the next interpolation point at ui+1 = ui +4u during one sampling time
period is called parameter computation.

This paper focuses on velocity planning along a spatial parametric path. For the pa-
rameter computation, please refer to [4, 9, 23] and the literatures therein. Two types of
accelerations are usually used in the velocity planning: the tangential acceleration and the
multi-axis acceleration where each axis accelerates independently.

Due to its conceptual simplicity, the tangential acceleration is widely used in CNC in-
terpolations. Bedi et al[1] and Yang-Kong[24] used a uniform parametric feedrate without
considering the chord error. Yeh and Hsu used a chord error bound to control the feedrate if
needed and used a constant feedarte in other places [25]. However, the machine acceleration
capabilities were not considered. Narayanaswami and Yong [26] gave a velocity planning
method based on tangential acceleration bounds by computing maximal passing velocities
at sensitive corners. Similar ideas were used to compute the feedrate for micro line segments
connected with quadratic curve segments in [28]. Cheng and Tsai [4] gave an interpolation
method based on different velocity profiles for the tangential acceleration. Velocity planning
methods with tangential acceleration and jerk bounds were considered by several research
groups [7, 11, 13, 14, 12]. Emami, Arezoo [6] and Lai et al[10] proposed velocity planning
methods with confined acceleration and jerk in each axis, and confined chord error by check-
ing these values at every sampling point and using backtracking to adjust the velocity if any
of the bounds is violated. In all the above methods besides [6, 10, 25], the chord error is
considered only at some special points, and there is no guarantee that the chord error is
satisfied at all points. Furthermore, all these methods are not proved to be time-optimal.

In all the work mentioned above, discrete models are used. The advantage for such an
approach is that the algorithms are generally easier to implement and can be used for more
types of tool pathes. On the other hand, some key properties, such as time-optimality and
chord error, cannot be guarantied. Using a continuous or analytical model, Borow [3] and
Shiller et al [16, 15] presented a time-optimal velocity planning method for a robot moving
along a curved path with acceleration bounds for each axis. Farouki and Timar [21, 22]
proposed a time-optimal velocity planning algorithm in CNC machining under the same
acceleration constraints. M. Zhang et al simplified the method in [21, 22] for quadratic B-
splines and realized real-time manufacturing on industrial CNC machines [29]. K. Zhang et
al [27] gave a greedy algorithm for velocity planning under multi-axis jerk bounds. These
optimal methods use the “Bang-Bang” control strategy, that is, at least one of the axes
reaches its acceleration or jerk bound all the time. But they do not consider the chord error
which is an important factor for high precision CNC-machining.

In this paper, velocity planning along a curved tool path under a chord error bound
and tangential acceleration and jerk bounds is considered. To control the chord error, we
introduce the key concept of chord error velocity limit curve (abbr. CEVLC). Other main
ingredients of the method include how to compute the analytical formulas for the velocity
with a given tangential acceleration or jerk value and how to plan the velocity to give a time-
optimal interpolation. In the case of tangential acceleration bound, we give a time-optimal
velocity planning algorithm, which seems to be the first proved time-optimal algorithm with
confined chord error. In the case of tangential jerk bound, we give a greedy velocity planning
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algorithm which is time-optimal under certain greedy conditions. To find a time-optimal
velocity curve with jerk bounds using methods similar to that in [3, 16, 21] is still an open
problem. See [27] for more comments on this problem.

We show that the chord error bound can be approximately reduced to a centripetal ac-
celeration bound. Furthermore, if the centripetal acceleration reaches its bound, the velocity
can be written as an algebraic function in the parameter u of the tool path C(u). The graph
of this function is called the CEVLC. The CEVLC is significant because the final velocity
curve must be “under” this curve or be part of this curve, which narrows the range of velocity
planning. Also, certain key points on the CEVLC, such as the discontinuous points, play an
important role in the velocity planning.

Our algorithm uses the “Bang-Bang” control strategy, which will be proven to be a
necessary way to achieve time-optimality. Then the final velocity curve is governed either by
the centripetal acceleration bound or by the tangential acceleration or jerk bound, and the
later one is called the integration velocity trajectory. The main task of the velocity planning
algorithm is to find the switching points between the integration velocity trajectory and the
CELVC.

For quadratic splines and cubic PH curves, the integration velocity curve can be given by
explicit formulas. We implement our algorithm in these two cases and conduct experiments
on a three axis industrial CNC machine to show the feasibility of our method. To implement
our method in CNC controllers, we first compute the velocity curves off-line and then use the
velocity curves as parts of the input to the CNC controllers to achieve real-time interpolation.
This strategy is adopted in many existing work such as [9, 10, 29].

As a final remark, we want to mention that using the tangential acceleration is optional.
For instance, by combining the CEVLC introduced in this paper and the method in [21, 22],
it is possible to give a time optimal velocity planning method with confined chord error and
acceleration bounds along the x-, y-, and z-axis. Furthermore, by combining the CEVLC
and the method proposed by us in [27], it is possible to give an algorithm with confined
chord error and multi-axis jerk bounds.

The rest of the paper is organized as follows. Section 2 gives a time-optimal velocity
planning algorithm with chord error and acceleration bounds. Section 3 gives a greedy
velocity planning algorithm with chord error and jerk bounds. Section 4 gives the details
for computing the time optimal velocity curves for quadratic B-splines and cubic PH-splines
and the experimental results. Section 5 concludes the paper.

2. Time-optimal velocity planning with chord error and tangential acceleration
bounds

In this section, we will give a time-optimal velocity planning algorithm under the chord
error, feedrate, and tangential acceleration bound constraints.

2.1. Problem
We consider a spatial piecewise parametric curve C(u), u = 0..1 with C1 continuity, such

as B-splines, Nurbs, etc. We further assume that each piece of the curve is differentiable to
the third order and has left and right limitations at the endpoints.

In order to control the CNC machine cutting tools, we need to know the velocity at
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each point on the tool path, which is denoted as a function v(u) in the parameter u and
is called the velocity curve. The procedure to compute the velocity curve v(u) is called
velocity planning. In this subsection, we show that the chord error bound can be reduced
to the centripetal acceleration bound and formulate the velocity planning problem as an
optimization problem with tangential and centripetal acceleration bounds.

For the parametric curve C(u), we denote its parametric speed to be:

σ(u) =
ds

du
= |C ′(u)|,

where ′ is the derivative w.r.t. u. The curvature and radius of curvature are defined to be

k(u) =
|C ′(u)× C ′′(u)|

σ(u)3
, ρ(u) =

1
k(u)

. (1)

Fig. 1. The chord error

When the cutting tool moves from point A to point B on C(u), the line segment AB is
generally considered to be a first order approximation of the machining trajectory, and the
distance between line segment AB and the curve segment is called the chord error [6, 25, 10],
which is one of many sources of the manufacturing error (Fig. 1). Firstly, we will show that
the chord error bound can be reduced to the centripetal acceleration bound.

Let T be the sampling period of the CNC machine, δ the chord error bound, and ±AT

the tangential acceleration bounds. As shown in Fig. 1, the chord error |PQ| is generally
taken as

|PQ| = ρ−
√

ρ2 − |AB|2/4

in the literature [6, 10, 25]. From the above formula, we have −2|PQ|ρ+ |PQ|2 = −|AB|2/4.
In general, the chord error |PQ| is much less than the radius of curvature ρ. Based on this
fact and omitting the second order small quantity |PQ|2, the chord error formula at each
parametric value u is derived [20, page 103]:

|PQ| ≈ |AB|2
8ρ

.
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If we denote by δ(u) the interpolating chord error at u with feedrate v(u), then from the
above formula

q(u) = v2(u) = |AB|2/T 2 ≈ 8δ(u)ρ(u)
T 2

. (2)

Let
aN (u) = v(u)2/ρ(u) = k(u)v(u)2 = k(u)q(u) (3)

be the centripetal acceleration and

AN =
8δ

T 2
. (4)

Then, from (2), (3), and (4) the chord error bound is transformed to the centripetal accel-
eration bound:

δ(u) ≤ δ ⇐⇒ aN (u) ≤ AN .

Since
d
dt

=
ds

dt

du

ds

d
du

=
v

σ

d
du

, (5)

the tangential acceleration is

aT (u) =
dv(u)

dt
=

v(u)v′(u)
σ(u)

=
q′(u)
2σ(u)

. (6)

From (5), the time optimal velocity planning is to find a velocity curve v(u) such that

min
v(u)

t =
∫ 1

0

σ(u)
v(u)

du, (7)

under the following constraints

aN (u) ≤ AN , u = 0..1, (8)
|aT (u)| ≤ AT , u = 0..1, (9)

where aN (u) and aT (u) are the centripetal acceleration and tangential acceleration respec-
tively, and AN is computed from the chord error bound δ with formula (4).

