
MM Research Preprints, 248–263
KLMM, AMSS, Academia Sinica
Vol. 25, December 2006

Decomposition of Ordinary Difference Polynomials

Mingbo Zhang1 and Xiao-Shan Gao
Key Laboratory of Mathematics Mechanization

Institute of Systems Science, AMSS
Academia Sinica, Beijing 100080, China

mbzhang@ustc.edu.cn, xgao@mmrc.iss.ac.cn

Abstract.
In this paper, we present an algorithm to decompose nonlinear difference polynomials
in one variable and with coefficients in a computable difference field K. The algorithm
provides an effective reduction of the decomposition of difference polynomials to the
factorization of linear difference operators over the same field. The algorithm is imple-
mented in Maple for the constant coefficient case. The program can be used to decompose
difference polynomials with thousands of terms effectively.

Keywords. Difference polynomial, decomposition, difference degree.

1. Introduction

Functional decompositions for algebraic polynomials have been studied in detail and
there have been many theoretical and algorithmic results [13, 1, 10]. In the 1950’s, Ritt and
his students established the differential algebra [9] and the difference algebra [4] to deal with
the differential and difference equations from the algebraic viewpoint. Naturally, the decom-
position of the differential polynomials and difference polynomials becomes a problem worth
studying. In [5, 11, 12], partial results were given to decompose differential polynomials. In
[6], a complete decomposition algorithm for nonlinear differential polynomials was given. In
this paper, we will give an algorithm to decompose difference polynomials.

Our algorithm consists of three steps. First, the problem of decomposing a general differ-
ence polynomial is reduced to the problem of decomposing a homogeneous one, which will be
introduced in Section 5. Second, the decomposition of a homogeneous difference polynomial
is reduced to the construction of the linear left decomposition factors of another homogenous
difference polynomial, which will be introduced in Section 4. Finally, construction of linear
left decomposition factors of a homogenous difference polynomial is reduce to the factoriza-
tion of difference operators, which will be introduced in Section 3. Algorithms for factoring
difference operators can be found in [2, 3, 7]. The algorithm is implemented in Maple for
the constant coefficient case. Extensive experiments show that the program can be used to
decompose difference polynomials with thousands of terms effectively. These experimental
results are given in Section 6. We will conclude the paper in Section 7.

1)Department of Mathematics, University of Science and Technology of China.



Decomposition of Difference Polynomials 249

2. Notations and Preliminary Results

Let K be a difference field with a difference transform operator δ, y a difference indetermi-
nate, K{y} the ordinary difference polynomial ring over K [4]. An element in K{y} is called
a difference polynomial. We denote by yi = δiy the i-th transform of y. Let f ∈ K{y} \ K
be a univariate difference polynomial. The largest i such that yi appearing in f is called the
order of f , denoted by of . We can write f as the form

f = Fdy
d
of

+ Fd−1y
d−1
of

+ · · ·+ F0

where Fi is an algebraic polynomial of y, y1, y2, . . . , yof−1 and Fd 6= 0. We call df , d the
degree of f , if , Fd the initial of f , and yd

of
the leader of f respectively. We can also write

f as
f =

∑
ai0i1···iof

yi0yi1
1 · · · y

iof
of

where each ai0i1···iof
∈ K. We call ai0i1···iof

yi0yi1
1 · · · y

iof
of a term of f .

max{i0 + i1 + · · ·+ iof
| ai0i1···iof

6= 0}

is called the total degree of f , which is denoted by tdeg(f).

max{i1 + 2i2 + · · ·+ of iof
| ai0i1···iof

6= 0}

is called the difference degree of f and denoted by ddeg(f).
If all the total degrees of the terms in f are the same, f is called homogeneous; further-

more, if all the difference degrees of the terms in f are equal, we call f difference homogeneous.
In particular, if f is homogeneous and its total degree equals one, f is called linear.

We usually define a rank between two terms according to the pure lexicographical order
induced by the variable order y < y1 < y2 < . . .. In a difference polynomial f , the term with
the highest rank is called the leading term of f .

Let g, h ∈ K{y}. We use g ◦ h to denote the composition of g and h, which is defined
by substituting yi in g with the i-th transform of h(0 ≤ i ≤ og). If f = g ◦ h, g, h are
called the left and right decomposition factors of f respectively. A decomposition f = g ◦ h
is called nontrivial, if both g and h are not of the form ay + b, where a and b are in K. Two
decompositions f = g1 ◦ h1 and f = g2 ◦ h2 are called equivalent if there exist a, b ∈ K such
that h1 = (ay+b)◦h2. A decomposition f = p1◦p2 · · ·◦pn is called a maximal decomposition
of f , if there is no nontrivial decomposition for each pi. In this paper, we only consider how
to compute the decomposition of length two and we are always interested in the nontrivial
and nonequivalent decompositions. Let us see two examples of decompositions of difference
polynomials.

Example 2.1 y2 + 3y1 + 2y = (y1 + y) ◦ (y1 + 2y) is a decomposition of a linear difference
polynomial over the constant field Q. It’s correspondent to the factorization of the difference
operator δ2 + 3δ + 2 = (δ + 1) · (δ + 2).

Example 2.2 (t + 1)y1y
3
2y

2
3 + tyy3

1y
2
2 = ((t + 1)y1y2 + tyy1) ◦ yy2

1 is a decomposition over
the field Q(t).



250 M. Zhang and X.S. Gao

Lemma 2.3 The composition operation is associate: f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Proof. Let f =
∑
J

fJyj0yj1
1 . . . y

jof
of , g =

∑
I

gIy
i0yi1

1 . . . y
iog
og where I and J are in two index

sets and fJ , gI are in K. For any difference polynomial q, denote the i-th transform of q by
q(i). Then we have

(y1 ◦ g) ◦ h =

(∑
I

gI(1)y
i0
1 yi1

2 · · · yiog

og+1

)
◦ h

=
∑
I

gI(1)h
i0
(1)h

i1
(2) . . . h

iog

(og+1)

= y1 ◦
(∑

I

gIh
i0hi1

(1) . . . h
iog

(og)

)
= y1 ◦ (g ◦ h)

By induction, we have (yk ◦ g) ◦ h = yk ◦ (g ◦ h) for any positive integer k, so:

(f ◦ g) ◦ h =

(∑
J

fJgj0(y1 ◦ g)j1 . . . (yof
◦ g)jof

)
◦ h

=
∑
J

fJ

(
g ◦ h

)j0(
(y1 ◦ g) ◦ h

)j1

. . .

