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Abstract

In this paper, a method of reducing the tracking error in CNC machining is proposed. The
structured neural network is used to approximate the discontinuous friction in CNC machining,
which has jump points and uncertainties. With the estimated nonlinear friction function, the
reshaped trajectory can be computed from the desired one by solving a second order ODE such
that when the reshaped trajectory is fed into the CNC controller, the output is the desired
trajectory and the tracking error is eliminated in certain sense. The proposed reshape method
is also shown to be robust with respect to certain parameters of the dynamic system.
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1 Introduction

Traditionally, the CNC machine programming is divided into three major levels: path planning,
trajectory planning, and trajectory control. The path planning phase aims to define the geometric
cutting path without timing information [1]. The trajectory planning considers the kinematic
information, such as velocity, acceleration, jerk, and jounce, to generate a velocity profile along the
specified geometric path (Jamhour and Andr [2], Dong and Stori [3], and Smith et al. [4], Fan et al
[5]). Time optimal trajectory generation process plays an important role in maximizing productivity
in CNC machining. The trajectory control is in the closed-loop real-time process, which aims to
respond swiftly to ensure the actuators moving along the specified trajectory accurately.

In the trajectory control phase, due to the inherent dynamics limits, it is impossible to respond
instantaneously to variations in the commanded path. Moreover, high feedback gains cannot be
used to eliminate all tracking errors, for that will prohibit compliant control and make the system
less safe for the environment. As a result, the actual machine motion deviates from the desired
motion inevitably and the contour error may emerge as well.

Hence, whatever algorithm is adopted for trajectory planning, tracking errors exist in each axis.
A number of different approaches have been proposed to ensure high tracking accuracy. Renton [6]
developed a method to reduce cycle time and path error, which uses the axis performance envelope
as well as instantaneous position, velocity, and acceleration information of the target path to im-
prove servo performance in the presence of disturbances. Dong [7] brought the dynamic information
into the trajectory planning level by reducing the tracking error to a linear combination of velocity
and acceleration approximately. Lo [8] presented a new servo control method for axis machining
which conducts a direct elimination of the deviation error, the orientation error, and the tracking
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error. Dong [9] presented a synchronization approach to trajectory tracking of multiple mobile
robots. The main idea is to control each robot tracking its desired trajectory while synchronizing
its motion with other robots to keep the relative kinematics relationship. Farouki [10] solved the
problem of compensating for inertia and damping of the machine axes by a priori reshaping the
commanded path geometry for CNC machines governed by typical feedback controllers.

In this paper, the idea of reshaping the original cutter path with kinematic information is used to
reduce tracking errors. This idea was first proposed in the robot community [11] and recently used
in CNC controlling [10]. The principle of these work is the same which aims to modify the input
signal to the CNC controller so that when the modified signal is fed into the controller, the output
is exactly the desired cutter path and thus there exists no tracking error comparing to the original
cutter path. The contributions of this paper are as follows. A more general and practical model
with the PID controller and nonlinear uncertainty frictions is considered, while previous work only
considers the PD controller and simpler friction models. The nonlinear friction is learned through
an SNN (Structured Neural Network), which can approximate discontinuous functions with jump
points nicely. Each continuous piece of the friction is approximated by the powerful BPNN (Back
Propagation Neural Network) model. Compared with the method of approximating the friction
with a given explicit expression, the SNN/BPNN model can cope with a broad range of unknown
disturbances regardless of their specific structure. After the friction is estimated with SNN, the
reshaped trajectory can be computed from the original one by solving a second ODE. We also show
that the proposed method is robust with respect to certain parameters of the dynamic system.
Finally, a practical case from CNC machining is used to verify the approach by Matlab/Simulink.

The paper is organized as follows. Section 2 describes the basic CNC controller and dynamic
models. Section 3 introduces the SNN model used to estimate the friction. Section 4 presents the
reshaping method and the robustness analysis of the method. Section 5 presents the simulation
results. Section 6 concludes the paper.

2 Machine dynamics

In this section, we will introduce the machine dynamics, the controller, and the friction model used
in this paper. Suppose that the two axes are decoupled and the dynamic parameters for each axis
are the same for brevity. Here, we mainly discuss the dynamics for the x-axis and similar principles
apply to the y-axis.

