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Abstract— Previous computation approaches of smooth min-
imum time trajectory for path following robotic manipulators
either cannot fully utilize the maximum ability of machines, fail
to minimum machine time, or cannot be computed efficiently
because of the nonlinearity of problem formulations. In this
paper, an efficient computation approach is proposed that has
been designed as solving a convex optimization problem to
generate smooth minimum time trajectory while utilizing the
maximum ability of machines.

I. INTRODUCTION

Computation of minimum time trajectory has been wildly
studied for robotic manipulators because of its effectiveness
to improve the productivity, such as Pfeiffer and Johanni[1],
Bobrow, et al. [2], Shiller [3], Verscheure, et al. [4] and
Ardeshiri, et al. [5]. However, the torque strategy of the
minimum time trajectory has been proven to be “bang-bang”
or “bang-singular-bang” which is not physically realizable
(Chen and Desrochers [6]). Direct implement of “bang-bang”
torques can induce tool vibrations and overshoot of the
nominal torque limits.

The well-known smooth minimum time trajectory plan-
ning approaches are implemented by limiting the ratio of the
torques or jerks of all the manipulator joints. Gregory et al.
[7] and Gasparetto and Zanotto [8] realized the smoothness
of trajectory by considering modified weighted objective
function, such as time-square of jerks or time-square of
joint torques. Constantinescu and Croft [9] obtained the
smooth minimum time trajectory by limiting the changes
of joint torques. Jamhour and Andr [10], Dong et al. [11]
and Mattmller and Gisler [12] introduced jerk limits into
the planning problem to realize the smoothness of trajectory.
Since the formulation of the jerk or the ratio of joint torque
is non convex (see Verscheure et al. [4]), the ordinary smooth
minimum time trajectory planning approaches are fail to
execute efficiently.

In this paper, a practical computation approach is proposed
to generate smooth minimum time trajectory. The proposed
approach works by adding linear constraints to limit the
changes of the joint torques, and we name the proposed
linear constraint as pseudo torque rate constraint. Then by
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properly choosing state variables, the smooth minimum time
trajectory planning problem can be formulated as a convex
optimization problem, which can be solved efficiently by the
ordinary gradient-based optimization techniques.

The rest of the paper is organized as follows. In Section
II, the dynamics system description of the manipulator and
the nominal minimum time trajectory planning approach are
stated. In Section III, the smooth minimum time trajectory
planning approach is given. The details of the numerical so-
lution are presented in Section IV. In Section V, a numerical
example is presented. Conclusions are summarized in Section
VI.

II. BACKGROUND

A. Dynamics System Description

In this paper, we assume the dynamics model of an n
DOF robotic manipulator satisfies the following equation
(Constantinescu and Croft [9]).

τ=M (q) q̈+q̇TC (q) q̇+G (q) , (1)

where q ∈ Rn is the vector of joint angular positions and is
a function of parameter s, s ∈ [0, 1], τ ∈ Rn is the vector
of actuator torques, M (q) ∈ Rn×n is the inertia matrix of
the manipulator, C (q) ∈ Rn×n×n is a third order tensor
representing the coefficients of the centrifugal and Coriolis
forces, G (q) ∈ Rn is the vector of gravitational torques.
For simplicity, viscous and static friction terms have been
neglected in the dynamics model.

Then the joint kinematics can be formulated as follows:
Joint velocity:

q̇ (t)=q′ (s (t)) ṡ (t).

Joint acceleration:

q̈ (t)=q′ (s (t)) s̈ (t)+q′′ (s (t)) ṡ2 (t).

The dynamics model of the robotic manipulator can be
written as a function of the path parameter(Verscheure et al.
[4]):

m (s) s̈+c (s) ṡ2+g (s)=τ, (2)

where

m (s)=M (q (s))q′ (s) ∈ Rn,

c (s)=M (q (s))q′′ (s)+q′ (s)T C (q (s))q′ (s) ∈ Rn,

g (s)=G (q (s)) ∈ Rn.