2.2. CEVLC and its key points
In this section, we define the CEVLC, which will play a key role in our algorithms.
If the centripetal acceleration reaches its bound AN , that is the equality holds in (8),

then from (3) we have q(u) = AN
k(u) , which defines a curve

qlim(u) = v2
lim(u) = AN/k(u) =

8δ

k(u)T 2
, u ∈ [0, 1] or

vlim(u) =
√

AN/k(u) =

√
8δ/k(u)

T
, u ∈ [0, 1], (10)

in the u-v plane with v as the vertical axis. We call this curve the velocity limit curve with
the chord error bound, denoted by CEVLC. If C(u) is a piecewise curve with C1 continuity,
then its CEVLC is the combination of the CEVLCs of its components.
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Certain points on the CEVLC play an important role in our algorithms, which are called
switching points or key points.

The first type key points are the discontinuous points of the CEVLC. These points corre-
spond to the curvature discontinuous points of the original curve. They must be the singular
points of the parametric curve or the connection points of two curve segments. If we denote
by C(u) the curve segment, then the singular points of C(u) can be computed by solving the
equations C ′(u)×C ′′(u) = 0. From (10) and (1), the limit velocity vlim is ∞ at these points
and the real velocity curve can not reach it, so we can remove the singular points from the
key points. Thus, only the connection points need to be considered.

At a first type key point u, the velocity is not continuous and we denote by v+(u), v−(u)
(a+(u), a−(u)) the left and right side velocities (accelerations) respectively. If v+(u) < v−(u),
let the velocity and acceleration of this point be (v+(u), a+(u)); otherwise, the velocity and
acceleration of this point are defined to be (v−(u), a−(u)).

The second type key points are the continuous but non-differentiable points of the CEVLC
(slope discontinuity). These points correspond to the curvature continuous but non-differentiable
points of the original curve. Hence, they must be the connection points of two curve seg-
ments. At a second type key point u, the tangential acceleration is not continuous and is
defined to be min{a+(u), a−(u)}.

For a differentiable segment of the CEVLC divided by the above two types of key points,
we can further divide it according to whether the tangential acceleration of the CEVLC is
±AT , where AT is from (9). A point on the CEVLC is called a third type key point if the
tangential acceleration along the CEVLC at this point is ±AT . We can find the third type
key points by solving the following algebraic equation in u

alim(u) =
q′lim(u)
2σ(u)

= (
ANσ(u)3

|C ′(u)× C ′′(u)|)
′/(2σ(u)) = ±AT .

With these switching points, the CEVLC is divided into two types of segments:

1. A curve segment is called feasible if the absolution values of tangential acceleration at
all points are bounded by AT . A feasible CEVLC segment can be a part of the final
velocity curve.

2. A curve segment is called unfeasible if the absolution values of tangential acceleration
at all points are larger than AT . An unfeasible CEVLC segment cannot be a part of
the final velocity curve, and the final velocity curve must be strictly under it due to
the constraint aN (u) ≤ AN .

If the curve segments on the left and right sides of a second type key point are both
feasible, we can delete this key point since it does not affect the velocity planning.

2.3. Integration trajectory
In this section, we will show how to compute the velocity curve when the tangential

acceleration reaches its bound.
We use “Bang-Bang” control, that is, at least one of “=” holds in inequalities (8) or (9).

If the centripetal acceleration reaches its bound AN , from Section 2.2., we will obtain the
CEVLC. If the tangential acceleration reaches its bound, then from (6) the square of the
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velocity q(u) = v(u)2 can be obtained by solving the differential equation q′(u) = 2AT σ(u),
whose solution is

q = 2AT π(u) + c, (11)

where π(u) =
∫

σdu is the primitive function of σ(u) and c a constant which can be deter-
mined by an initial point (u∗, q(u∗)) on the velocity curve:

c = q(u∗)− 2AT π(u∗).

The curve (11) is called an AT integration curve or an AT integration trajectory. If the
tangential acceleration reaches the negative bound −AT , we can just replace AT with −AT

to obtain the −AT integration trajectory.
Before presenting the algorithm, we first give a description of the solution to problem

(7), which will be helpful for understanding the algorithm.
Let vP (u) be the AT integration trajectory starting from a point P = (uP , vlim(uP )) on

the CEVLC both for the forward (the +u) and the backward (the −u) directions. Let v0(u)
be the AT forward integration trajectory from the start point P0 = (0, 0) and v1(u) the AT

backward integration trajectory from the end point P1 = (1, 0). Of course, all the velocity
curves mentioned above are defined in [0, 1].

Then, the solution to the optimization problem (7) is given below.

Theorem 2.1 Let K be the finite set of key points of the CEVLC. Then

v(u) = min
P∈K

(vlim(u), v0(u), v1(u), vP (u)) (12)

is the solution to the optimal problem (7).

We will prove the theorem in the appendix of the paper.
From Theorem 2.1, we see that the time optimal velocity curve is the minimal values of

the CEVLC and the integration trajectories passing through the start point (0, 0), the end
point (1, 0), and all the key points of the CEVLC in the u-v plane. The algorithm we will
given in the next section is an efficient realization of this theorem. Also from the theorem,
v(u) is a piecewise continuous curve for u ∈ [0, 1].

2.4. The time optimal velocity planning algorithm
Since we use the “Bang-Bang” control strategy, the real velocity curve must be either

a feasible part of the CEVLC or a segment of an integration trajectory under the CEVLC.
What we need to do is to find the “switching points” between these two kinds of curves.

We first give the main idea of the velocity planning algorithm which will compute the
velocity curve v(u) in the u-v plane with u as the horizontal axis.

Firstly, we compute the CEVLC, find its key points, and the speeds at the key points.
Compute the forward AT integration trajectory vs from the start point (u, v(u)) = (0, 0).
Find the intersection point (ul, vs(ul)) of vs and the CEVLC. Compute the backward AT

integration trajectory ve from the end point (1, 0). Find the intersection point (ur, ve(ur))
of ve and the CEVLC.
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Secondly, If ul ≥ ur, find the intersection point of vs and ve and return the combination
of vs and ve as the final velocity curve. Otherwise, set Pc = (ul, vs(ul)) to be the current
point and consider the following three cases.

If the next segment of CEVLC starting from point Pc in the forward (the +u) direction
is feasible, then we merge this feasible segment into vs and set the new current point to be
the end point of this feasible segment.

If the next segment of CEVLC starting from point Pc in the forward direction is not
feasible and the forward AT integration trajectory vf with initial point Pc is under the
CEVLC, then let (ui, vf (ui)) be the intersection point of vf and the CEVLC. See Fig. 2 for
an illustration. Merge vf (u), u ∈ [ur, ui] into vs. Let ul = ui and set Pc = (ul, vf (ul)) to be
the new current point.

If the next segment of CEVLC starting from point Pc in the forward direction is not
feasible and the AT integration trajectory vf with initial point Pc is above the CEVLC, then
we find the next key point Pn on the right hand side of Pc. From Pn, compute the backward
AT integration trajectory vb, find the intersection point of vb with vs, and merge vb and vs

as the new vs. See Fig. 3 for an illustration. Set Pn as the new current point.
With the new current point, we can repeat the above procedure until the velocity curve

is found.
To describe our algorithm precisely, we need the following notations. For a discontinuous

curve f1(x), we denote by f+
1 (x∗) and f−1 (x∗) the limitations of f1(x) at x∗ from the left

and right hand sides respectively, and define f1(x∗) = min(f+
1 (x∗), f−1 (x∗)). Let f2(x) be

a curve with C0 continuity. If f2(x∗) = f1(x∗) or f2(x∗) is between the left and right
limitations of f1(x) at x∗, then define (x∗, f2(x∗)) to be the intersect point of the curves
(x, f2(x)) and (x, f1(x)).

We now give the velocity planning algorithm.

Algorithm 2.2 (VP CETA) The input of the algorithm is the curve C(u), u ∈ [0, 1], a
chord error bound δ, and a tangential acceleration bound AT . The output is the velocity
curve v(u), u ∈ [0, 1] which is the solution to the optimization problem (7).

1 Compute the centripetal acceleration bound AN with formula (4), the CEVLC in (10),
and its key points as shown in Section 2.2..

2 From the start point (u, v(u)) = (0, 0), compute the forward AT integration trajectory vs.
Compute the first intersection point (ul, vs(ul)) of vs and the CEVLC. If there exist
no intersections, denote ul = 1.

3 From the end point (u, v(u)) = (1, 0), compute the backward AT integration trajectory ve.
Compute the first intersection point (ur, ve(ur)) of ve and the CEVLC. If there exist
no intersections, denote ur = 0.