2.1 Actuator model and PID control

The control system is composed of two main parts: the actuator an the controller. The actuator is
assumed to be of the universal form motor which is shown in Fig.1 as the part from the actuating
signal u to the axis location x. The actuator works as follows. The current amplifier ka converts
the actuating signal u into current i to control the motor, which produces a torque T through the
motor torque gain kt. The torque T determines the angular speed through the system inertia J
and damping B. The motor shaft angle speed θ obtained by integration of ω, determines the axis
linear position x through the transmission ratio rg. The relation between ω and x is

ω(t) =
ẋ(t)
rg

(1)

where t is the time and ẋ(t) = dx(t)
dt . For brevity, set K = kaktrg since these three parameters often

occur in the form of this product.
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Figure 1: Closed loop control system with PID controller

The PID controller is widely used in CNC systems, whose parameters are the proportional,
integral, and derivative gains kp, kd, and ki as shown in Fig.1. The tracking error e = X − x
is the difference between the commanded and actual axis locations, which satisfies the following
differential equation in the time domain.

kdë + kpė + kie = u̇ (2)

2.2 Overall system with friction model

In practice, the controller incurs the outside disturbance Tf . Thus the overall system can be more
precisely described as the one given in Fig. 2. Denote Tn to be the nominal control torque worn
by the external disturbance Tf and Td to be the desired output control voltage generated from the
controller.

Figure 2: Closed loop control system with PID controller and outside disturbance

ẍ = −Bẋ

J
+

rgTn

J
(3)

Td = Tn + Tf (4)

Td = kaktu (5)

3 Friction estimation via SNN

In this section, we will introduce the principle of SNN which can be used to provide robust estima-
tion for nonlinear functions with jump points. in the following reshaping procedure.
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Figure 3: BPNN model

3.1 Principle of BPNN

The BPNN (Back Propagation Neural Network) is widely employed to estimate smooth nonlinear
functions in an uncertain system [12].

Let us assume that the function to be estimated is the following real valued function

F : x → y,

where vector x ∈ RI and y ∈ R. Supposing a set of sampling points xk = (xk1, xk2, . . . , xkI), k =
1, . . . , N and the corresponding values yk, k = 1, . . . , N are given, the task is to construct a BPNN
to approximate the function F . All the subscript in this section denoted with k stands for the
sampled data.

The BPNN consists of three layers: the input layer, the hidden layer, and the output layer. For
the input xk, the j-th hidden layer neuron hj(j = 1, 2, ..., H) can be calculated by

hkj = f(
I∑

i=1

w1
ij · xki + θ1

j )

where f(x) denotes following sigmoid function:

f(x) =
1

1 + exp(−x)
,

w1
ij is the weight between the i-th input and hj , and the θ1

j is the bias value in the j-th hidden
layer. The output value ŷk can be obtained as

ŷk = f(
H∑

j=1

w2
j · hkj + θ2) (6)

where w2
j and θ2 are the corresponding weights and bias.

To construct a BPNN, we need to “train” the parameters w1
ji, θ

1
j , w

2
j , θ

2 through the following
learning process. We start with a set of initial values for these parameters. The learning procedure
works as follows: compute a set of values ŷk, k = 1, . . . , N using (6), update the parameters as
follows:

w2
j = w2

j + η · (ŷk − yk) · ŷk · (1− ŷk),

w1
ji = w1

ji + η · (ŷk − yk) · w2
j · hj · (1− hj) · xki,

θ2 = θ2 + η · (ŷk − yk) · ŷk · (1− ŷk),
θ1
j = θ1

j + η · (ŷk − yk) · w2
j · hj · (1− hj),
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Figure 4: SNN model

where η is the learning parameter chosen between 0.5-0.7. The updated parameters are used to
repeat the learning procedure. The procedure is repeated for 1000 times unless the optimal index

J =
1
2

N∑

k=1

(ŷk − yk)2

is less than the given accuracy.

3.2 Principle of SNN

Although a three-layered BPNN can approximate any nonlinear smooth function adequately ac-
cording to the artificial intelligence theory, it cannot be used to estimate functions with jump
points nicely as shown in Fig.5, where the dotted line is the original function and he solid line is
the estimation function. It is known that disturbances such as the Strikbek friction (see Section
5.1) contains jump points. So, we will use the so-called SNN (Structured Neural Network) to give
a better estimation for functions with jump points as shown by Figure 6 [13].