B. Original Minimum Time Trajectory Planning Problem
Statement

The well known minimum time trajectory planning ap-
proaches solve the following optimal control problem:

Optimize the minimum time objective,

min
τ

Jobj=
∫ tf

0

1dt, (3)

while subjects to the manipulator dynamics (1), the boundary
conditions of the joint velocities,

q̇ (0) = q̇0, q̇ (tf) = q̇f , (4)

the path constraints q (s) for all s ∈ [0, 1] and the actuator
torque constraints,

τmin ≤ τ ≤ τmax. (5)

Besides, the joint velocity and acceleration constraints can
also be considered.

As mentioned in Verscheure et al. [4], the path constrained
minimum time trajectory planning problem can be described
as the following convex optimal control problem:

min
b(s)

Jobj =
∫ 1

0
1√
a(s)

ds

s.t. a′ (s)=2b (s) ,a (0)=a0,a (1)=a1,

m (s) b (s)+c (s) a (s)+g (s)=τ (s) ,

τmin ≤ τ (s) ≤ τmax,

(6)

where b=s̈ acts as the control variable and a=ṡ2 is the
corresponding state, and they satisfy a′ (s)=dṡ2

ds = 2b.

C. The Properties of the Minimum Time Trajectory

Since problem (6) is an equivalent formulation of the
original minimum time trajectory planning problem, the
properties analysis of the minimum time trajectory is based
on this formulation.

In order to realize our approach, the following properties
of minimum time trajectory must be stated:
• Property 1: bang-bang control structure.

For equivalent problem (6), let b∗ be the feasible opti-
mal control with corresponding optimal state a∗. Then,
optimal b∗ takes on the extreme values bmin (a∗, s) or
bmax (a∗, s) at every point along the path except at
singular points where optimal p-velocity ṡ∗ touches the
velocity limit curve ṡmax (s), where bmin (a∗, s) and
bmax (a∗, s) are the state-based control bounds and can
be evolved from torque constraints.

• Property 2: bang-bang constraints structure.
For the robotic manipulator system, the optimal

minimum time trajectory requires the structure of joint
torques is “bang-bang”, i.e., there exists at least one
of the joint torques is saturation on each finite time
interval.

The detail proof of the property 1 and 2 can be found
at Chen,and Desrochers [6].

Based on the property 1 and 2, we can directly give the
following property of minimum time trajectory without
proof.

• Property 3:
The velocity trajectory ṡ (s) of the original minimum

time motion is maximum at everywhere among all the
feasible trajectories.

The property 3 can be deduced easily from the works
of Bobrow et al. [2] and Chen and Desrochers [6].

III. SMOOTH MINIMUM TIME TRAJECTORY
PLANNING

The joint motion can be smoothed by limiting the torque
rate, that is, the following new constraints are added too the
optimal control problem (6).

τ̇min ≤ τ̇ (s) ≤ τ̇max (7)

where τ̇min and τ̇max are the lower and upper bounds for the
torque rate τ̇ .

The parameter formulation of torque rate function can be

τ̇ = τ ′ṡ
= m

...
s +(m′ + 2c) ṡs̈ + c′ṡ3 + g′ṡ. (8)

with
m′ (s) = M′q′ + Mq′′,
c′ (s) = M′q′′ + Mq′′′ + q′TC′q′ + q′′TCq′ + q′TCq′′,
g′ (s) = G′.

Define a new state as u, which satisfies u =
...
s
ṡ . Then

there exists b′ (s) = u (s).
Thus the torque rate can be formulated as a nonconvex

functions w.r.t (a, b, u), denoted by

τ̇ (t) =
√

a (mu + (m′ + 2c) b+c′a+g′) . (9)

Since the torque rate function is non-convex, the efficient
solution of smooth minimum time trajectory planning is
always a challenging problem.

From the property 3 in Section II-C, we have known that
for any feasible trajectory there always exists

a (s) ≤ atq (s) , s ∈ [0, 1] , (10)

where atq (s) denotes the optimal state a of problem (6).
For our problem, when we assume the torque rate bounds

are set to infinite, the smooth MTTP problem can degenerate
to an original MTTP problem and the corresponding state
a satisfies (atq (s)− a (s)) → 0+, s ∈ [0, 1]. On the
contrary, when the torque rate bounds are set small enough,
the optimal trajectory would be completely charged by the
torque rate constraints and the optimal a would be away
from atq (s), but the optimal a can still be large enough for
keeping the minimum motion time.