4 If (ul, vs(ul)) = (ur, ve(ur)), then return the combination of vs and ve as the final velocity
curve. If ul > ur, find the intersection point (ui, vs(ui)) of vs and ve, return v(u),
where

v(u) =

{
vs, 0 ≤ u ≤ ui

ve, ui < u ≤ 1.
(13)
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5 If (ul, vlim(ul)) is a discontinuous point on the CEVLC, consider three possibilities:

(5.1) If v+
lim(ul) > vs(ul) = v−lim(ul), goto step 6.

(5.2) If v+
lim(ul) = vs(ul) < v−lim(ul), goto step 8.

(5.3) If v+
lim(ul) ≥ vs(ul) > v−lim(ul), let un = ul and goto step 9.

6 Now, (ul, vs(ul)) is the starting point of the next segment of CEVLC. Consider three cases:

(6.1) If the next segment of the CEVLC is feasible, goto step 7

(6.2) If a−lim(ul) ≥ AT , goto step 8.

(6.3) If a−lim(ul) ≤ −AT , then find the next key point (un, vlim(un)) along the +u
direction and goto step 9.

7 Let un > ul be the parameter of the next key point. Then, the CEVLC over the interval
(ul, un) is feasible. Update vs to be

vs(u) =

{
vs(u), 0 ≤ u < ul

vlim(u), ul ≤ u ≤ un.

Let ul = un, goto step 4.

u=ul
vlim

vlim

vf

(a) From step (5.2). The current point is
discontinuous and forward integration is possible

vlim

vlim

vf

u=ul

(b) From step (6.2). The current point is
continuous and forward integration is possible

Fig. 2. Two cases of step 8: computation of forward integration curve vf

8 Starting from (ul, vs(ul)), compute the forward AT integration trajectory vf . Find the
first intersection point (ui, vf (ui)) of vf and the CEVLC (Fig. 2). If there exist no
intersections, set ul = 1. Update vs to be

vs(u) =

{
vs(u), 0 ≤ u < ul

vf (u), ul ≤ u ≤ ui.

Let ul = ui, goto step 4.

9 Starting from point (un, vlim(un)), compute the backward AT integration trajectory vb

in the −u direction. Find the intersection point2) (ui, vb(ui)) of vb and vs (Fig. 3).
Update vs to be

vs(u) =

{
vs(u), 0 ≤ u < ui

vb(u), ui ≤ u ≤ un.

2)We will show that there exists a unique intersection point in Lemma 6.4.
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u=un

vlim

vs

vb

vlim

(a) From step (5.3). The current point is
discontinuous. Forward integration is impossible

and backward integration is needed

vb

u=un

vlim

vs

(b) From step (6.3). The current point is
continuous. Forward integration is impossible and

backward integration is needed

Fig. 3. Two cases of step 9: computation of backward integration curve vb

Let ul = un, goto step 4.

The following theorem shows that the proposed algorithm computes the unique solution
to the optimization problem (7). The proof of this theorem will be given the the appendix
of this paper. Further improvements of the algorithm are given in Section 2.5..

Theorem 2.3 The velocity curve computed with Algorithm VP CETA is the velocity curve
defined in equation (12) and is the only solution to the optimization problem (7). More
precisely, we will show that the velocity curve will reach its maximal possible value at every
point of the tool path under the given constraints.

As a consequence of the above theorem, we can see that the “Bang-Bang” control strategy
is a necessary way to achieve time-optimality to the velocity planning problem under the
given constraints.

The flow chart of the above algorithm is given in Fig. 5. The details of the algorithm is
omitted in the figure.
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Fig. 4. An illustrative example of velocity planning. The horizontal axis is the parameter
of the curve C(u). The vertical axis is the velocity.

Fig. 4 is an illustrative example of the algorithm. We first compute the CEVLC vlim

and the key points as shown in Fig. 4(a), where ◦ represents the first type key points and
the corresponding parameters are 0.2, 0.7; the ¦ represents the second type key point, and
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Fig. 5. Flow chart of the velocity planning
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the corresponding parameter is 0.4; and the ¤ represents the third type key point. The gray
parts are feasible segments.

Starting from point (u, v) = (0, 0), compute the forward integration trajectory vs which
intersects the CEVLC at u = 0.2. Starting from (u, v) = (1, 0), compute the backward
integration trajectory ve which intersects the CEVLC at u = 0.7.

In step 5, the current point Pc is a discontinues point and case (5.3) is executed. In
step 9, starting from the first ◦ point, compute the backward integration trajectory vb which
intersects vs at the first point marked by +. Update vs to be the piecewise curve marked by
I, II in Fig. 4(b).

From the first point marked by ◦, the CEVLC is feasible. Hence, update vs to be the
piecewise curve marked by I, II and the first gray part of the CEVLC(III).

Let the key point marked by ¦ be the current point. From the current point, the CEVLC
is not feasible and case (6.3) is executed. In step 9, we select the next key point which is
the first point marked by ¤. Starting from this point, compute the backward integration
trajectory vb which intersects vs at the second point marked by +. Update vs to be the
piecewise curve marked by I, II, III, IV.

Starting from the first point marked by ¤, the CEVLC is feasible. Hence, update vs to
be the piecewise curve marked by I, II, III, IV,V.

Let the second point marked by ¤ to be the current point. Starting from this point, the
CEVLC is not feasible and case (6.2) is executed. In step 8, compute the forward integration
trajectory vf which intersects ve at the third point marked by +. The final velocity curve
consists of seven pieces marked by I, II, III, IV,V,VI, and VII.

Note that the CEVLC can be parts of the final velocity curve quite often, while in [21, 22],
the VLC is rarely a part of the final velocity curve.

Remark 2.4 In Algorithm VP CETA, we need to compute the CEVLC and its key points,
the integration trajectory, the intersection points of the integration trajectory and the
CEVLC, and the intersection points of two integration trajectories. In principle, these
computations can be reduced to computing integrations and solving algebraic equations.
In Section 4., we will show how to give explicit formulas for the integration curve for two
types of simple tool pathes.

2.5. Improvements of the algorithm
In this section, we present modifications to Algorithm VP CETA to improve its effi-

ciency by getting rid of some unnecessary computations.
We need the following properties of the CEVLC, the proofs of which are given in the

appendix as Lemma 6.3 and Lemma 6.2 respectively.

Proposition 2.5 Let (ul, vlim(ul)) and (un, vlim(un)) be two adjacent key points of the
CEVLC. Then an AT or −AT integration trajectory can intersect the curve segment vlim(u),
u ∈ (ul, un) once at most.

Proposition 2.6 Let v1(u) and v2(u) be two velocity curves for the tool path C(u) defined
on [u1, u2] and a1T (u), a2T (u) their tangential accelerations respectively. If v1(u1) ≤ v2(u1)
and a1T (u) ≤ a2T (u) for u ∈ [u1, u2], then v1(u) ≤ v2(u) for u ∈ [u1, u2]. Furthermore, if
v1(u1) < v2(u1), then v1(u) < v2(u) for u ∈ [u1, u2].
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We will propose three improvements which are summarized as three remarks below.

Remark 2.7 Step 8 of Algorithm VP CETA can be modified as follows. Let ul be the
current parametric value, un the parametric value for the next key point of the CEVLC, and
vf (u) the forward integration trajectory starting from point (ul, vs(ul)). Then the tangential
acceleration of vf (u) is AT in the +u direction. We can modify step 8 as follows:

8.1 If vf (un) < vlim(un), by Proposition 2.5, vf does not meet the CEVLC in (ul, un]
and we can repeat this step for the next segment of CEVLC until either un = 1 or
vf (un) ≥ vlim(un).

8.2 If v+
lim(un) ≥ vf (un) ≥ v−lim(un) or v+

lim(un) = vf (un) ≤ v−lim(un), then vf meets the
CEVLC at (un, vf (un)).

8.3 Otherwise, we have vf (un) > v+
lim(un) and vf meets the CEVLC in (ul, un) at a unique

point P by Proposition 2.5. Furthermore, if the current CEVLC segment is not feasible,
we need not to compute this intersection point. Because, in the next step, we will
execute step 9 by computing the backward integration curve vb from u = un and
compute the intersection point Q of vf and vb. Point P is above vb and will not be a
part of the final velocity curve (Fig. 6(a)).

P

vb
u=un

u=ul

vlim

Q
vf

(a) Case 8.3: point P is not needed.

vb

P

u=un

u=ul

vlim

Q
vf

vlim

u=unnvbn

R

(b) Step 9’: vb is not needed.

Fig. 6. Modifications of steps 8 and 9

In step 8.3, we need to compute the intersection point between an integration curve and
a feasible CEVLC or between a backward integration curve and a forward integration curve.
We can use numerical method to compute it. A simple but useful method to compute these
points is the bisection method, since the intersection point is unique.