Suppose that a function F has a finite number of jump points at c1, c2, . . . , cN , that is, it is
piecewise continuous in the intervals Ii = [ci−1, ci], i = 2, . . . , N . Then it can be estimated using
the following SNN:

F (x) =
N+1∑

i=1

Ii(x) · F̃i(x),

where Ii(x) is the i interval set function defined as

Ii(x) =
{

1 x ∈ Ii

0 x /∈ Ii

and F̃i(x) is the BPNN estimation model for F (x) in the interval Ii.

4 The reshaping method

A plane curve (x(u), y(u)), u ∈ [0, 1] is used here to illustrate the procedure. After bounds for the
chord error, feedrate, and axis accelerations are given, a sequence of interpolation points (xi, yi), i =
1, . . . , N can be computed efficiently with the method given in [17], which will be feeded into the
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Figure 5: BPNN estimation Figure 6: SNN estimation

CNC controller. Due to the existence of tracking errors, the output will deviate from the desired
trajectory.

In this section, we will give a method to compute a sequence of reshaped interpolation points
(Xi, Yi), i = 1, . . . , N such that when these reshaped interpolation points are feeded to the CNC
controller, the output is exactly the desired trajectory (xi, yi), i = 1, . . . , N . This process is com-
posed of three main steps to be given below.

4.1 Friction estimation via SNN

In this section, we show how to construct an SNN to estimate the unknown disturbance Tf from
the angle velocity ω (See Fig. 2). In some complicated situation, the disturbance depends upon
not only the velocity but also the other kinematic quantities. In this paper, it is assumed that
the disturbance bears relationship only with velocity. More complicated situations can be treated
similarly.

Take the x-axis as an example. In order to use SNN to approximate the function Tf = f(ω), we
first need to collect the sample data used for calculating the input and target values in the SNN.
From (3), (4), and (5), we have

Tf = Td − Tn = kaktu− Jẍ/rg −Bẋ/rg. (7)

Also note ω(t) = ẋ(t)
rg

. As a consequence, if the control voltage u and the output x are known, it is
able to calculate the data pair (ωk, Tfk), k = 1, . . . , N .

In practice, values for u and x can be collected through the sensors mounted upon the CNC
machine. In the simulation to be given in Section 5, we use the oscilloscope in the Simulink of
Matlab to collect values for u. In order to guarantee the prediction accuracy of the SNN, we need
to ensure the range of the collected data to be as large as possible. A practical way is to feed
the interpolation points (xk, yk), k = 1, . . . , N into the CNC controller and use the corresponding
values for u as the sample data set.

Let T be the interpolation period. Since the interpolation points (xk, yk), k = 1, . . . , N are dense
enough, ẋk = ẋ(kT ) and ẍk = ẍ(kT ), k = 1, . . . , N can be approximated with finite differences for
k = 2, . . . , N − 1:

ẋk ≈ xk+1 − xk−1

2T
=

x(k(T + 1))− x(k(T − 1))
2T

(8)

ẍk ≈ xk+1 + xk−1 − 2xk

T 2
=

x(k(T + 1)) + x(k(T − 1))− 2x(k(T ))
T 2

(9)
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As usual, we assume that ẋ1 = ẍN = 0. When feeding the interpolation points (xk, yk), k = 1, . . . , N
to the Simulink of Matlab, with the oscilloscope, we can collect the corresponding values for the
voltage uk, k = 1, . . . , N . Using (7), the correspondence (wk, Tfk), k = 1, . . . , N can be computed
as follows

Tfk = kaktuk − Jẍk/rg −Bẋk/rg (10)
ωk = ẋk/rg

for k = 1, . . . , N .

Now the sampled data (wk, Tfk), k = 1, . . . , N can be used to construct an SNN to represent
the function Tf = f(ω). We make the assumption that the unknown disturbance Tf has a unique
jump point at ω = 0. Therefore, a two parts SNN is used to approximate Tf , and the two nonlinear
parts of the SNN are smooth and can be estimated using BPNN separately.

To ensure the accuracy of the prediction, the data pair (ωk, Tfk) is normalized. The main
objective here is to ensure that the statistical distribution of the values for the network input and
output is roughly uniform. The sampled data are scaled so that they have zero mean and unitary
variance. Precisely, let

ω̄k =
ωk − ωmin

ωmax − ωmin
, T̄fk =

Tfk − Tfmin

Tfmax − Tfmin

, k = 1, . . . , N (11)

where ωmax and ωmin are the maximum and minimum values of ωk, Tfmax and Tfmin
are the maximum

and minimum values of Tfk. The data pairs (ω̄k, T̄fk), k = 1, . . . , N will be used to construct the
SNN, whose range are (0, 1).