(
(yof

◦ g) ◦ h

)jof

=
∑
J

fJ

(
g ◦ h

)j0(
y1 ◦ (g ◦ h)

)j1

. . .

(
yof

◦ (g ◦ h)
)jof

=

(∑
J

fJyj0yj1
1 . . . y

jof
of

)
◦ (g ◦ h) = f ◦ (g ◦ h).

By Lemma 2.3, for any c ∈ K, we have f = g ◦ h =
(

g ◦ (y + c)
)
◦
(

(y − c) ◦ h

)
. So we

can assume that h has no term in K. In this case, the term of f in K is equal to that of g.
So in this paper, we always assume that f , g and h have no term in K.

Lemma 2.4 If f = g ◦ h is a decomposition of f , then: of = og + oh, df = dg · dh and
if = (ig ◦ h) · (ih)dg

(og).

Proof. Let

f = ify
df
of + uf , g = igy

dg
og

+ ug, h = ihydh
oh

+ uh

where uf , ug and uh are difference polynomials. Substituting g and h into f = g ◦h, we have

f = (ig ◦ h) · hdg

(og) + ug ◦ h = (ig ◦ h) · (ih)dg

(og)y
dg ·dh
oh+og

+ v

where v is a difference polynomial with rank lower than y
df
of . By comparing the order, degree

and initial of both sides of the equation, we obtain the result.
In this paper, we will show how to find a nontrivial decomposition f = g ◦ h for a given

difference polynomial f . After obtaining the right decomposition factor of f , we can compute



Decomposition of Difference Polynomials 251

the corresponding left decomposition factor easily. One possible way is to estimate the total
degree and the order of g and then find the coefficients of g by solving a linear equation
system. The following algorithm gives a more direct solution to this problem.

Algorithm 2.5 Input: difference polynomials f and h.
Output: a difference polynomial g such that f = g ◦ h if such a g exists.

S1 If f = 0, then return g = 0. Let og = of − oh, dg = df/dh. By Lemma 2.4, if og < 0 or
dg is not an integer, g does not exist and the algorithm terminates.

S2 Suppose that g = igy
dg
og + ug. We will find ig and ug separately.

S3 By Lemma 2.4, ig ◦ h = if/(ih)dg

(og). If q = if/(ih)dg

(og) is not a difference polynomial, g
does not exist and the algorithm terminates. Otherwise, call Algorithm 2.5 with q and
h as input and ig as output. If ig does not exist, g does not exist and the algorithm
terminates.

S4 Let f1 = f − (igy
dg
og ) ◦ h, then f1 = ug ◦ h. Call Algorithm 2.5 with f1 and h as input

and ug as output. If ug exists, output igy
dg
og + ug; otherwise g does not exist.

In the rest of this paper, we will concentrate on computing the right decomposition factor
of the given difference polynomial.

3. Linear Left Decomposition Factor

In this section, we will solve the following problem: for a homogeneous difference poly-
nomial f , compute a decomposition f = g ◦ h such that g is linear. Therefore, in the rest of
this section, we will assume that f and h are homogeneous and g is linear.

Proposition 3.1 If ddeg(f) < tdeg(f), then f has no nontrivial decomposition f = g ◦ h
such that g is linear.

Proof: If such a decomposition exists, then by ddeg(f) < tdeg(f), y must appear in each
term of f : otherwise, if aIy

i1
1 · · · yim

m is a term of f , then ddeg(f) ≥ i1 + · · · + m · im ≥
i1 + · · ·+ im = tdeg(f). But for a non-trivial decomposition f = g ◦ h, we have og > 0 and
g ◦ h must contain a term which does not involve y, a contradiction.

Let a = ddeg(f), α = tdeg(f) and write f as the sum of difference homogeneous parts:

f = Fa + Fa−1 + · · ·+ F0

where Fj is the sum of terms included in f with difference degree j (0 ≤ j ≤ a). Let
k = a mod α and a = t · α + k. By Proposition 3.1 we have t ≥ 1. Let

Li = Fa−izt + Fa−α−izt−1 + · · ·+ Fa−tα−iz (0 ≤ i ≤ k) (1)

Then Li is a linear difference polynomial over the difference ring K{y}.

Lemma 3.2 A linear difference polynomial g is a left decomposition factor of f if and only
if g is a left decomposition factor of each Li(0 ≤ i ≤ k) with coefficients in K.



252 M. Zhang and X.S. Gao

Proof: (=⇒). Let g = cnzn + · · · + c0z be a linear left decomposition factor of f and
h = Hb+Hb−1+· · ·+H1 be the corresponding right decomposition factor, where b = ddeg(h)
and Hl is the sum of the terms in the with difference degree l(1 ≤ l ≤ b). Then

Fa + Fa−1 + · · ·+ F1 = (cnyn + cn−1yn−1 + · · ·+ c0y) ◦ (Hb + Hb−1 + · · ·+ H1) (2)

By comparing the difference degrees of both sides of (2) we have a = b + nα. For a fixed
0 ≤ i ≤ k, by comparing the parts with difference degree a − jα − i = b − i + (n − j)α
(0 ≤ j ≤ t) of both sides of (2), we have

Fa−jα−i = cnzn ◦Hb−i−jα + cn−1zn−1 ◦Hb−i−(j−1)α + · · ·+ cn−jzn−j ◦Hb−i

While the coefficient of zt−j in

(cnzn + · · ·+ c0z) ◦ (Hb−izt−n + Hb−i−αzt−n−1 + · · ·+ Hb−i−(t−n)αz)

is equal to cnzn ◦Hb−i−jα + cn−1zn−1 ◦Hb−i−(j−1)α + · · ·+ cn−jzn−j ◦Hb−i = Fa−jα−i. From
(1), we have