Steps 2 and 3 of Algorithm VP CETA can be modified similarly as step 8.

Remark 2.8 Step 9 can be simplified as follows. We call a parameter un useless if v+
lim(un) ≥

v−lim(un), a−lim(un) ≤ −AT , and the next CEVLC segment is not feasible. Note that the
second and third conditions mentioned above are equivalent to the following condition:
alim(u) < −AT , u ∈ (un, unn), where unn is the parametric value for the next key point
after un. If un is useless, then we need not to compute the backward integration trajectory
vb from point (un, vlim(un)). Because the backward integration trajectory vbn starting from
unn will be strictly under vb due to Proposition 2.6 (Fig. 6(b)), and as a consequence vb will
not be a part of the final velocity curve due to Theorem 2.1. So, step 9 can be modified as
follows.
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Step 9’. If un is useless, we will choose the next key point as un and repeat this procedure
until either un = 1 or un is not useless. Use this un to compute the backward integration
trajectory vb and update vs.

Remark 2.9 Due to Theorem 2.1 and Proposition 2.6, we can give the following simpler
and more efficient algorithm. The input and output of the algorithm are the same as that
of Algorithm VP CETA. After computing the CEVLC and its key points, we compute the
velocity curve as follows.

1 Let P be the set of key points of the CEVLC plus the start and end points (0, 0) and
(1, 0). Set the velocity curve to be the empty set.

2 Repeat the following steps until P = ∅.
3 Let P = (u, vlim(u)) ∈ P be a point with the smallest velocity vlim(u) and remove P from

P.

4 Let V f
P and V b

P be the forward and backward AT integration trajectories starting from
point P respectively, which can be computed with the methods in Remark 2.7. If,
starting from point P , the left (right) CEVLC segment is feasible, V b

P (V f
P ) is set to be

this segment. Find the intersection points of V b
P (V f

P ) and the existence velocity curve
if needed. Update the velocity curve using V f

P and V b
P .

5 Remove the points in P, which are above the curve V f
P or V b

P . This step is correct due to
Theorem 2.1 and Proposition 2.6.

The main advantage of the above algorithm is that many key points are above these
integration trajectories and we do not need to compute the integration trajectories starting
from these points. Also, all the integration trajectories computed in this new algorithm will
be part of the output velocity curve, because each of them starts from the key point which
is not processed and has the smallest velocity.

2.6. Feedrate override in CNC-machining
During the CNC-machining, there exists another constraint: the maximal feedrate vmax.

In this situation, all we need to do is to change the velocity curve to v∗(u) = min(v(u), vmax),
where v(u) is the optimal velocity curve obtained in the preceding sections. The procedure
of the interpolation is as follows.

Algorithm 2.10 (Interpolation algorithm) The input is the current parameter ui, the
velocity curve v(u), maximum feedrate vmax, and the sampling time T . The output is the
parameter of the next interpolation point ui+1.

1. According to the velocity curve and the maximum feedrate, let vi = min(v(ui), vmax).
The step size is ∆L = vi · T .

2. According to the step size ∆L, compute the parameter of the next interpolation point
ui+1 wit the method given in ([4, 23]).
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Since for any parametric value u, whenever the value of v∗(u) is taken from v(u) or vmax,
the left and right limitations of the tangential acceleration are satisfied. Hence, v∗(u) satisfies
the maximum feedrate, chord error, and tangential acceleration bounds. Furthermore, in
CNC-machining, the users can change the maximum feedrate during manufacturing, which
is called feedrate override. Although the new feedrate limitation is not required to respond
immediately, the real velocity should decrease to the new lower speed as soon as possible.
The following algorithm solves the feedrate override problem efficiently.

Algorithm 2.11 (Feedrate override) The input is the velocity curve v(u), the current
parameter ui, the current feedrate v∗, the modified feedrate limitation v̄max. The output is
the parametric values ui+1, ui+2, . . . of the interpolation points.

1 If v∗ > v̄max, then let v̄i = v∗ − AT T , v̌i = max(v̄i, v̄max), vi = min(v̌i, v(ui)). Find
the next interpolation point ui+1 according to Algorithm 2.10, i = i + 1, v∗ = vi, and
repeat step 1.

2 If v∗ ≤ v̄max, then let vi = min(v(ui), v̄max, v∗ + AT T ). Find the next interpolation
point ui+1 according to Algorithm 2.10. If ui+1 > 1, then let ui+1 = 1 and terminate;
else let i = i + 1, v∗ = vi, and repeat step 2.

Since the final velocity is under the CEVLC, the error bound is satisfied. Step 1 of the
above algorithm is to slow down feedrate as soon as possible when the current feedrate is
larger than the modified feedrate. Step 2 of the above algorithm is exactly Algorithm 2.10,
where the maximum feedrate is replaced by the modified feedrate.

One advantage of using tangential acceleration is that feedrate override can be carried
out easily. In the case of multi-axis acceleration mode, when the maximal feedrate is changed
to vmax, we cannot simply take v∗(u) = min(v(u), vmax) to be the new velocity curve and
the procedure to compute the new velocity curve is complicated.

3. Velocity planning with chord error and jerk bounds

In this section, we consider the velocity planning under a chord error bound δ and a jerk
bound J . We are able to give a greedy velocity planning algorithm for this problem.

By (6), the jerk of a velocity curve v(u) for the tool path C(u), u = 0..1 is

jT (u) =
daT (u)

dt
=

daT (u)
du

du

dt
=

v

σ
(
vv′

σ
)′. (14)

Then the velocity planning problem is to find a velocity curve v(u), u = 0..1, such that

min
v(u)

t =
∫ 1

0

σ(u)
v(u)

du, (15)

under the following constraints

|jT (u)| ≤ J, aN (u) ≤ AN , u = 0..1, (16)

where J is the jerk bound and AN is the centripetal acceleration bound computed from the
chord error bound with formula (4).
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Similar to the method given in Section 2.2 of [27], we can show that a solution to the
time-optimal problem (15) must satisfy the “Bang-Bang” control strategy. That is, the
velocity curve is governed either by the jerk bound or by the chord error bound. Since the
CEVLC defined in Section 2.3. is determined by the chord error bound, all we need to do is
to compute a velocity curve governed by the jerk bound, which is “under” the CEVLC.

3.1. Key points of the CEVLC related to the jerk bound
Similar to Section 2.2., we also need to consider the switching points or key points of the

CEVLC w.r.t. the jerk bound.
Let alim(u) be the tangential acceleration of the CEVLC. If the CEVLC is not differen-

tiable at u, we use the left and right limitations to define a+
lim(u), a−lim(u). There exist five

types of key points.
The first and second types of key points are the same as that given in Section 2.2.. These

are the connecting points of two adjacent segments of C(u).
Since we also consider the jerk value of the CEVLC, the points with non-differentiable

tangential accelerations on the CEVLC are also selected as switching points. So, the third
type switching points are the continuous but non-differentiable points of alim(u).

For a differentiable segment of the CEVLC divided by the above three types of switching
points, we can divide it according to whether the jerk of the CEVLC is ±J , where J is the
jerk bound. A point on the CEVLC is called a fourth type key point if the jerk along the
CEVLC at this point is ±J . We can find the fourth type switching points by solving the
following algebraic equation in u

jlim(u) =
vlim(u)
σ(u)

(
vlim(u)v′lim(u)

σ(u)
)′ =

√
AN/k(u)
σ(u)

(
(AN/k(u))′

2σ(u)
)′ = ±J. (17)

The fifth type switching points are the velocity extremal points, where the velocity reaches
a local extremal value. These points can be computed by solving the following algebraic
equation in u

alim(u) =
vlim(u)v′lim(u)

σ(u)
= 0. (18)

With these switching points, the CEVLC can be divided into two types of segments:

1. A curve segment is called jerk feasible if the absolution values of jerk at all points are
bounded by J . A jerk feasible CEVLC segment can be a part of the final velocity
curve.

2. A curve segment is called unfeasible if the absolution values of jerk at all points are
larger than J . An unfeasible CEVLC segment cannot be a part of the final velocity
curve. In other words, the final velocity curve must be strictly under it.