Finally, let the SNN thus constructed be T̂f which maps an ω to the disturbance Tf .

4.2 Desired torque calculation

Take the x-axis as an example. In Figure 2, the nominal control torque Tn satisfies (3). Since
the interpolation points (xi, yi), i = 1, . . . , N are dense enough, ẋ and ẍ can be approximately
computed through (8) and (9). From equation (3), Tni = Tn(iT ) can be computed through (12).

Tnk
= Tn(kT ) =

Jẍk + Bẋk

rg
. (12)

Hence the desired torque can be computed as Tdi = Tni + T̂fi
, i = 1, . . . , N by (4), where T̂fi

is the
torque obtained via the SNN method given in Section 4.1 with input ωi = ẋi

rg
.

4.3 Compute the reshaped trajectory

Substituting equation (5) into (2), we have

kdë + kpė + kie =
Ṫd

kakt
. (13)

In order to get the new tracking error, we just need to solve the ODE (13) with the initial values
e(0) = ė(0) = 0. The fixed step fourth order Runge-Kutta method can be used to solve the second
order ODE (13) to obtain the tracking error ei = e(iT ), i = 1, . . . , N . Nevertheless, function values
Ṫd(t) at places other than iT, i = 1, . . . , N are needed in this procedure. In order to provide these
values, we interpolate Td using cubic splines which will be used to calculate its derivative at any
points.

7



Since Td is piecewise continuous, we need to solve (13) piecewisely. Take the first interval as
an example. Suppose the interval is divided into k − 1 subintervals by the knots t1, t2, . . . , tk. The
following cubic polynomial splines are used to approximate Td

S(t) =





S1(t), t ∈ [t1, t2]
S2(t), t ∈ [t2, t3]

...
Sn−1(t), t ∈ [tk−1, tk],

where S(t) is defined as

Si(t) =
zi+1(t− ti)3 + zi(ti+1 − t)3

6hi
+ (

Tdi+1

hi
− hi

6
zi+1)(t− ti) + (

Tdi

hi
− hi

6
zi)(ti+1 − t) (14)

ti = iT and hi = ti+1 − ti. The value zi can be obtained by solving the following linear equations:




z1 = 0

hi−1zi−1 + 2(hi−1 + hi)zi + hizi+1 = 6(
Tdi+1

−Tdi

hi
− Tdi

−Tdi−1

hi−1
)

zk = 0.

With the newly constructed function Td(t), the fixed step fourth order Runge-Kutta method
will be used to solve the second order ODE to obtain ei, i = 1, . . . , k. For the second interval, the
initial values of e and ė are chosen to be their end values in the first interval. This is rational since
e and ė are continuous even if the system may be subjected to some discontinuous or unknown
disturbance.

Repeat the procedure, all ei, i = 1, . . . , N will be computed. Finally, the reshaped inputs are

Xi = xi + ei, i = 1, . . . , N.

The same procedure can be implemented to the y axis as well. Thus the reshaped signals (Xi, Yi), i =
1, . . . , N are acquired.

4.4 Robustness analysis

In this section, we will briefly discuss the robustness of the reshaping method, that is, when the
mechanism parameters are not accurate but very close to the exact ones, the reshaped curve
obtained with these parameters are also very close to the exact reshaped curve.

To begin with, the following system equation is crucial for us to analyze the robustness, which
is deduced from (2), (3), (4), and (5)

J

K

...
x + (

B + Kkd

K
)ẍ + kpẋ + kix +

1
kakt

dTf

dt
= kdẌ + kpẊ + kiX. (15)

To avoid analyzing the derivative dTf

dt , we make the substitutions y =
∫ t
0 x(τ)dτ , Y =

∫ t
0 X(τ)dτ .