Li = (cnzn + · · ·+ c0z) ◦ (Hb−izt−n + Hb−i−αzt−n−1 + · · ·+ Hb−i−(t−n)αz)

Namely, g is a left decomposition factor of Li.
(⇐=). If g = cnzn + · · · + c0z is a left decomposition factor of each Li with coefficients

over K, let

Fa−izt +Fa−α−izt−1 + · · ·+Fa−tα−iz = (cnzn + · · ·+ c0z) ◦ (Kt,izt +Kt−1,izt−1 + · · ·+K0,iz)

Substituting z = 1, we have

Fa−i + Fa−α−i + · · ·+ Fa−tα−i = (cnyn + · · ·+ c0y) ◦ (Kt,i + Kt−1,i + · · ·+ K0,i) (3)

where zi in cnzn + · · · + c0z can be replaced by yi because z is only a variable name of the
left decomposition factor. Summing the equation (3) for i from 0 to k, we have

Fa + Fa−1 + · · ·+ F1 = (cnyn + cn−1yn−1 + · · ·+ c0y) ◦ (
∑

0≤i≤k,0≤j≤t

Kj,i)

So g is a linear left decomposition factor of f .
By Lemma 3.2, to compute the linear left decomposition factor of f , we need only to

compute the common left decomposition factor of the linear difference polynomials Li(0 ≤
i ≤ k). Note that Li also involves the difference variable y. Substituting y with γi in

Li(z) = (cnzn + · · ·+ c0z) ◦ (Hb−izt−n + Hb−i−αzt−n−1 + · · ·+ Hb−i−(t−n)αz)

we have

Li(γi) = Fa−i(γi)zt + Fa−α−i(γi)zt−1 + · · ·+ Fa−tα−i(γi)z
= (cnzn + · · ·+ c0z) ◦ (Hb−i(γi)zt−n + · · ·+ Hb−(t−n)α−i(γi)z)



Decomposition of Difference Polynomials 253

So, if f = g ◦ h and g is linear, g must be the linear left decomposition factor of

Li(γi) = Fa−i(γi)zt + Fa−α−i(γi)zt−1 + · · ·+ Fa−tα−i(γi)z

for i from 0 to k and any γi ∈ K. From [4], we can always choose a γi ∈ K such that
Li(γi) 6= 0 for each i.

For any linear difference polynomial q = amym + am−1ym−1 + · · · + a1y1 + a0y, let
q̃ = amδm +am−1δ

m−1 + · · ·+a1δ +a0 be the corresponding difference operator over K, then
the decomposition q = u ◦ v of q is one-one correspondent to the factorization q̃ = ũ · ṽ of
q̃. So the problem of finding g becomes the problem of factorization of difference operators
over K. If the difference operator δ is an automorphism over K, we can compute the greatest
common left divisor L̃ of L̃i(γi)(0 ≤ i ≤ k) by the left Euclidean remainder sequence [2] and
then compute the left factors of L̃; otherwise, we can first compute all the factors of L̃0(γ0)
and then exclude those who are not the left factors of L̃i(γi)(1 ≤ i ≤ k).

Based on the above analysis, we give the following algorithm to solve the problem pro-
posed in the beginning of this section.

Algorithm 3.3 Input: a homogeneous difference polynomial f and a positive integer n.
Output: a set S of all possible (g, h) such that f = g ◦ h is a nontrivial decomposition of

f , og = n and g is linear.

S1 S := {}. If y appears in every term of f , then return S.

S2 Let α = tdeg(f), a = ddeg(f), t = b a
αc. If a < α · n, g, h do not exist and the algorithm

terminates. Otherwise, write f as the sum of the difference degree homogeneous parts:
f = Fa +Fa−1 + · · ·+F0 and let Li = Fa−izt +Fa−α−izt−1 + · · ·+Fa−tα−iz(0 ≤ i ≤ k).

S3 For each Li, choose a γi ∈ K such that Li(γi) 6= 0(0 ≤ i ≤ k). Compute all the
common left decomposition factors of Li(γi) with degree n. This is just a problem of
factorization of difference operators and there have been some algorithms to deal with
it [2, 3, 7].

S4 For each g obtained in S3 (which may contain parameters), check whether g is a left
decomposition factor of f with Algorithm 3.4. If it is, compute the correspondent
right decomposition factor h and add (g, h) to S. Return S.

Algorithm 3.4 Input: a difference polynomial f and a linear difference polynomial g.
Output: a difference polynomial h such that f = g ◦ h if such an h exists.

S1 Let h := 0.

S2 Since g is linear, by Lemma 2.4 we have oh = of − og, dh = df , ih = y−og ◦ (if/ig). If ih
is not a difference polynomial, then h does not exist and the algorithm terminates.

S3 Let h := h + ihydh
oh

, f := f − g ◦ (ihydh
oh

). If f = 0, output h; otherwise, go to S2.



254 M. Zhang and X.S. Gao

In step S2, we use y−og ◦ p to represent the following procedure. Let m be the minimal

integer such that ym appears in p and p =
∑

aim···iof
yim

m · · · y
iof
of . If og > m, y−og ◦ p does

not exist; otherwise y−og ◦ p =
∑

(δ−ogaim···iof
)yim

m−og
· · · y

iof

of−og
.

Algorithm 3.4 is correct because g is linear and hence g◦(ihydh
oh

+uh) = g◦(ihydh
oh

)+g◦uh.

Example 3.5 K is the rational function field Q(t). The difference operator over K is defined
by δ θ(t) = θ(t + 1). Let f = y2y3 + y2

3 + y2y4 + yy1 + y2
1 + yy2 be a homogeneous difference

polynomial over K. We use algorithm 3.3 to compute its linear left decomposition factors of
order 2.