So for the common specified torque rate bounds, we can
give a reasonable assumption that the optimal smooth a (s)
only have little decrease from the original minimum time
atq (s). And the subsequential example in the section V can
also support this.

We can define a reasonably pseudo torque rate as

τ̇pseudo (s)

=
√

atq (s)

(
m (s) u (s) + (m′ (s) + 2c (s)) b (s)
+c′ (s) a (s) + g′ (s)

)
,

(11)



and τ̇pseudo is linear w.r.t (a, b, u). Then we have

τ̇ (s) =

√
a (s)

atq (s)
τ̇pseudo (s) . (12)

When the optimal smooth minimum time motion is
achieved, we have
√

aopm (s)
atq (s)

≤ 1, and

√
aopm (s)
atq (s)

→ 1 for s ∈ [0, 1] . (13)

So the real torque rate constraints (7) can be approximated
by

τ̇min ≤ τ̇pseudo (s) ≤ τ̇max, (14)

where τ̇min, τ̇max denote the nominal minimum and maxi-
mum bounds of torque rate respectively.

Let u (s) act as control variable, the smooth minimum time
trajectory can be obtained by solving the following convex
optimal control problem:

min
u(s)

Jobj =
∫ 1

0
1√
a(s)

ds

s.t. a′ (s) = 2b (s) , a (0) = a0, a (1) = a1,

b′ (s) = u (s) , b (0) = b0, b (1) = b1,

τ (s) = m (s) b (s)+c (s) a (s)+g (s) ,

τ̇pseudo (s)

=
√

atq (s)

(
m (s) u (s) + (m′ (s) + 2c (s)) b (s)
+c′ (s) a (s) + g′ (s)

)

τmin ≤ τ (s) ≤ τmax,

τ̇min ≤ τ̇pseudo (s) ≤ τ̇max,
(15)

where b0, b1 are determined by the initial and final torque
constraints, respectively.

From (11) and (12), we know the pseudo torque rate
function is an overestimation of the real torque rate, meaning

τ̇ (s) ≤ τ̇pseudo (s) ≤ τ̇max, for τ̇ (s) ≥ 0,
τ̇ (s) ≥ τ̇pseudo (s) ≥ τ̇min, for τ̇ (s) < 0.

So the smooth trajectory generated by solving problem
(15) also satisfies the nominal torque rate constraints.

Taken together, the smooth minimum time trajectory can
be obtained by executing the following two steps:

1. First solve the original minimum time motion problem
(6) to obtain the feasible maximum velocity trajectory atq (s)
for s ∈ [0, 1]. And atq (s) is unique.

2. Then use the atq (s) to construct linear pseudo torque
rate constraints τ̇pseudo (s) to limit the changes of the joint
torques. And further construct convex optimization problem
to obtain the smooth minimum time trajectory.

IV. NUMERICAL SOLUTION

In this section, B-spline curve is applied to parameter-
ize the formulations (15) into a semi-infinite optimization
problem. And refer to the common optimization approaches
(Buskens and Maurer [13] and Chen and Vassiliadis [14]),
the process constraints are considered only at certain finite
points and are assumed no be violated between any two
adjacent points.

A. Trajectory Parameterization by B-spline

The state a (s) of problem (15) is approximated by the
following B-spline curve in parameter interval [0, 1],

a (s) ≈ ã (s) =
K∑

i=0

Ni,p (s)âi, (16)

where Ni,p (s) denotes the i-th basis function which is a p
order polynomial, and is defined as

Ni,0 (s) =
{

1, if si ≤ s ≤ si+1

0, otherwise ,

Ni,p (s) =
s− si

si+p − si
Ni,p−1 (s)− si+p+1 − s

si+p+1 − si+1
Ni+1,p−1 (s) .

Since we need the torques and the torque rates are
bounded, the joint velocities of robotic manipulator should
be at least C1 continuity. Here we choose p = 2 meaning
3-order B-spline is available for our problem.