Since the initial values of x, ẋ, ẍ and
...
x , X, Ẋ, Ẍ and

...
X are zero, equation (15) becomes:

J

K

...
y + (

B + Kkd

K
)ÿ + kpẏ + kiy +

Tf

kakt
= kdŸ + kpẎ + kiY. (16)

In the reshaping process, the following equation will be used

J

K

...
y + (

B + Kkd

K
)ÿ + kpẏ + kiy +

T̂f

kakt
= kdŸ + kpẎ + kiY. (17)
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where T̂f is the disturbance estimation learned through SNN. In this phase, the left hand side
including y (desired output) is known and Y on the right hand side is unknown. As discussed
above, in practice, the parameters are not accurate. For instance, suppose J and B are estimated
wrongly as J̃ and B̃. Thus we actually use the follow equation to compute the reshaping coordinate
Y :

J̃

K

...
y + (

B̃ + Kkd

K
)ÿ + kpẏ + kiy +

T̃f

kakt
= kdŸ + kpẎ + kiY. (18)

where T̃f is the disturbance estimated through SNN using parameters J̃ and B̃.

Hence we will obtain the inaccurate reshaping value Ỹ with (18), while the accurate reshaped
value Y is obtained from the reverse equation (17).

When implementing the reshaping process, only the right hand side of (17) contains variables.
Thus defining the left side of equation (17) to be θ(t), (17) becomes:

kdŸ + kpẎ + kiY = θ(t), (19)

where

θ(t) =
J

K

...
y + (

B + Kkd

K
)ÿ + kpẏ + kiy +

T̂f

kakt
.

Besides, denoting the left hand side of equation (18) to be θ̃(t) correspondingly. In order to analyze
the relationship between Y, Ẏ , Ÿ and Ỹ , ˙̃Y, ¨̃Y , we transform equation (19) into the following matrix
form by defining ξ = (Y, Ẏ )T :

ξ̇ = Aξ + η(t), ξ(t0) = ξ0 (20)

where

A =

(
0 1
− ki

kd
−kp

kd

)
, η(t) =

(
0

θ(t)

)
.

Although the right hand side of this ODE could be discontinuous, we can discuss its solution
piecewisely. Suppose there are k intervals I1, . . . , Ik and in each Ik θ(t) is continuous. We now
consider ODE (20) over the first interval I1. Suppose that the solution ξ̃ of (20) with inaccurate
parameters satisfies

˙̃
ξ = Aξ̃ + η̃(t), ξ̃(t0) = ξ̃0, (21)

where ‖η(t)− η̃(t)‖1 ≤ ε and ‖·‖1 denote the 1-norm which is the sum of all the absolute values of
the elements in the matrix.

The solutions of equations (20) and (21) can be written respectively as

ξ(t) = ξ0 +
∫ t
0 Aξ(τ) + η(τ)dτ

ξ̃(t) = ξ̃0 +
∫ t
0 Aξ̃(τ) + η̃(τ)dτ.

We thus have
∥∥∥ξ(t)− ξ̃(t)

∥∥∥
1
≤

∥∥∥ξ0 − ξ̃0

∥∥∥
1
+

∫ t
0

∥∥∥Aξ(τ)−Aξ̃(τ)
∥∥∥

1
dτ +

∫ t
0 ‖η(τ)− η̃(τ)‖1dτ

≤ ε0 + ‖A‖1

∫ t
0

∥∥∥ξ(τ)− ξ̃(τ)
∥∥∥

1
dτ +

∫ T1

0 ‖η(τ)− η̃(τ)‖1dτ

≤ ε0 + ‖A‖1

∫ t
0

∥∥∥ξ(τ)− ξ̃(τ)
∥∥∥

1
dτ + ε1

= ε + ‖A‖1

∫ t
0

∥∥∥ξ(τ)− ξ̃(τ)
∥∥∥

1
dτ,

where ε = ε0 + ε1 and T1 is the length of the first interval I1.
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Figure 8: Comparison in Test 1

According to Grownwall inequality, we have:
∥∥∥ξ(t)− ξ̃(t)

∥∥∥
1
≤ εe‖A‖1t ≤ εe‖A‖1T1 .

Thus as long as the change of the initial values ξ0 and η are small, the new solution cannot
deviate from the original solution largely in the whole interval I1. The rest of intervals I2, . . . , Ik

can be analyzed similarly.

Therefore, in order to show the robustness of the reshaping procedure, we need only to show
that small changes in J and B will lead to small changes of η, or equivalently small changes of θ(t).
From (19), θ(t) depends on B and J linearly except the part T̂f . So, we need to show that small
changes of J and B will lead to small changes of T̂f . For that purpose, we denote T̂f as T̂f (J,B).