In S2, we have α = tdeg(f) = 2, a = ddeg(f) = 6 and f = F6 + F5 + · · · + F1 = (y2
3 +

y2y4)+(y2y3)+(yy2+y2
1)+(yy1). By lemma 3.2, if g(y) is a linear left decomposition factor of

f , g(z) must be a linear left decomposition factor of L0 = (y2
3+y2y4)z3+(yy2+y2

1)z1. In S3, if
we choose y = 1, we have that g(z) is a linear left decomposition factor of L0(1) = z3 +z1. It
is clear that g(z) = z2+z1. If we choose y = t, then L0(t) = (2t2+12t+17)z3+(2t2+4t+1)z1.
The only non-equivalent linear left decomposition factor of L0(t) with order 2 is g(z) = z2+z1

(L = (z2 + z) ◦ ((2t2 + 4t + 1)z1)). In S4, we can check that that g(y) = y2 + y is really a
linear left decomposition factor of f : f = (y2 + y) ◦ (yy2 + y2

1 + yy1).

Remark 3.6 Some parameters may appear in the decomposition factors of linear difference
polynomials, which take values in the constant field [2]. The number of the parameters are
finite and satisfy some algebraic constraints. We can deal with these parameters as in the
case of differential polynomials decomposition[6].

Remark 3.7 If K is a constant field, then computing the common left divisor of Li(γi)(0 ≤
i ≤ k) is equivalent to computing the GCD of k + 1 algebraic polynomials over K, which is
completely similar to the differential case [5].

4. Decomposition of homogeneous difference polynomials

In the previous section, we proposed an algorithm to compute a special decomposition of
a given homogeneous difference polynomial, in which the left decomposition factor is linear.
In this section, we will give an algorithm to give out all the decompositions(maybe expressed
by parameters) of a homogeneous difference polynomial. This is also a special case for the
general decomposition problem, but we will see its relation to the general case in section 5.

If f = g ◦ h, we write f, g, h as

f = fdf
y

df
of + fdf−1y

df−1
of + . . . + f1yof

+ f0

g = gdgy
dg
og

+ gdg−1y
dg−1
og

+ . . . + g1yog + g0

h = hdh
ydh

oh
+ hdh−1y

dh−1
oh

+ . . . + h1yoh
+ h0

where df , dg, dh is the degree, of , og, oh is the order of f, g, h respectively.

g ◦ h = (gdg ◦ h) · [(yog ◦ hdh
)ydh

og+oh
+ · · ·+ yog ◦ h0]

dg + (gdg−1 ◦ h) ·

[(yog ◦ hdh
)ydh

og+oh
+ · · ·+ yog ◦ h0]

dg−1 + · · ·+ g0 ◦ h



Decomposition of Difference Polynomials 255

Comparing the coefficients of yi
of

(df ≥ i ≥ df − dh − 1) of both sides of f = g ◦ h we
have:

(E1)



fdf
= (gdg ◦ h) · yog ◦ h

dg

dh

fdf−1 = (gdg ◦ h) · yog ◦ [dgh
dg−1
dh

hdh−1]
...
fdf−i = (gdg ◦ h) · yog ◦ [dgh

dg−1
dh

hdh−i + Ti]
...
fdf−dh

= (gdg ◦ h) · yog ◦ [dgh
dg−1
dh

h0 + Tdh
] + (gdg−1 ◦ h) · (yog ◦ h

dg−1
dh

)

where
Ti = (hdh

ydh
oh

+ hdh−1y
dh−1
oh

+ · · ·+ hdh−i+1y
dh−i+1
oh

)dg

df−i
(4)

denotes the coefficient of y
df−i
oh in (hdh

ydh
oh

+hdh−1y
dh−1
oh

+· · ·+hdh−i+1y
dh−i+1
oh

)dg (1 ≤ i ≤ dh).
Note that Ti is divided by h

dg−i
dh

, so we have the lemma following below:

Lemma 4.1 If f = g ◦ h, then fdf−i is divided by yog ◦ h
dg−i
dh

(0 ≤ i ≤ dg), where fj is the
coefficient of yj

of
in f .

If (dh, oh, hdh
) is known (by Lemma 2.4 and 4.1, they satisfy dh | df , oh ≤ of , yog ◦ h

dg−i
dh

divides fdf−i(0 ≤ i ≤ dg)), then dg = df

dh
, og = of − oh. By the first equality of E1 we have

gdg ◦ h =
fdf

yog ◦ h
dg

dh

, f (1)

Now f (1) can be computed and h is a right decomposition factor of f (1). If f (1) /∈ K, then
gdg /∈ K. By the same analysis we have g(2) ◦ h = f (2), where g(2) is the initial of gdg and
f (2) can be computed by f (1) and other known elements. Go on the reduction until we have
g(k) ◦ h = f (k), where f (k) is known and the initial of g(k) belongs to the coefficients field
K. We have that if h is a right decomposition factor f , then h is also a right decomposition
factor of f (k); but it’s not necessarily correct for the contrary. Our basic idea is to compute
the possible right decomposition factor h from the equality g(k) ◦ h = f (k) and then check
that if h is really a right decomposition factor of f . So we now must consider such a problem
firstly: if we know f has a decomposition f = g ◦ h, in which (dh, oh, hdh

) is what we have
known and the initial of g is in K, how to compute g, h?

Now there are two cases:
(1) dg = 1. For g is homogeneous, g is linear, we can compute g, h by Algorithm 3.3.
(2) dg > 1. We can obtain hi(dh−1 ≥ i ≥ 1) step by step by the first dh− i+1 equalities

in E1 and then by the last one we have

dggdg · yog ◦ h0 + gdg−1 ◦ h =
(

fdf−dh
− gdg · yog ◦ Tdh

)/
yog ◦ h

dg−1
dh

, F1

By h0 = h−
∑

1≤i≤dh

hiy
i
oh

,

(dggdgyog + gdg−1) ◦ h = f (1) + dggdgyog ◦ (
∑

1≤i≤dh

hiy
i
oh

) , F2



256 M. Zhang and X.S. Gao

Note that gdg−1 is linear and F2 can be computed, so we can obtain all possible h by executing
Algorithm 3.3 with input (F2, og).

Based on the analysis above, we propose the algorithm to compute all the decompositions
of a given homogeneous difference polynomial.