If the curve segments on the left and right sides of a third type key point are both jerk
feasible, and they have the same acceleration value at that point, we can delete this switching
point since it does not affect velocity planning. If a fifth type switching point is on a feasible
segment, we can also delete this point.
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3.2. Integration curve with a given jerk
In this section, we will derive the velocity curve when the jerk reaches its bound J . If

the velocity curve is governed by the jerk bound J , from (14), we have

v

σ
(
vv′

σ
)′ = J. (19)

That is, we need to solve the above second order differential equation to obtain v(u). Let
π =

∫
σdu and g = dv

dπ
= v′

σ . Then, (19) becomes

v

σ
(
vv′

σ
)′ =

v

σ
(vg)′ =

v

σ
(v′g + vg′) = v(g2 + v

dg

dπ
) = vg2 + v2g

dg

dv
= J. (20)

Let h = g2. Then, (20) becomes
dh

dv
=

2J

v2
− 2h

v
. (21)

Solving the above differential equation in h, we have

h =
2J

v
− c1

v2
, (22)

where c1 is an integration constant. So, we have

dv

dπ
= ±

√
2Jv − c1

v
. (23)

Solving the above equation, we have

π − c2 = ±
∫

vdv√
2Jv − c1

= ±(Jv + c1)
√

2JV − c1

3J2
, (24)

where c2 is another integration constant. Solving this algebraic equation in v, we have

v =
1
2J

[
ω

(
U +

√
U2 + c3

1

) 2
3

+ ω2

(
U +

√
U2 + c3

1

) 2
3

− c1

]
, (25)

where U = 3J2(π − c2), ω3 = 1.
Now we give the expressions for computing the integration constants c1, c2. From equa-

tions (22) and (24), we have

c1 = 2Jv − (vg)2 = 2Jv − (vv′
σ )2 = 2Jv − a2

T ,

c2 = π ∓ (Jv+c1)
√

2JV−c1
3J2 = π ∓ (3Jv−a2

T )|aT |
3J2 = π − (3Jv−a2

T )aT

3J2 .
(26)

The constants c1, c2 can be determined by a specific point (u∗, v(u∗), aT (u∗)) on the inte-
gration curve.

In (25), if U2 + c3
1 is negative in some value interval of u, the expression of v should be

changed. We substitute ω by e
2
3
ikπ(k = 0, 1, 2) to obtain

v = −c1
2J [e

2
3 ikπ( U

(−c1)3/2 + i
√

1− U2

(−c1)3
)2/3 + e−

2
3 ikπ( U

(−c1)3/2 − i
√

1− U2

(−c1)3
)2/3 + 1]

= −c1
2J [e

2
3 ikπe

2
3 i arccos U

(−c1)3/2 + e−
2
3 ikπe

− 2
3 i arccos U

(−c1)3/2 + 1]
= −c1

2J [2 cos 2
3 (arccos U

(−c1)3/2 + kπ) + 1].

(27)

The velocity curve governed by J is called the J+ trajectory. If the jerk bound is −J , we
just need to replace J by −J in the above solutions. And we call the velocity curve governed
by −J the J− trajectory.
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3.3. Velocity planning with confined chord error and jerk
In this section, we will give a velocity planning algorithm which can be considered as a

solution to problem (15) under a greedy rule to be explained below.
Contrary to problem (7), it is still an open problem to design a time-optimal solution to

problem (15) or similar problems with jerk bounds on the x-, y-, and z-axis [27] using the
continuous model. More discussion about this issue can be found in [27]. At the beginning
of Section 3., we showed that a solution to problem (15) must be “Bang-Bang” in the sense
that either the jerk or the chord error reaches its bound at any time. What we will do below
is to design a velocity curve which satisfies the “Bang-Bang” control strategy and obeys the
following “greedy rule”: we will use the J+ trajectory as much as possible. In other words,
we only use the J− trajectory to decelerate when we have to do so.

We now give the algorithm.

Algorithm 3.1 (VP CETJ) The input of the algorithm is the tool path C(u), u ∈ [0, 1],
a chord error bound δ, and a jerk bound J . The output is the velocity curve v(u), u ∈ [0, 1]
which is a solution to problem (15) under the greedy rule.

The algorithm consists of two phases. The first phase is quite similar to Algorithm
VP CETA and can be obtained from Algorithm VP CETA by making two changes

Firstly, we need to replace the AT integration trajectory by the J+ trajectory, replace
alim(u) by jlim(u), and replace feasible segments of CEVLC by jerk feasible segments of
CEVLC.

Secondly, Step (6.3) need to be modified. In this case, we cannot use a backward J+

trajectory starting from point (un, vlim(un), alim(un)), since this trajectory will be above
the CEVLC. See Fig. 3(b) for an illustration. The reason is that the jerk at any point in
(ul, un) for the CEVLC is less than −J , and if we use a backward J+ trajectory vb, then both
its acceleration and speed will be larger than that of the CEVLC at a small neighborhood
of un. In Algorithm VP CETA, using a backward AT trajectory is possible, because the
acceleration of the CEVLC in the backward direction at any point in (ul, un) is larger than
AT . As a consequence, the backward AT trajectory will be below the CEVLC. A rigorous
proof of this fact can be found in the appendix of the paper.

We will modify Step (6.3) as follows. Due to the above analysis, what we need to do is
to lower the start acceleration an at u = un such that there exists a backward J+ trajectory
vb(u) which passes through (un, vlim(un), an) and intersects with vs (Fig. 3(b)). Let u1 be the
parameter value for the intersection of vb and the trajectory vs. From (26), the integration
constants of vb can be expressed as c1(u, v(u), aT (u)), c2(u, v(u), aT (u)). Since vb has the
same velocity and acceleration with vs(u) at u = u1 and c1, c2 are constants on vb, we have
the following equations

{
c1(u1, vs(u1), as(u1)) = c1(un, vlim(un), an),
c2(u1, vs(u1), as(u1)) = c2(un, vlim(un), an)

(28)

where as(u1) is the acceleration of vs(u) at u = u1. We can solve the above algebraic equation
system to obtain u1 and an. Then the trajectory vb can be found with (25).

The first phase of the algorithm outputs a continuous velocity curve. But, at the in-
tersection point of two velocity curve segments, the tangential acceleration of v(u) might
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Fig. 7. Connect two velocity curve segments with a J− trajectory (red one) to obtain a
velocity curve with continuous acceleration

not be continuous. The second phase of the algorithm will connect the two velocity curve
segments with J− trajectories to obtain a velocity curve with continuous tangential acceler-
ations (Fig. 7). Here the greedy rule is used: we now must use a J− trajectory to make the
connection. Two cases are considered.

Firstly, we assume that the definition interval [u1, u2] of the J− trajectory does not
contain any connection point of the tool path C(u). From (26), the integration constants
of the J− trajectory can be expressed as c1(u, v(u), aT (u)), c2(u, v(u), aT (u)). Let the two
velocity segments be vl(u) and vr(u) with tangential accelerations al(u) and ar(u). Since the
J− trajectory has the same velocity and acceleration with vl(u) (or vr(u)) at u1 (or u2) and
c1, c2 are constants on the J− trajectory, we have the following equations (Fig. 7)

{
c1(u1, vl(u1), al(u1)) = c1(u2, vr(u2), ar(u2)),
c2(u1, vl(u1), al(u1)) = c2(u2, vr(u2), ar(u2))

(29)

We can solve the above algebraic equation system to obtain u1, u2. Then the integration
constants of the J− trajectory are c1(ū1, vl(ū1), al(ū1)) and c2(ū1, vl(ū1), al(ū1)), where ū1 is
a solution of (29). After the two integration constants are obtained, the J− trajectory can
be computed with the methods in Section 3.2..

Secondly, if the definition interval [u1, u2] of the J− trajectory contains one connection
point of the tool path C(u), say u∗. Let σ1(u), σ2(u) be the two parametric speeds of the two
segments of C(u), and ρ1(u) =

∫
σ1(u)du, ρ2(u) =

∫
σ2(u)du. Then, from (26), to obtain

the J− trajectory, we need to solve the following algebraic equation system
{

c1(u1, vl(u1), al(u1)) = c1(u2, vr(u2), ar(u2)),
c2(u1, vl(u1), al(u1))− ρ1(u1) = c2(u2, vr(u2), ar(u2))− ρ2(u2)

(30)

to obtain u1, u2. Then, similar as above, we obtain the connecting J− trajectory. If the
definition interval of the J− trajectory contains several connection points of the tool path,
one can obtain the J− trajectory in a similar way.

The output of Algorithm VP CETJ is the velocity curve obtained in phase two, which
has confined jerk and chord error.

Remark 3.2 One can add the maximal feedrate constraint in the velocity planning just as
a part of the CEVLC, and solve equation(29) to make the velocity curve satisfying the jerk
and chord error bounds. We will not give the details here.
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4. Experiments with quadratic B-splines and cubic PH-splines

In Algorithms VP CETA and VP CETJ, we assume that
∫

σdu is computable. In
this section, we will show that for quadratic B-splines and cubic B-splines, we can have
a complete and efficient time optimal velocity planning algorithm by giving closed form
formulas for

∫
σdu. We implemented our algorithms in these two cases in Maple and used

examples from real manufacturing parts to show the feasibility of our algorithm. We also
implement Algorithm VP CETA with quadratic B-splines in an industrial CNC controller
and conduct real CNC machining in a three axis CNC machine.