Recall that T̂f (J,B) is learned from the map

F : ω → Tf ,

and Tf is calculated through the observation u and x by

Tf = Td − Tn = kaktu− Jẍ + Bẋ

rg
.

Obviously, Tf depends upon J and B continuously. Thus when small changes ∆J and ∆B to J ,
B occur, the new map is

F̃ : ω → Tf + ε, (22)

where ε = ∆Jẍ+∆Bẋ
rg

. Hence, T̂f and T̃f are sufficiently close when small changes occur to J and
B.

Based on the above analysis, we can conclude that the reshaped curve obtained with inaccurate
parameters is close to the accurate reshaped curve if the inaccurate parameters are close to the
exact ones.

5 Simulation results

5.1 System setup

A plane curve from [14] shown in Fig.7 is used to perform the simulation. The bounds of the
velocity and acceleration are set to be Vm = 150mm/s and Ax max = Ay max = 3000mm/s2. The
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Figure 9: System mounted under the environment in Simulink

sampling period is 1ms. The methods proposed in [17] is used to compute the velocity and the
method given in [5] is used to compute the interpolation points (xk, yk), k = 1, . . . , N where N is
set to be 100.

In the first step of the method, we need to train the SNN off-line to obtain a disturbance model
Tf following the method given in Section 4.1. Again, the x-axis is used to illustrate the procedure.

Since xk are known, from equation (10), what we need to know are uk, k = 1, . . . , N , which will
be obtained via Matlab/Simulink. We observe the control voltage u via sensors in Matlab/Simulink,
which is shown in Fig. 9. The system parameters are given in Table 1.

Table 1: Parameters used in the simulation
Meaning Parameter Unit Value

current amplifier ka A/V 5
Armature resistance kt Nm/A 2
Transmission ratio rg rad/m 0.005
Transmission gain K Nm2/V 0.05

Minimum level of coulomb friction fc Nm 500
Static friction fs Nm 100

Viscous friction fv Nm/rad 0.05

Aiming to approximate the real environment as near as possible in the Matlab/Simulink simu-
lation, the following Stribeck friction [15] shown in Fig. 10 is used as the disturbance force

Tf = (fc + fse
−( ω

ωs
)2 + fv |ω|)sign(ω), (23)

where fc is the minimum level of coulomb friction, fs is the level of static friction parameter, fv is
the viscous friction parameter, and ω is the motor angle velocity. The values of these parameters
are given in Table 1.

Now, uk, k = 1, . . . , N can be obtained by feeding xk, k = 1, . . . , N into the Matlab/Simulink
with the Stribeck friction (23) as the disturbance force, and the disturbance model T̂f can be
obtained with the method given in Section 4.1.

Following the method given in Sections 4.2 and 4.3, the reshaped x-coordinates Xk, k = 1, . . . , N
can be computed.
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Figure 10: Stribeck effect, static, Coulomb, and viscous friction model

5.2 Simulation results

Three tests will be given in this section to illustrate the effectiveness of the method. In the first
two tests, different values of rotary inertia are used to compare the effect on the reshaped tool
path, where parameters of PID are the same. The third test is used to show the robustness of the
method.

Table 2: Parameters used in the test
Parameters Test 1 Test 2

J 0.003kgm2 0.01kgm2

B 0.006kgm2/s 0.02kgm2/s

Kp 1000V/mm 1000V/mm

Ki 1000V/(mm · s) 1000V/(mm · s)
Kd 10V/(mm/s) 10V/(mm/s)

Test 1: Smaller inertia J and damping B.

The parameters used in test 1 are given in Table 2. The original and reshaped curves are shown
in Fig. 8. Due to the small magnitude of the changes, we cannot see the difference clearly in this
figure. In Fig.11-Fig.14, four “sharp corners” of the reshaped tool path and the commanded path
are given. We can see that in these four sharp corners, the modification is evident. In such corners,
the controller can not respond to the input signal swiftly, so the lagging effect is conspicuous. The
figures revel that the new input signal takes an advanced turn compared with the origin one in order
to output the correct result. From Fig.15-Fig.16, we can see that with these system parameters,
the tracking error (the red curve) is between -200um-250um for the x-axis and -300um-250um for
the y-axis. For the reshaped tool path, the tracking error diminishes to near zero, which valid the
goal of the method. The fluctuation of the tracking error near zero is mainly due to numerical
calculation errors. Moreover, in Fig.17-Fig.18 we can see that the SNN approximates the nonlinear
part of the system accurately, which will render accurate compensations for reshaping procedures.