Algorithm 4.2 Input: a homogeneous difference polynomial f .
Output: a set T = {(g, h) : f = g ◦ h is a non-trivial decomposition of f}/ ∼, where

∼ is the equivalent relation defined by (g1, h1) ∼ (g2, h2) ⇔ h1, h2 is the equivalent right
decomposition factor of f .

S1 T := {}, f̄ := f . Let S = {(dh, oh, hdh
) : dh|df , oh ≤ of , yof−oh

◦ h
dg−i
dh

divides
fdf−i(0 ≤ i ≤ dg − 1)}, where fi is the coefficient of yi

of
in f .

S2 If S is empty, then return T ; otherwise, let f̄i be the coefficient of yi
of̄

in f̄ . Choose a
(dh, oh, hdh

) in S and let S := S − {(dh, oh, hdh
)}, go to S3.

S3 If
df̄

dh
is not an integer, or of̄ < oh, or there exists an i (0 ≤ i ≤ dg) such that yog ◦ h

dg−i
dh

does not divide f̄df̄−i, go to S2; else, go to S4.

S4 Let dg :=
df̄

dh
, og := of̄ − oh. Let f̂ :=

f̄df̄

yog◦h
dg
dh

. If f̂ /∈ K, then f̄ := f̂ , go to S3; else, go

to S5.

S5 If dg = 1, then execute Algorithm 3.3 with input f̄ , og. Let the output be the set G.
Goto S7.

S6 If dg > 1, let gdg =
fdf

yog◦h
dg
dh

, hdh−i = (y−og ◦
fdf−i

gdg
− Ti)/(dgh

dg−1
dh

)(i = 1, . . . , dh − 1)

and F2 =
(

fdf−dh
− gdg · yog ◦ Tdh

)/
yog ◦ h

dg−1
dh

+ dggdgyog ◦ (
∑

1≤i≤dh

hiy
i
oh

), where Ti

is defined in (4). In the above computation, if one of the results is not a difference
polynomial, then go to S2. Execute Algorithm 3.3 with input F2, og. Let the output
be the set G.

S7 For each (g, h) in G, check that if h is a right decomposition factor of f . If it is and the
corresponding left decomposition factor is g′, then add (g′, h) to T . Go to S2.

Example 4.3 Let K = Q(t), f = (t + 1)y1y
3
2y

2
3 + tyy3

1y
2
2 ∈ K{y}. We compute all the

decompositions of f .
In step S1, we have S = {(1, 1, 1), (1, 2, 1), (1, 3, 1), (1, 1, y), (1, 2, y1), (1, 3, y2), (2, 3, 1), (2, 3, y2),

(2, 3, y2
2), (2, 3, y3

2), (2, 3, y1), (2, 3, y1y2), (2, 3, y1y
2
2), (2, 3, y1y

3
2), (2, 2, 1), (2, 2, y1), (2, 2, y2

1), (2, 2,
y3
1), (2, 2, y), (2, 2, yy1), (2, 2, yy2

1), (2, 2, yy3
1), (2, 1, 1), (2, 1, y), (2, 1, y2), (2, 1, y3)}.

In step S2, we choose (2, 1, y) ∈ S to start the computation. Steps S3 and S4 run three
times continually and output f̄ = (t + 1)y2y

2
3 (dg = 1). In step S5, execute Algorithm 3.3 to

compute the second order linear left decomposition factor of f̄ = (t + 1)y2y
2
3, the output is

(y2, (t− 1)yy2
1). In step S7, we can check that f = (y1y2

t + yy1

t−1) ◦ ((t− 1)yy2
1).

If we choose other elements in S to start in step S2, only (2, 2, yy3
1) leads to the decom-

position f = (y1 + y) ◦ (tyy3
1y

2
2). Here we omit the details.



Decomposition of Difference Polynomials 257

From the above example, we can see that there could exist many choices for (dh, oh, hdh
),

but most of them do not lead to a decomposition. This may reduce the efficiency badly.
How to improve the algorithm on this problem is one of our future research topics.

5. Decomposition in the General Case

We now consider the decomposition algorithm in the general case, which is based on the
following result.

Theorem 5.1 Let f = g ◦ h be a nontrivial decomposition of f . t, a, b are the total degrees
of f, g, h and

f = Ft + Ft−1 + · · ·+ F1

g = Ga + Ga−1 + · · ·+ G1

h = Hb + Hb−1 + · · ·+ H1

are the representations of f, g, h as sums of the homogeneous parts respectively. Then Ft =
Ga ◦Hb and Hi(1 ≤ i ≤ b− 1) can be determined uniquely by Hb and f .

Therefore, for a given difference polynomial f , we write f as the sum of the homogeneous
parts f = Ft + Ft−1 + · · · + F1. If we can obtain a decomposition Ft = p ◦ q, then we can
use q as a candidate for Hb to compute h and g. Certainly, not all the candidates of Hb will
lead to a decomposition of f . So we must try all possible decompositions of Ft. This will
not cause any essential difficulties and it can be reduced to the problem of factorization of
difference operators, as we have shown in section 4.

Before proving theorem 5.1, we need to give a crucial sub-algorithm.

Proposition 5.2 Let u, v, h, p be difference polynomials. We denote the leading term of u
by lu. We use rank(u)>rank(v) to denote that the rank of u is higher than the rank of v. It
is easy to check the following properties about the leading term:

1. lu·v = lu · lv

2. lu◦v = lu ◦ lv

3. If yj appear in lu, then l ∂u
∂yj

= ∂lu
∂yj

4. For a nonnegative integer j, if yj appears in lu, the leading term of ∂u
∂yj

◦ h · yj ◦ p is

∂lu
∂yj

◦ lh · yj ◦ lp = βjlu ◦ lh · yj ◦
lp
lh

where βj = degyj
lu is the degree of lu in yj.

Proof. The first three properties can be easily proved and the fourth can be deduced from
the first three.