4.1. Velocity planning for quadratic B-splines with confined acceleration
Let C(u), u ∈ [0, 1] be a quadratic B-spline. Since C(u) has only C1 continuity and a

quadratic curve has no singular points, the connection points of the spline are all the key
points of first or second type. To compute the key points of third type, consider a piece of
the spline:

C(u) = (x(u), y(u), z(u))
= (a0 + a1u + a2u

2, b0 + b1u + b2u
2, c0 + c1u + c2u

2),

where a0, a1, a2, b0, b1, b2, c0, c1, c2 are constants. The curvature of C(u) is k(u) = |C′×C′′|
σ3 ,

where
σ = |C ′| =

√
x′2 + y′2 + z′2 =

√
mu2 + nu + l.

Since C(u) is quadratic, the parameters m,n, l can be computed as follows

m = 4(a2
2 + b2

2 + c2
2), n = 4(a1a2 + b1b2 + c1c2), l = a2

1 + b2
1 + c2

1.

And
|C ′ × C ′′| =

√
(b1c2 − c1b2)2 + (c1a2 − a1c2)2 + (a1b2 − b1 ∗ a2)2

is a constant. Hence the CEVLC is

q = v2 =
AN

|k(u)| =
ANσ3

|C ′ × C ′′| = Dσ3 = D(mu2 + nu + l)3/2, (31)

where D is a constant. The tangential acceleration along the CEVLC is alim = (Dσ3)′
2σ =

3
2Dσσ′ = 3

4D(σ2)′. Hence, alim(u) is a linear function in the parameter u. Then, the key
points of third type can be computed by solving linear equations alim = ±AT . From the
equations, we can see that for each piece of the quadratic B-splines, there are two key points
of third type at most.

Now, we show how to compute the AT integration trajectory. When the tangential
acceleration reaches its bounds ±AT , we need to compute the solution of the differential
equation:

q′ = ±2AT σ. (32)

Let
i(u) = ±2AT π(u) where

π(u) = [14
(2 mu+n)

√
mu2+nu+l

m + 1
2 ln(

1
2

mu+n√
m

+
√

mu2 + nu + l)l 1√
m

]

−1
8 ln(

1
2

mu+n√
m

+
√

mu2 + nu + l)n2m− 3
2 .

(33)
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Then, q(u) = i(u)− i(u∗)+ q(u∗) is the solution of the differential equation (32) with initial
value (u∗, q(u∗)).

(a) A quadratic B-spline in x, y plane (b) The vase model

(c) The CEVLC vlim(u) (d) Velocity curve v(u)

(e) Chord error δ(u) (f) Tangential acceleration aT (u)

Fig. 8. Optimal velocity planing for a quadratic B-spline with confined chord error and
acceleration. Except (a) and (b), the horizontal axis is the parameter of C(u). The units for
the velocity, acceleration, and chord error are mm/s, mm/s2, and mm respectively.

We use an example to illustrate the algorithm. The curve in Fig. 8(a) is a planar quadratic
B-spline (x(u), y(u)), u ∈ [0, 1] consisting of 14 pieces of quadratic curve segments, which is
from the tool path of the vase in Fig. 8(b). We set the tangential acceleration and chord
error bounds to be AT = 1500 mm/s2 and δ = 1µm. If the sampling period is T = 2ms,
then from (4), the centripetal acceptilation bound is AN = 2000mm/s2.

According to Algorithm VP CETA, we first compute the CEVLC with the maximal
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centripetal acceleration, which is shown in Fig. 8(c). The final velocity curve computed
with Algorithm VP CETA is shown in Fig. 8(d), which consists of thirty two pieces, where
the 4, 8, 11, 14, 16, 21, 23, 25, 31-th pieces are feasible CEVLC segments, and the others are
controlled by the tangential acceleration. Fig. 8(e) is the chord error of the optimal velocity
curve. Fig. 8(f) is its tangential acceleration. From these two figures, we can see that the
control is “Bang-Bang.”

The tool path in Fig. 9(a) is a complete segment C(u) = (x(u), y(u)), u ∈ [0, 10] of
the vase in Fig. 8(b) from top to bottom and consists of five quadratic B-splines with 57
quadratic curve segments and 5 long straight line segments. The tool path in Fig. 8(a) is
the first quadratic spline in Fig. 9(a). We use the same acceleration and chord error bounds.
Fig. 9(c) is its CEVLC. Fig. 9(d) is the optimal velocity curve computed with our algorithm,
which consists of 127 curve segments. Fig. 9(e) is the chord error of the optimal velocity
curve. Fig. 9(f) is its tangential acceleration.

Note that in the connection point of two quadratic B-splines, the velocity decreases to
zero. This can be improved. But, we will not discuss the issue here.

We now consider a space tool path (x(u), y(u), z(u)), u ∈ [0, 2] shown in Fig. 10(a),
which is from the blade of the impeller shown in Fig. 10(b) and consists of two quadratic B-
splines with 13 and 14 curve segments respectively [29]. The tangential acceleration bound
is AT = 1500 mm/s2, the chord error bound is δ = 1µm, and the sampling period is
T = 2ms. Then the centripetal acceptilation bound AN = 2000mm/s2 can be computed
with (4). Fig. 10(c) is its CEVLC. Fig. 10(d) is the optimal velocity curve computed with
our algorithm. Fig. 10(e) is the chord error of the optimal velocity curve. Fig. 10(f) is its
tangential acceleration.

4.2. Velocity planning for cubic PH-splines with confined acceleration
Let C(u), u ∈ [0, 1] be a cubic PH-spline. Since a cubic PH-spline only has C1 continuity,

the connection points of the PH-splines are all the key points of first or second type of
the CEVLC. Let r(u) be a piece of cubic PH-curve of C(u). Then, r′(u) has the following
representation [8]:

r′(u) =(f(u)2 + g(u)2 −m(u)2 − n(u)2,
2(f(u)n(u) + g(u)m(u)), (34)
2(g(u)n(u)− f(u)m(u))).

where f(u), g(u),m(u), n(u) are linear functions in u.
The curvature of r(u) is k(u) = |r′×r′′|

σ3 = E
σ2 , where σ = |r′| = f(u)2 + g(u)2 + m(u)2 +

n(u)2 and E is a constant. The CEVLC of r(u) is

q = v2 =
AN

|k(u)| = Gσ2,

where G is a constant. The tangential acceleration along the CEVLC is: alim = (Gσ2)′
2σ = Gσ′.

Since σ is of degree two, alim(u) is a linear function in the parameter u. The key points of
the third type can be computed by solving linear equations alim = ±AT directly.
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(a) quadratic B-splines r(u) = (x(u), y(u))

(b) Velocity limited curve vlim(u)

(c) Velocity curve v(u)

(d) Chord error δ(u)

(e) Tangential acceleration aT (u)

Fig. 9. Optimal velocity planing for quadratic B-splines from a vase with confined chord
error and acceleration. Units are the same as that of Fig. 8.
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(a) A quadratic B-spline (b) The blade

(c) The CEVLC
(d) Velocity curve v(u)

(e) Chord error δ(u)
(f) Tangential acceleration

Fig. 10. Optimal velocity planing for quadratic B-splines with confined chord error and
acceleration. Units are the same as that of Fig. 8.

For a cubic PH-curve, the AT integration trajectory is a polynomial in u with degree
three. The integration trajectory is the solution of the following differential equation:

q′ = ±2AT σ = ±2AT (au2 + bu + c), (35)

where a, b, c are constants. Let i(u) = ±2AT (1/3 au3 + 1/2 bu2 + cu). Then, q(u) = i(u) −
i(u∗) + q(u∗) is the solution of the differential equation (35) with initial value (u∗, q(u∗)).

Now, we give an illustrative example. The curve C(u) = (x(u), y(u)), u ∈ [0, 1] shown in
Fig. 11(a) is a cubic PH-spline consisting of two pieces of PH-curves with C1 continuity. The
tangential acceleration bound is AT = 3000 mm/s2, the chord error bound is δ = 1µm, and
the sampling period is T = 2ms. Then the centripetal acceptilation bound AN = 2000mm/s2

can be computed with (4). The CEVLC is shown in Fig. 11(b) and the final velocity curve
shown in Fig. 11(c) has four segments, where the 1, 3, 5-th segments are AT integration
trajectories and the 2, 4-th pieces are feasible CEVLC segments. The chord error and the
tangential acceleration of the optimal velocity curve are given in Fig. 11(d) and Fig. 11(e)
respectively.