Because the state at initial or final points is fixed, written
as a (0)=a0, a (1)=a1, the spline knot sequence must to be
clamped written as


0, . . . , 0︸ ︷︷ ︸

p+1

, sp+2, . . . , sk, . . . , sK+p−1, 1, . . . , 1︸ ︷︷ ︸
p+1


 . (17)

According to the properties of B-spline, we can obtain the
derivatives of state a (s) as follows:

b (s) =
1
2
a′ (s)=

1
2

da (s)
ds

=
1
2

K∑

i=0

N
′
i,p (s)âi, (18)

u (s) = b′ (s)=
db (s)

ds
=

1
2

K∑

i=0

N
′′
i,p (s)âi, (19)

where

N
′
i,p (s) = d

dsNi,p (s)

= p
si+p−si

Ni,p−1 (s)− p
si+p+1−si+1

Ni+1,p−1 (s) .

For the infinite process torque constraints, we use the
pointwise constraints to replace the process constraints. The
constraints are evaluated in the middle between any two
adjacent knot points as

s̄j =





1
2sp+2, j = 1
1
2 (sj+p + sj+p+1) , j = 2, . . . , K − 2
1
2 (sK+p−1 + 1) , j = K − 1

, (20)

and we name [s̄1, . . . , s̄k, . . . , s̄K−1] as constraint nodes
vector.



B. Convex Programming Formulation

Let CP denote the control point vector of B-spline, and

CP= {â0,â1, . . . âK−1,âK} . (21)

For the purpose of satisfying the boundary conditions of
the original problem, â0=a0 and âK=a1 are forced.

Then only the following sequence of control points needs
to be optimized:

X = {â1, . . . âK−1} . (22)

We call this as decision vector.
The minimum time objective function can be approxi-

mated as

min Jobj =
∫ 1

0
1√
a(s)

ds

≈
K−1∑
j=1




∆s̄j√
K∑

i=0

Ni,p(s̄j)âi




.
(23)

The joint torques and torque rates satisfy the following
equations at constraint node s̄j ,

τ (s̄j) = 1
2m (s̄j)

K∑
i=0

N
′
i,p (s̄j)âi+

c (s̄j)
K∑

i=0

Ni,p (s̄j)âi + g (s̄j) ,

(24)

τ̇pseudo (s̄j)

=
√

atq (s̄j)




1
2
m (s̄j)

K∑
i=0

N
′′
i,p (s̄j)âi

+ 1
2

(m′ (s̄j) + 2c (s̄j))
K∑

i=0

N
′
i,p (s̄j)âi

+c′ (s̄j)
K∑

i=0

Ni,p (s̄j)âi+g′ (s̄j)




.

(25)

So the smooth minimum time trajectory planning prob-
lem can be reduced as the following convex programming
problem:

min
{â1,...âK−1}

K−1∑
j=1




∆s̄j√
K∑

i=0

Ni,p(s̄j)âi




s.t.
K∑

i=0

N
′
i,p (s̄1)âi = 2b0,

K∑
i=0

N
′
i,p (s̄K−1)âi = 2b1,

τmin ≤
K∑

i=0

d1 (j) âi + d2 (j) ≤ τmax,

τ̇min ≤
K∑

i=0

d3 (j) âi + d4 (j) ≤ τ̇max,

j = 1, 2, · · · ,K − 1,
(26)

where

d1 (j) = 1
2m (s̄j) N

′
i,p (s̄j) + c (s̄j) Ni,p (s̄j) ,

d2 (j) = g (s̄j) ,

d3 (j) =
√

atq (s̄j)




1
2
m (s̄j) N

′′
i,p (s̄j)

+ 1
2

(m′ (s̄j) + 2c (s̄j)) N
′
i,p (s̄j)

+c′ (s̄j) Ni,p (s̄j)


 ,

d4 (j) =
√

atq (s̄j)g′ (s̄j) .
(27)

Since the description (26) is convex, any local optimum is
also globally optimal. Hence, any general purpose nonlinear
solver (such as SQP in Buskens and Maurer [13]) can solve
the problem efficiently.

V. NUMERICAL EXAMPLE
In this section, we present an example to verify the

effectiveness of the proposed approach. The experimental
manipulator is a three-DOF elbow manipulator as in Pfeiffer
and Johanni [1]. A double parabola in the robot work space
is chosen as the predefined path.