258 M. Zhang and X.S. Gao

Lemma 5.3 Let f, g, and h be homogeneous difference polynomials. If a difference polyno-
mial p satisfies

f =
∑

0≤j≤og

∂g

∂yj
◦ h · yj ◦ p

and tdeg(p) < tdeg(h), then it is unique and can be computed from f, g and h.

Proof : Assume that there is a p satisfying the conditions in the lemma and q is an
arbitrary term included in g. Let

lg = αyak
k y

ak+1

k+1 · · · yaog
og , q = βybn

n y
bn+1

n+1 · · · y
bm
m

where k is the least integer such that yk appears in lg and n, m are the minimal and maximal
integers such that yn, ym appears in q respectively. We divide the problem into two cases.

1) rank(p)>rank(h). By Proposition 5.2, the leading term of
∑

0≤j≤og

∂q
∂yj

◦ h · yj ◦ p is

∂q

∂ym
◦ lh · ym ◦ lp = bmq ◦ lh · ym ◦ lp

lh
.

Since rank(lg)>rank(q), og ≥ m and rank(p)>rank(h), the rank of aog lg ◦ lh ·yog ◦
lp
lh

is higher

than bmq ◦ lh · ym ◦ lp
lh

. Then the leading term of
∑

0≤j≤og

∂g
∂yj

◦ h · yj ◦ p is

∂lg
∂yog

◦ lh · yog ◦ lp = aog lg ◦ lh · yog ◦
lp
lh

.

So we have lf = ∂lg
∂yog

◦ lh · yog ◦ lp and hence

lp = y−og ◦
(

lf

/
(

∂lg
∂yog

◦ lh)
)

(5)

2) rank(p)<rank(h). By Proposition 5.2, the leading term of
∑

0≤j≤og

∂q
∂yj

◦ h · yj ◦ p is

∂q

∂yn
◦ lh · yn ◦ lp = bnq ◦ lh · yn ◦

lp
lh

.

If n ≥ k, by rank(lp)<rank(lh), we have rank(yk ◦ lp
lh

)>rank(yn ◦ lp
lh

) and the rank of aklg ◦ lh ·
yk ◦ lp

lh
is higher than that of biq ◦ lh · yn ◦ lp

lh
. Then the leading term of

∑
0≤j≤og

∂g
∂yj

◦h · yj ◦ p is

∂lg
∂yk

◦ lh · yk ◦ lp = aklg ◦ lh · yk ◦
lp
lh

.

So we have lf = ∂lg
∂yk

◦ lh · yk ◦ lp and hence

lp = y−k ◦
(

lf

/
(
∂lg
∂yk

◦ lh)
)

(6)



Decomposition of Difference Polynomials 259

If n < k, it is easy to check that rank( ∂lg
∂yk

)>rank( ∂q
∂yn

) and rank(yk ◦ lp)>rank(yn ◦ lp). So

the rank of ∂lg
∂yk

◦ lh · yk ◦ lp is higher than that of ∂q
∂yn

◦ lh · yn ◦ lp and the equality (6) still
holds.

Since tdeg(p) < tdeg(h) and p, h are both homogeneous, the case of rank(p)=rank(h)
will not happen. Hence lp can be computed from (5) and (6). Let p = lp + p̄. Since
yj ◦ p = yj ◦ lp + yj ◦ p̄, p can be computed using (5) and (6) repeatedly.

If there exist two distinct difference polynomials p1, p2 such that
f =

∑
0≤j≤og

∂g
∂yj

◦ h · yj ◦ p1

f =
∑

0≤j≤og

∂g
∂yj

◦ h · yj ◦ p2

then we have ∑
0≤j≤og

∂g

∂yj
◦ h · yj ◦ (p1 − p2) = 0.

Either (5) or (6) must hold. We have lp1−p2 = 0, which means lp1 = lp2 . Repeating the
procedure recursively, we can deduce that p1 = p2, a contradiction.

Following the proof of Lemma 5.3, we give the following algorithm.

Algorithm 5.4 Input: homogeneous difference polynomials f, g, h.
Output: a difference polynomial p such that f =

∑
0≤i≤og

∂g
∂yi
◦h·yi◦p and tdeg(p) < tdeg(h),

if it exists.

S1 Let lf , lg, lh be the leading terms of f, g, h respectively, k = min{i : yi appears in lg} and
p := 0. By the proof of Lemma 5.3, the leading term lp of p must satisfy one and only
one of the following two equalities

∂lg
∂yk

◦ lh · yk ◦ lp = lf if rank(p)>rank(h)
∂lg

∂yog
◦ lh · yog ◦ lp = lf if rank(p)<rank(h)

S2 If f = 0, then return p. Use (6) to compute lp. If lp is not a difference polynomial, then
go to S3; else go to S4. This step computes lp in the case of rank(p)>rank(h).

S3 Use (5) to compute lp. If lp is not a difference polynomial, then terminate the algorithm
and return “p does not exist”; else go to step S4. This step computes lp in the case of
rank(p)<rank(h).

S4 Let p := p + lp, f := f −
∑

0≤j≤og

∂g
∂yj

◦ h · yj ◦ lp. Go to step S2.

Now we give the proof of Theorem 5.1.
If f has a decomposition f = g ◦ h, we have

Ft + Ft−1 + · · ·+ F1 = (Ga + Ga−1 + · · ·+ G1) ◦ (Hb + Hb−1 + · · ·+ H1).

Comparing the homogeneous parts on both sides of f = g ◦ h we have



260 M. Zhang and X.S. Gao

(E2)



Ft = Ga ◦Hb

Ft−1 =
∑

0≤i≤oGa

∂Ga
∂yi

◦Hb · yi ◦Hb−1

...
Ft−k = Ga ◦ (Hb + Hb−1 + · · ·+ Hb−k+1)

t−k
+

∑
0≤i≤oGa

∂Ga
∂yi

◦Hb · yi ◦Hb−k

...
Ft−b+1 = Ga ◦ (Hb + Hb−1 + · · ·+ H2)

t−b+1
+

∑
0≤i≤oGa

∂Ga
∂yi

◦Hb · yi ◦H1

where u i is the sum of terms in u with total degree i. By lemma 5.3, we can determine
Hb−1, · · · ,H1 uniquely one by one starting from the second equality. So we have h = Hb +
Hb−1 + · · · + H1. Such an h is not necessarily a right decomposition factor of f , because
we have only compared the terms with total degree from t − b + 1 to t. We need to check
whether h is a right decomposition factor of f , which can be done by Algorithm 2.5.