Test 2: Larger inertia J and damping B.

The parameters used in test 2 are in Table 2 and the results are given in Fig.19-Fig.26. Compared
with test 1, the differences between the original and shaped tool pathes are bigger. In Fig.21, the
reshaped path contains a loop which is required to compensate the inability of the controller
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dynamics in tracking the sharp corner of the original tool path. Correspondingly, the tracking
error of the unshaped tool path is bigger as shown in Fig.23 and Fig.24.

Test 3: Robustness.

Parameters in Test 1 are used to check the robustness of the method. Suppose that the mech-
anism parameters J and B are wrongly estimated. The accurate values are J = 0.003, B = 0.006
and the estimated values are J̃ = 0.00375, B̃ = 0.0045, where the estimation errors are within 25%
of the accurate value. The rest parameters are assumed to be accurate.

Fig.27 and Fig.28 illustrate the tracking errors for original tool path and the shaped tool path
with the contaminated J ad B. We can see that the tracking error for the reshaped tool path
becomes larger, but is in an acceptable level. In particular, it is still much smaller than the original
tracking error.

The force disturbance estimated through SNN is another crucial factor for the robustness. Fig.29
and Fig.30 are the figures for the function Tf = f(w) obtained with the accurate parameters and
the contaminated parameters. In Fig.30, a “tunnel” is generated, which is actually the fluctuating
noise around the original curve.

This phenomenon can be comprehended through (22). The noise magnitude is actually the
same as that of ε which depends upon the deviation of J and B. Fortunately, due to the linear
relationship between the right hand side of the map (22) with J and B, this fluctuation can not
be too large. Thus the learning accuracy can be guaranteed to certain degree. Thus, no matter
which curve in Fig.29 or Fig.30 is learned through SNN, the learned curve will be included in the
“tunnel”. Hence as long as the diameter of the tunnel is small the wrongly learned map curve by
SNN is deviated from the real estimation in Fig.29 by no more than ε uniformly.
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Figure 11: Left corner in Test 1
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Figure 12: Right corner in Test 1
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Figure 13: Middle left corner in Test 1
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Figure 14: Middle right corner in Test 1
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Figure 15: Tracking error of X axis in Test 1
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Figure 16: Tracking error of Y axis in Test 1
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Figure 17: Friction torque of X axis in test 1
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Figure 18: Friction torque of Y axis in test 1
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Figure 19: Left corner in Test 2
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Figure 20: Right corner in Test 2
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Figure 21: Middle left corner in Test 2

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15
−21

−20.8

−20.6

−20.4

−20.2

−20

−19.8

−19.6

−19.4

−19.2

mm
m

m

 Trajectory Comparison

 

 
Reshaped Trajectory
Orignal Trajectory

Figure 22: Middle right corner in Test 2
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Figure 23: Tracking error of X axis in Test 2
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Figure 24: Tracking error of Y axis in Test 2
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Figure 25: Friction torque of X axis in test 2
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Figure 26: Friction torque of Y axis in test 2
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Figure 27: Tracking error of X axis in Test 3
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Figure 28: Tracking error of Y axis in Test 3
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Figure 29: Uncontaminated figure for Tf (ω)
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Figure 30: Contaminated for Tf (ω)

6 Conclusion

A method is proposed to reduce the inherent tracking error of high-speed CNC machining. In
order to be practical, the CNC dynamic system is assumed to have a discontinuous disturbance
and the controller is assumed to be the widely used PID controller. The method mainly consists of
three steps: the unknown disturbance estimation, the compensation of the desired control voltage,
and the computation of the reshaped command signal. An advantage of this approach is that it is
implemented outside the control loop, requiring no access to the control system.

The disturbance is learnt with an SNN model via data collected from CNC machine sensors.
The SNN model is known to be a nice way to provide robust estimation for nonlinear functions
with jump points. With the SNN based disturbance function, the reshaped signal is obtained by
solving a linear differential equation. Moreover the procedure is shown to be robust with respect
to certain parameters of the dynamic system. The method is illustrated with a practical example,
where the tracking error is reduced to almost zero.
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