4.3. Velocity planning for cubic PH-splines with confined jerk



Time-Optimal Interpolation for CNC Machining with Confined Chord Error 81

–2

0

2

4

6

8

10

5 10 15 20 25

(a) Cubic PH-spline (b) The CEVLC

(c) Velocity curve v(u) (d) Chord error δ(u)
(e) Tangential acceleration

of velocity curve

Fig. 11. Optimal velocity planning for a cubic PH-spline with confined chord error and
acceleration. Units are the same as that of Fig. 8.

(a) Velocity curve obtained in phase one (b) Velocity curve v(u)

(c) The chord error δ(u) (d) The jerk of v(u)

Fig. 12. Velocity planning for a cubic PH-spline with a jerk bound. Units are the same as
that of Fig. 8. The unit for the jerk is mm/s3.
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(a) Velocity curve v(u) (b) The chord error δ(u) (c) The jerk of v(u)

Fig. 13. Velocity planning for a cubic PH-spline with sensitive corner method. The dash
line in (b) is the chord error bound δ = 1µm. We can see that the jerk is confined, but the
chord error is beyond the given precision in about 50% of the points.

Let C(u), u ∈ [0, 1] be a cubic PH-spline. Similar to Section 4.2., the connection points
of the PH-spline are all the key points of first or second type of the CEVLC. Let r(u) be a
piece of a cubic PH-curve C(u) of form (4.2.). Then the jerk of the CEVLC is

jlim(u) =
vlim

σ
a′lim = G3/2σ′′,

which is a constant. Then there generally exist no key points of types three and four. The
key points of the fifth type can be computed by solving linear equations alim = 0 directly.

Now, we use the cubic PH-spline in Fig. 11(a) to illustrate the Algorithm VP CETJ.
Let the jerk and the chord error bounds be J = 30000mm/s3 and 1µm respectively. If the

sampling period is T = 2ms, then the centripetal acceptilation bound is AN = 2000mm/s2.
The CEVLC is the same as Fig. 11(b). Fig. 12(a) is the velocity curve obtained with the first
phase of Algorithm VP CETJ. After connecting the adjacent curve segments of this velocity
curve by J− trajectories in the second phase of Algorithm VP CETJ, we obtain the final
velocity curve v(u) as shown in Fig. 12(b), which has continuous tangential accelerations.
The chord error and the jerk of v(u) are shown in Figs. 12(c) and (d) respectively.

The total machining time for the PH-spline 11(a) with chord error bound 1µm and
tangential acceleration bound 3000mm/s2 using Algorithm VP CETA is 0.382s. The total
machining time for the same curve segment with the same chord error bound and jerk bound
30000mm/s3 using Algorithm VP CETJ is 0.44s. So, when we use jerk limitations, the
machining time is longer, as expected.

We compare Algorithm VP CETJ with another velocity planning method in Fig. 13.
Fig. 13(a) is the velocity curve v(u) for the cubic PH-spline in Fig. 11(a) under the same
bounds obtained with a method of detecting the limit speeds at sensitive corners. The
method is similar to that given in [26]. Firstly, we detect the local minimal velocity for the
CEVLC and the connection points for the spline, in this example, the parametric value of
these sensitive points are u = 0, 0.33, 0.5, 0.97, 1. Then compute the length between every
two adjacent points, and use a backtracking method with jerk bound to delete the useless
sensitive points and adjust the velocity of these sensitive points. In this example, the point
corresponding to u = 0, 0.33, 0.5, 1 is useful. Then between every two adjacent points, use
the starting and ending speeds, the curve length between these two points, and the jerk
bound to compute the speed for each point between these two adjacent points. Fig. 13(b)
is the chord error of v(u), from which we can see that the chord error is beyond the bound
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at about 50% of the parametric values. Furthermore, the machining time is 0.432s which is
longer than the machining time 0.382s using Algorithm VP CETJ.

4.4. Real CNC machining with Algorithm VP CETA
In this section, we will show how to implement Algorithm VP CETA for tool pathes

described with quadratic B-splines in a commercial CNC controller and give the results for
real CNC machining in a three axis industrial CNC machine.

To implement our method in CNC controllers, we compute the velocity curves off-line
first and then use the velocity curves as parts of the input to the CNC controllers to achieve
real-time interpolation. This strategy is adopted by many existing work such as [9, 10, 29].

We first design a new G-code which is of the following form:

G65.5 a0 a1 a2

b0 b1 b2

c0 c1 c2

flag k m n l
c∗

u1 u2

(36)

When the interpreter reads a G65.5 code, the parameters are interpreted as follows. The
tool path is represented by the curve segment C(u) = (x(u), y(u), z(u)), u ∈ [u1, u2], where

x(u) = a0 + a1u + a2u
2, y(u) = b0 + b1u + b2u

2, z(u) = c0 + c1u + c2u
2.

The corresponding velocity curve at point C(u) is v(u), u ∈ [u1, u2], where

v(u) =

{ √
kπ(u) + c∗, if flag = 0√
k(mu2+nu+l)3/2

c∗ , if flag = 1
(37)

In the above equations, if flag = 0, k = ±2AT and π(u) is from (33), and c∗ is the integration
constant. In this case, v(u) is the integration trajectory controlled by k = ±AT . If flag = 1,
k = AN , c∗ = |C ′(u)× C ′′(u)|, and v(u) is the CEVLC of C(u), u ∈ [u1, u2] given in (31).

Since we know the velocity v(u) at point C(u), we can use the interpolation Algorithm
2.10 to do real-time interpolation.

(A) The CNC-Controller (b) The CNC machine (c) Manufacturing process

Fig. 14. CNC machining of the vase
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The CNC controller used in our experiment is an LT-CNC controller shown in Fig.
(14)(a), which is a commercial product of Shenyang LanTian CNC Corporation. The con-
troller is based on Linux OS and is implemented with C language. Therefore, we also
implement Algorithm VP CETA with C language. The CNC machine used in our experi-
ment is shown in Fig. 14(b), which is a 3-axis industrial CNC machine. Fig. 14(c) shows the
manufacturing process.

The model manufactured in the experiment is the vase shown in Fig. 8(b) and Fig. 15.
The vase is a CNC model consists of more than 116000 G01 codes with total tool path
length of 20.25m. Its B-spline representation consists of more than 30000 quadratic curve
segments [29]. The G01 codes and the spline representation of the model can be found
in http://www.mmrc.iss.ac.cn/˜ xgao/cnc/. The tool path of the vase fluctuates violently
making the optimal speed velocity planning difficult. Also, the examples given in Fig. 8 and
Fig. 9 are both tool pathes from the vase model, which give an intuitive view of the velocity
curves used in the manufacturing process.

Six machined vases are shown in Fig. 15 with different tangential acceleration and chord
error bounds. The machining times for these parameters are given in Table 1. The sampling
period is T = 2ms. From Table 1, we can see that the machining time for larger AT is
shorter, which is expected. Also, the machining time for larger chord error δ is generally
shorter. From Fig. 15, we can see that the machining quality is better for smaller chord error
δ with the same AT , as expected.

AT (mm/s2) δ(mm) machining time
1000 0.001 23′33′′

1000 0.0015 22′48′′

1000 0.002 22′25′′

2000 0.001 18′52′′

2000 0.0015 17′54′′

2000 0.002 17′23′′

Table 1. The machining time of the vase

5. Conclusion

In this paper, we give a time-optimal velocity planning method for parametric tool pathes
with confined chord error, feedrate, and acceleration. We adopt the simplest acceleration
mode: the linear acceleration for tangential accelerations. With the CEVLC introduced in
this paper, it is not difficult to give a time-optimal velocity planning method with chord
error and multi-axis acceleration bounds.

The key idea is to reduce the chord error bound to a centripetal acceleration bound.
When the centripetal acceleration reaches its bound, the velocity curve is an algebraic curve
and is called the CEVLC. With the CEVLC, the final velocity curve is the minimum of all
the integration trajectories starting from the key points of the CEVLC, the start point, and
the end point. We also give a practical algorithm to compute the time-optimal velocity curve
and implemented the algorithm for two types of simple tool pathes. For quadratic B-splines
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(a) AT = 1000mm/s2 and
δ = 1µm

(b) AT = 1000mm/s2 and
δ = 1.5µm

(c) AT = 1000mm/s2 and
δ = 2µm

(d) AT = 2000mm/s2 and
δ = 1µm

(e) AT = 2000mm/s2 and
δ = 1.5µm

(f) AT = 2000mm/s2 and
δ = 2µm

Fig. 15. The machined vases

and cubic PH-splines, we can obtain the explicit formulas for the time-optimal solutions.
Real industrial CNC machining are conducted show the feasibility of our algorithm.

In a similar way, we also give a velocity planning algorithm with the chord error and
jerk bounds under a greedy rule. It is interesting to investigate whether the velocity curve
thus obtained is time-optimal or not. In principle, the methods in Sections 2 and 3 can be
combined to give a velocity planning method with confined jerk and acceleration, the detail
of which will be investigated later.