The numerical implements of convex optimization prob-
lems (6) and (15) for the test path are based on the sequential
quadratic programming (SQP). All the numerical solutions
are run on a laptop, Matlab environment, 32-bit system, 2.5
GHz Core i3 processor, 2GB RAM memory.

In this section, MTT, PTRT and RTRT are short for the
minimum time trajectory, pseudo torque rate constrained
minimum time trajectory and real torque rate constrained
minimum time trajectory, respectively. The numerical singu-
larity problem of the results reported by Verscheure et al.
[4], Chen, and Desrochers [6] and Constantinescu and Croft
[9] is solved by adding a small amount of regularization into
the objective to penalize torque jumps (Verscheure et al. [4]).
Fig. 1 shows the resulted torques of all three joints by solving
the proposed pseudo torque rate constrained problem, the real
torque rate constrained problem and the nominal problem,
respectively. Fig. 1 indicates that the PTRT has almost the
same joint torques as the RTRT and they are obviously
smoother than those of the MTT. The resulted torque rates
of the three joints are presented in Fig. 2. From Fig. 2, we
can see that the torque rate trajectories of the PTRT and
RTRT are also similar and only have little differences at the
Acc/Dec switch points. So we can say the proposed PTRT
can work efficiently instead of the RTRT in this example.
The joint velocities of the MTT, PTRT and RTRT trajectories
presented in Fig.3 can also confirm this.

The results presented in Fig. 1, 2 and 3 are under the
nominal torque rate of 3500 N.m/s. Then for further testing
the effectiveness of the proposed approach, we consider three
levels of torque rate constraints: low torque rate limits of
5000 N.m/s, middle torque rate limits of 3500 N.m/s and
high torque rate limits of 1500 N.m/s. The results listed in
Table 1 indicate that the losses of the optimal objective of the
proposed approach relative to the real torque rate approach
are 2.5%, 3.7% and 8.5% for the nominal low, middle and
high torque rate constraints respectively. But since the pseudo
torque rate is an overestimation of the real torque rate,
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the trajectory generated by the proposed approach can be
smoother than that obtained by solving the real torque rate
constrained problem. In the solution processes, we also find
that the calculation stability of solving the real torque rate
constrained problem is very bad. In contrast, the solution of
the proposed pseudo torque rate constrained problem do not
exist this weakness.

TABLE I
COMPUTATION PERFORMANCE COMPARISON AMONG MINIMUM TIME,

PSEUDO TORQUE RATE CONSTRAINED, AND REAL TORQUE RATE

CONSTRAINED TRAJECTORIES

Strategy Trajectory Objective Computation time∗
Non torque
rate limit

MTT 1.662s 4.62s

Low torque
rate limits

PTRT 2.602s 4.62s+6.72s
RTRT 2.538s Fault/29.4s∗∗

Middle torque
rate limits

PTRT 2.648s 4.62s+6.99s
RTRT 2.553s Fault/36.04s∗∗

High torque
rate limits

PTRT 2.866s 4.62s+8.51s
RTRT 2.642s Fault/49.95s∗∗

In Table I, ∗ notes the planning time is calculated while
the number of the parameterized grids is 200 and the default
initial value of decision vector X0 is 0.01. And ∗∗ notes that
the optimized decision vector of the PTRT is used as the
initial guess for calculating the RTRT when the RTRT can
not be obtained by using the default initial X0.

VI. CONCLUSIONS
In this paper, a practical smooth minimum time trajectory

planning approach has been presented. By approximating
the joint torque rate function with a linear function, the
smooth minimum time trajectory is obtained by solving a
convex optimal control problem. Due to the convexity of
the problem formulation, any local optimal solution is also
global optimum and the solution process can be numerical
efficiency. since the constructed pseudo torque rate is an
overestimation of the real torque rate function, the smooth
trajectory generated by the proposed approach is also a
feasible trajectory for the real torque rate constrained prob-
lem. The planning results have indicated that the smooth
trajectory generated by the proposed approach is similar to
the real torque rate constrained trajectory and even smoother.
In the planing process, we have also find that the calculation
stability of solving the real torque rate constrained problem
is very bad but our approach do not exist this weakness.
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