Based on the analysis in this section, we have the following decomposition algorithm for
the general case.

Algorithm 5.5 Input: a difference polynomial f .
Output: a nontrivial decompositions of f : f = g ◦ h.

S1 Write f as the sum of homogeneous parts f = Ft + Ft−1 + · · ·+ F1.

S2 Execute algorithm 4.2 with input Ft. Assume that the output is T .

S3 If T is empty, then return “f has no nontrivial decompositions”; otherwise, choose a
(g, h) ∈ T and T := T − {(g, h)}.

S4 Let a = tdeg(g), b = tdeg(h) and Ga = g,Hb = h. For k = 1, · · · , b−1, execute Algorithm
5.4 to compute Hb−k, · · · ,H1 with input

Ft−k − Ga ◦ (Hb + Hb−1 + · · ·+ Hb−k+1)
t−k

, Ga,Hb

respectively.

S5 Let h = Hb + Hb−1 + · · · + H1 and compute a left decomposition factor g such that
f = g ◦ h by Algorithm 2.5. If g exists, return (g, h); otherwise, go to S3.

The worst case complexity of the algorithm is exponential. The reason is due to the
combinatorial selection in several places. For instance, in step S4 of Algorithm 3.3, we need
to consider all the decomposition factors of a linear difference polynomial, which could be
exponential. It is worth noting that the complexity of factoring difference operators, which
is equivalent to the decomposition of linear difference polynomials, is also exponential.

Example 5.6 Let K = Q(t), f = (t+1)y1y
3
2y

2
3 +tyy3

1y
2
2 +(t+1)(t+2)y1y

2
2y3+(t+1)2y2

2y
2
3 +

t(t + 1)yy2
1y2 + t2y2

1y
2
2 + y1y

2
2 + tyy2

1 + (t + 1)2(t + 2)y2y3 + t2(t + 2)y1y2 + (t + 1)y2 + t2y1.



Decomposition of Difference Polynomials 261

In step S1, write f as the homogeneous parts f = F6 + F4 + F3 + F2 + F1, where F6 =
(t + 1)y1y

3
2y

2
3 + tyy3

1y
2
2, F4 = (t + 1)(t + 2)y1y

2
2y3 + (t + 1)2y2

2y
2
3 + t(t + 1)yy2

1y2 + t2y2
1y

2
2,

F3 = y1y
2
2 + tyy2

1, F2 = (t + 1)2(t + 2)y2y3 + t2(t + 2)y1y2, F1 = (t + 1)y2 + t2y1.
In step S2, using Algorithm 4.2, we obtain the decomposition of F6: T = {(t + 1)y1y2 +

tyy1, yy2
1), (y1+y, tyy3

1y
2
2)} (In example 4.3, (y1y2

t + yy1

t−1)◦((t−1)yy2
1) = ((t+1)y1y2+tyy1)◦yy2

1

are two equivalent decompositions).
In step S3, choose ((t + 1)y1y2 + tyy1, yy2

1) and in step S4, we obtain H3 = yy2
1,H2 =

0,H1 = ty1. In step S5, we can check that h = H3 + H2 + H1 = yy2
1 + ty1 is a right

decomposition factor of f : f = ((t + 1)y1y2 + tyy1 + y1 + ty) ◦ (yy2
1 + ty1).

6. Experimental Results

We implemented Algorithm 5.5 in Maple for the constant field case K = Q. To implement
Algorithm 5.5 for K = Q(t), we need an implementation which could give all the possible
factorizations of a difference operator, which is a quite difficult task and is not available in
Maple. For K = Q, we can easily find all the factorizations of a difference operator similar to
the differential case [6]. Besides this point, our implementation suits the case of K = Q(t).

Two sets of experiments are done. In Table 1, we generate a difference polynomial
randomly and decompose it. All the randomly generated difference polynomials in Table 1
are indecomposable. In Table 2, we generate two difference polynomials g and h randomly
and decompose f = g ◦ h. The difference polynomials g and h are given in Table 3. The
running times are collected on a PC with a 1.6GHz CPU and 256M memory and are given
in seconds. In Tables 1 and 2, of , tf , lf means the order, the total degree and the number
of terms in f respectively.

(of , tf , lf ) time(s) (of , tf , lf ) time(s)
(2,20,164) 0.110 (2, 30, 261) 0.203
(2,40,735) 0.204 (3, 10, 242) 0.047
(3,20,992) 0.672 (3, 30, 3424) 4.328
(4,10,693) 0.781 (4, 20, 4253) 6.890
(5,10,1198) 3.969 (5, 10, 1929) 2.532
(6,8,2698) 5.391 (6,10,3708) 6.859
(7,8,2101) 7.468 (8,6,2682) 8.188
(9,6,4870) 18.969 (10,6,4747) 27.641

Table 1. Decomposing Randomly Generated Differential Polynomials

From these experimental results, we may conclude that our algorithm is efficient in han-
dling large difference polynomials with thousands of terms. The computational efficiency is
due to the fact that all computations in the algorithm are based on explicit formulas. Our
program is especially fast for randomly generated difference polynomials. The reason can
be explained below. From Lemmas 4.1 and 5.3, we can see that a difference polynomial
with a nontrivial decomposition has certain structures and a randomly generated difference
polynomial does not have these structures. As a consequence, the program will stop early
before going through all the cases.