Appendix. Proof of Theorem 2.3

In this appendix, we will show that the velocity curve given by Algorithm VP CETA
in Section 2.4. is the only solution to the optimization problem (7). The proof is divided
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into two parts. We first show that the velocity curve computed by the algorithm is the curve
defined in (12) and then prove that this velocity curve is the solution to problem (7). In
order to prove this, we need the following result.

Theorem 6.1 [2][p.24-26] Let y, z be solutions of the following differential equations

y′ = F (x, y), z′ = G(x, z),

respectively, where F (x, y) ≤ G(x, y), a ≤ x ≤ b, and F or G satisfies Lipschitz’s condition.
If y(a) = z(a), then y(x) ≤ z(x) for any x ∈ [a, b].

In our case, the above theorem implies the following result.

Lemma 6.2 Let v1(u) and v2(u) be two velocity curves for the tool path C(u) defined on
[u1, u2] and a1T (u), a2T (u) their tangential accelerations respectively. If v1(u1) ≤ v2(u1) and
a1T (u) ≤ a2T (u) for u ∈ [u1, u2], then v1(u) ≤ v2(u) for u ∈ [u1, u2]. Furthermore, if
v1(u1) < v2(u1), then v1(u) < v2(u) for u ∈ [u1, u2].

Proof. We may assume that v1(u1) = v2(u1), since if v1(u1) < v2(u1), we may consider
v̄2(u) = v2(u) − v2(u1) + v1(u1) which satisfies the conditions of the lemma. Since C(u) is
differentiable to the order of three, σ(u) and a1T (u) must be bounded in [u1, u2]. From (6),
q′1(u) = 2σ(u)a2T (u) and q′2(u) = 2σ(u)a2T (u). Then, we have q1(u1) = v1(u1)2 = q2(u1) =
v2(u1)2, 2σ(u)a2T (u) ≤ 2σ(u)a2T (u) for u ∈ [u1, u2], and 2σ(u)a1T (u) satisfies the Lipschitz’s
condition. Using Theorem 6.1, we have v1(u) ≤ v2(u) for u ∈ [u1, u2]. The second part of
the lemma can be proved similarly.

Before proving Theorem 2.3, we first explain the key steps of the algorithm. Besides the in
initial steps, new velocity trajectories are generated in Steps 7, 8, 9. We will show that these
steps are correct in the sense that they will really generate new velocity trajectories. Step 7 is
obvious, since we will use the next feasible CEVLC segment as the velocity trajectory. Two
cases lead to step 8: cases (5.2) and (6.2). In case (5.2), we have v+

lim(ul) = vs(ul) < v−lim(ul),
which means that there exists a parameter un > ul such that vlim(u) > vs(ul) for u ∈ (ul, un).
As a consequence, starting from (ul, vs(ul)), a segment of the AT integration trajectory is
below the CEVLC (See Fig. 2(a)). In case (6.2), there exists a parameter un > ul such that
the tangential acceleration of the CEVLC must be strictly larger than AT for u ∈ (ul, un).
By Lemma 6.2, starting from point (ul, vs(ul)), the AT integration trajectory is below the
CEVLC for u ∈ (ul, un) (See Fig. 2(b)). We thus prove the correctness of step 8. The
correctness step 9 can be proved in a similar way.

The following two lemmas show that the intersection of an integration trajectory and a
CEVLC segment or another integration trajectory behaves nicely.

Lemma 6.3 Let (ul, vlim(ul)) and (un, vlim(un)) be two adjacent key points of the CEVLC.
Then an integration trajectory can intersect the curve segment vlim(u), u ∈ (ul, un) once at
most.

Proof. We denote by i(u) an integration trajectory. Without loss of generality, we assume
that i(u) is an AT integration trajectory; otherwise, consider the −u direction. Let us assume
that u∗ be the parameter for a possible intersection point.
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Since the two key points are adjacent, there are three cases: (a): alim(u) > AT , u ∈
(ul, un), (b): alim(u) < −AT , u ∈ (ul, un), or (c): −AT < alim(u) < AT , u ∈ (ul, un). In case
(a), since i(u) is an AT integration trajectory and alim(u) > AT , by Lemma 6.2, we have
i(u) < vlim(u) for u ∈ (u∗, un]. In the −u direction, i(u) is a −AT integration trajectory
and alim(u) < −AT . By Lemma 6.2, we have i(u) > vlim(u) for u ∈ [ul, u∗). That is, if they
intersect then they only intersect once. Cases (b) and (c) can be proved similarly.

Lemma 6.4 In step 9 of the algorithm, the backward integration trajectory vb intersects vs

only once.

Proof. Two situations lead to step 9: step (5.3) and step (6.3). In case (5.3), the key
point at un is discontinuous and v+

lim(un) ≥ vs(un) > v−lim(un). In the interval [0, un] in the
−u direction, vb(u) is an AT integration trajectory and vs(u) consists of −AT integration
trajectories and feasible CEVLC segments. Also note that vs(0) = 0. Then vb(u) and vs(u)
must intersect in [0, un]. By Lemma 6.2, they can intersect only once. Case (6.3) can be
proved similarly.

Similarly, we can show that vs and ve in step 4 of the algorithm only intersect once if
there exist no overlap curve segments.

We now prove Theorem 2.3 which is repeated below.

Theorem 6.5 The velocity curve computed with Algorithm VP CETA is the velocity curve
defined in equation (12) and is the only solution to the optimization problem (7).

Proof. Let v(u) be the velocity curve computed with the algorithm. It is clear that v(u)
is below the CEVLC and the tangential acceleration aT (u) of v(u) satisfies |aT (u)| ≤ AT .
Also, if |aT (u)| 6= AT , the corresponding v(u) must be a segment of feasible CEVLC. As a
consequence, v(u) satisfies conditions (8) and (9) and is bang-bang.

From the algorithm, it is clear that v(u) consists of pieces of CEVLC and that of vP (u)
for all key points P of the CEVLC including the start point (0, 0) and the end point (1, 0).
To prove (12), it suffices to show that for each key point P , if vP (u∗) 6= v(u∗) for a parametric
value u∗, then vP (u∗) > v(u∗). From the algorithm, it is clear that all key points including
the start and end points are on or above v(u). Let P = (u0, v0) be a key point. Then
v0 ≥ v(u0). In [u0, 1], the tangential acceleration of vP (u) is AT and |aT (u)| ≤ AT . Then
by Lemma 6.2, vP (u) ≥ v(u) for u ∈ [u0, 1]. In [0, u0], if we consider the movement from u0

to 0, then the acceleration of vP (u) is also AT , and hence vP (u) ≥ v(u) for u ∈ [0, u0]. As a
consequence, vP (u) cannot be strictly smaller v(u) at any u. We thus prove that v(s) is the
curve in (12).

We now prove that v(u) is an optimal solution. We will prove a stronger result, that
is, the velocity curve q(u) = v2(u) obtained by the algorithm is the maximally possible
velocity at each parametric value u. Assume the contrary, then there exists another velocity
curve v∗(u) satisfying the constraints (8) and (9), and there exists a u∗ ∈ [0, 1] such that
v∗(u∗) > v(u∗). Let q∗(u) = v2∗(u).

The parametric interval [0, 1] is divided into sub-intervals by the key points of CEVLC
on the final velocity curve and intersection points in steps 4, 8, 9 of the algorithm. From
the algorithm, we can see that on each of these intervals, v(u) could be a segment of the
CEVLC, an AT integration trajectory in the +u direction, which is called an increasing
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interval, or an −AT integration trajectory in the +u direction, which is called a decreasing
interval. Furthermore, if [u1, u2] is an increasing interval, the start point (u1, v(u1)) must be
a key point of the CEVLC; if [u1, u2] is a decreasing interval, the end point (u2, v(u2)) must
be a key point of the CEVLC.

According to the definition of the CEVLC, u∗ cannot be on the CEVLC and thus must
be in an increasing or decreasing interval. Firstly, let u∗ be in an increasing interval [u1, u2].
Since (u1, v(u1)) is a key point on the CEVLC, we have v∗(u1) ≤ v(u1). Since v∗(u∗) > v(u∗)
and v∗, v are continuous curves, there exists a u0 ∈ [u1, u∗] such that v∗(u0) = v(u0). On
[u0, u∗], since v(u) is an AT integration trajectory and the acceleration a∗(u) of v∗(u) satisfies
|a∗(u)| ≤ AT , using Lemma 6.2, we have v(u∗) ≥ v∗(u∗), a contradiction. Secondly, let
u∗ ∈ [u1, u2] and [u1, u2] be a decreasing interval. We can consider the movement from u2

to u1 and the acceleration of v becomes AT and the theorem can be proved similarly to the
case of increasing intervals.
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