262 M. Zhang and X.S. Gao

g, h (og, tg) (oh, th) (of , tf , lf ) time(s)
g1, h1 (0,8) (1,8) (1,64,761) 11.406
g2, h2 (1,6) (1,8) (2,48,2302) 4.844
g3, h3 (1,6) (2,4) (3,24,1538) 3.250
g4, h4 (1,4) (3,4) (4,16,2329) 1.047
g5, h5 (2,4) (1,6) (3,24,1558) 0.891
g6, h6 (2,4) (2,6) (4,24,363) 10.172
g7, h7 (2,4) (3,4) (5,16,716) 1.500
g8, h8 (3,4) (2,6) (5,24,4475) 4.921
g9, h9 (3,4) (3,4) (6,16,10079) 26.063

g10, h10 (4,3) (3,4) (7,12,807) 1.797

Table 2. Decompose f = g ◦ h

g1 −37y8 − 20y7 − 29y6 + 48y5 + 20y4 − 3y3

h1 48y − 18yy1 − 48y4 + 42y3y2
1 + 2y6 + 41y4y3

1 + 19y4y4
1

g2 −10y2y1 − 11y3
1 − 31y5y1

h2 32y + 19y1 − 39y3 − 19y2y1 − 24y2y2
1 − y5y2

1 − 9y3y5
1 + 29yy7

1

g3 13y2 − 49y2y2
1 − 21y3y2

1 + 17y5
1 + 21y4y2

1

h3 38y1y
2
2 − 13y3y1 − 37yy3

1 + 19y3
1y2 − 40y1y

3
2

g4 36y − 50y1 − 17y2y1 + 10y2
1y − 21y3

1 − 22y2
1y2 − 3y3

1y

h4 48y2
1 − 32y2y1 − 40y2

2y3 + 23yy2
2y3 + yy3

3 + 8y2
1y2y3 + 5y2

1y2
3 + 32y4

2

g5 −5y + 44y3
1 + 16y2

1y2 + 14y2y2
2 − 13yy1y

2
2 + 31y2

1y2
2

h5 −18yy1 + 15y3 − 20y4
1 − 3yy4

1 + 28y6 − 19y4y2
1

g6 17y2 + 20y1y2 − 18y2y1 + 47y2y2 + 43y2y2
2 − 46yy2

1y2

h6 43y3 − 34y4
1 + 25y4y1 − 47y2y3

1y2

g7 35y2 − 30y3 − 19y3
1 − 18y3y1 + 2yy2

1y2 + 19y1y
3
2

h7 3y2y1 + 46y2y2
2 + 13yy3

1 − 5y1y
2
2y3 + 26y1y

3
3

g8 −5y − 9y3y
2 + 28y2

2y − 45y1y
2
2 + 32y1y

3 − 24y2y
3 − 16y2

2y2 + 28y2
2y3y − 16y2

1y2
3 + 7y2y

3
3

h8 45yy2 − 41y3
1 − 6y5

1 − 44y3
1y2

2 + 16y2
1y3

2 + 6y1y
4
2 + 32y1y

2
2y3

g9 −41y2 − 10y1y
2
2 + 25y2y2

1 − 29yy1y
2
3 + 5yy2y

2
3 − 48y2

2y2
3

h9 18y2 + 36y2
2 − 37y3y2 − 3y2y1y3 + 20y2y2

2 + 33y2y2y3 + 46yy3
1 + 31yy2

1y3 + 37y3
1y2 − 5y2

1y2y3

g10 21y2 − 13y3 + 6yy1 − 23y3y4 + 12yy1y3 − 38yy1y4 − 6yy2
2 − 16yy2

4 − 24y2
1y3 + 18y3

2

h10 −26yy1 + 14y2y3 + 32y2y2 + 29y2y3 − 27y2
1y3 − 46y2

2y2
3

Table 3. Randomly generated g and h



Decomposition of Difference Polynomials 263

Based on these experimental results, we may conclude that our algorithm provides an
efficient reduction of the decomposition of nonlinear difference polynomials to the linear case.

7. Conclusions

In this paper, we give a complete and practical algorithm to decompose a given nonlinear
difference polynomial in one variable and over a computable difference field. The algorithm
provides an efficient reduction of the problem to the decomposition of difference operators.

Besides the algorithmic study for the decomposition, the uniqueness problem is also an
important property to be explored. Ritt gave a perfect result for the uniqueness of decompo-
sitions for an algebraic polynomial [10]. Similar results were proved for Ore polynomials and
hence for linear difference polynomials [8]. It is interesting to see whether these properties
can be extended to the case of difference polynomials.

References

[1] F. Binder, Polynomial Decomposition Theoretical Results and Algorithms, Thesis, Johannes Ke-
pler University, 1995.

[2] M. Bronstein and M. Petkovšek, An introduction to pseudo-linear algebra, Theoretical Computer
Science, 157, 3-33, 1996.

[3] M. Bronstein and M. Petkovšek. On Ore Rings, Linear Operators and Factorization, Program-
mirovanie, 20, 27-45, 1994.

[4] R.M. Cohn, Difference Algebra, Interscience Pbulishers, 1965.
[5] X.S. Gao and M. Zhang, Decomposition of Differential Polynomials with Constant Coefficients,

Proc. ISSAC 2004, 175-182, ACM Press, New York, 2004.
[6] X.S. Gao and M. Zhang, Decomposition of Differential Polynomials with Rational Function

Coefficients, In MM-Preprints, 23, 92-112, December, 2004.
[7] M. Giesbrecht and Y. Zhang, Factoring and Decomposing Ore Polynomials Over Fq(t), Proc.

ISSAC 2003, 127-134, ACM Press, New York, 2003.
[8] O. Ore, Theory of noncommutative polynomials. Annals of Mathematics, 34(3), 480-508, 1933.
[9] J.F. Ritt, Differential Algebra, AMS, New York, 1950.

[10] J.F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc., 23, 51-66, 1922.
[11] M.V. Sosnin, An Algorithm for Nonparametric Decomposition of Differential Polynomials, Pro-

gramming and Computing Software, 27(1), 43 - 49, 2001.
[12] S.P. Tsarev, On Factorization of Non-linear Ordinary Differential Equations, Proc. ISSAC 1999,

159-164, ACM Press, New York, 1999.
[13] J. von zur Gathen, Functional Decomposition of Polynomials: the Tame Case, J. Symb. Comput.,

9, 281-299, 1990.


