
MM Research Preprints
KLMM, Chinese Academy of Sciences
Vol. 27, 122–136, Dec. 2008

Root Isolation for Bivariate Polynomial Systems

with Local Generic Position Method 1)

Jin-San Cheng, Xiao-Shan Gao, Jia Li
Key Laboratory of Mathematics Mechanization

Institute of Systems Science, AMSS, Chinese Academy of Sciences

Abstract. A local generic position method is proposed to isolate the real roots of
a bivariate polynomial system Σ = {f(x, y), g(x, y)}. In this method, the roots of the
system are represented as linear combinations of the roots of two univariate polynomial
equations t(x) = 0 and T (X) = 0:

{x = α, y =
β − α

s
|α ∈ V (t(x)), β ∈ V (T (X)), |β − α| < S},

where s, S are constants satisfying certain conditions. The multiplicities of the roots of
Σ = 0 are the same as that of the corresponding roots of T (X) = 0. This representation
leads to an efficient and stable algorithm to isolate the real roots of Σ.

Keywords. Bivariate polynomial system, generic position, root isolation.

1. Introduction

Solving polynomial equation systems is a fundamental problem in symbolic computation.
In this paper, we consider the problem of real root isolation for bivariate polynomial equation
systems. Let f(x, y), g(x, y) ∈ Q[x, y], where Q is the field of rational numbers. We call

Σ = {f(x, y), g(x, y)}. (1)

zero-dimensional if gcd(f(x, y), g(x, y)) = 1. Even this simple case has applications in
non-linear computational geometry such as topology determination of curves [2, 7, 8, 11, 13].

In this paper, we propose a local generic position method to isolate the real roots of
an equation system like (1). The concept of generic position was used in equation solving
and topology determination for a long time [1, 4, 5, 7, 10, 12, 13, 16, 20, 21, 25]. Simply
speaking, a system of equations is said to be in a generic position if we can find a direction,
say the x-axis, such that different zeros of (1) are projected to different points on the x-axis.
If Σ is in a generic position, the roots of an equation system Σ = 0 have a rational univariate
representation [21]:

t(u) = 0, x = R1(u), y = R2(u) (2)

where u is a new parameter, t(u) ∈ Q[u] and R1(u), R2(u) are rational functions. As a
consequence, solving multi-variate equations is reduced to solving a univariate equation
t(u) = 0 and to substituting the roots of t(u) = 0 into rational functions. This approach

1) Partially supported by a National Key Basic Research Project of China and a grant from NSFC.

Root Isolation with Local Generic Position Method 123

still has the following problem: for an isolation interval [a, b] of a real root α of t(u) = 0, to
determine the isolation interval of R1(α) and R2(α) under a given precision is not a trivial
task. The local generic position method proposed in this paper will remedy this drawback.

In the local generic position method, the roots of the system Σ are represented as linear
combinations of the roots of two univariate polynomial equations t(x) = 0 and T (X) = 0:

{x = α, y =
β − α

s
|α ∈ V (t(x)), β ∈ V (T (X)), |β − α| < S},

where s, S are constants satisfying certain given conditions. The multiplicities of the roots
of Σ = 0 are also preserved in the corresponding roots of T (X) = 0. The major advantage
of this representation is that we can obtain isolation boxes with any given precision for the
roots of Σ = 0 from the isolation intervals of the roots of t(x) = 0 and T (X) = 0 easily. The
methods are implemented in Maple and extensive experiments are done, which show that
our approach is very efficient and stable, especially when the system has multiple roots.

Geometrically, the local generic method transforms Σ to a new system Σ′ which is in a
generic position. Furthermore, the roots of Σ with the same x-coordinate α are transformed
to the region [α−S, α+S]× [−∞,−∞]. This property allows us to recover these roots from
the projections of the roots of Σ and Σ′ to the x-axis.

Besides the generic position method, there exist quite a few methods for solving polyno-
mial equation systems such as the Gröbner basis method, the resultant method, the charac-
teristic set method, and the subdivision based method. Here we compare our method with
those that are devoted to bivariate equation systems.

In [7], Diochnos, Emiris, and Tsigaridas gave three algorithms to solve bivariate equation
systems and analyzed their complexities. Among the three algorithms, GRUR has the lowest
complexity and performs best in experiments. The GRUR method projects the roots to the
x and y axes, for each x-coordinate α computes the GCD H(α, y) of the square-free parts of
f(α, y) and g(α, y), and isolates the roots of H(α, y) = 0 based on computations of algebraic
numbers and the RUR techniques. Our algorithm only uses resultant computation and root
isolation for univariate polynomial equations with rational coefficients.

The method by Hong, Shan, and Zeng [15] projects the roots of Σ to the x-axis and
y-axis respectively and uses a numerical iteration method to decide wether the boxes formed
by the projection intervals contain a root of Σ. The numerical method works for simple
roots of Σ only. When the system has multiple roots, the RUR technique is used to isolate
the roots. Comparing to this method, our method also computes two resultants of the same
total degrees. Our method is a complete one, while the method given in [15] needs to use
the RUR technique to find multiple roots.

The rest of this paper is organized as follows. In Section 2, the theory behind the local
generic position method is presented. In Section 3, we estimate the bounds needed in the
algorithm. In Section 4, we give the local generic position algorithm. Experimental results
are presented in Section 5 and conclusions are given in Section 6.

2. Local generic position

In this section, we present the theory behind the local generic position algorithm. The
idea is to do a shear transformation (x, y) → (x + sy, y) so that the new equation system is
in a “local generic position” with respect to the original equation system.

124 J.S. Cheng, X.S. Gao, J. Li

Let π be the projection map from the real plane to the x-axis:

π : R2 −→ R, such that π(x, y) = x. (3)

For a zero-dimensional system Σ = {f(x, y), g(x, y)} defined in (1), let t(x) ∈ Q[x] be
the resultant of f(x, y) and g(x, y) w.r.t y:

t(x) = Resy(f(x, y), g(x, y)). (4)

Since Σ is zero-dimensional, we have t(x) 6≡ 0. Then π(V (Σ))) ⊆ V (t(x)), where V (f1, . . . , fm)
is the set of common real zeros of fi = 0. Let the real roots of t(x) = 0 be

α1 < α2 < · · · < αm. (5)

Using the notations in (1) and (5), let S, R, and s be rational numbers satisfying

S <
1
2

min{αi+1 − αi, i = 2, . . . , m− 1},
R > max{|β|,∀(α, β) ∈ V (Σ)}, (6)

0 < s <
S

R
.

For s satisfying (6), define an inversive linear map (a shear) from R2 to R2:

ψs : (x, y) 7−→ (X, Y) = (x + s y, y). (7)

We also define ψs(f(x, y)) = f(X − s Y, Y) for convenience. Geometrically, ψs maps a point
(x0, y0) to the intersection point of the lines y = y0 and (x− x0) = s y.

x

 R

R

S S S S S S

Fig. 1. Map ψs: the red squares are the roots of Σ = 0; the blue triangles are the
roots of ψs(Σ); the black dots are the roots of univariate polynomial T (X) = 0.

An equation system Σ is said to be in a generic position if different roots of Σ = 0
have different x-coordinates. We have:

Lemma 2.1 For S and R defined in (6) and ψs defined in (7), ψs(Σ) is in a generic position.
Furthermore, a root (α, β) of Σ = 0 is mapped to (η, β) where η ∈ (α − S, α + S). See Fig.
1 for an illustration.

Root Isolation with Local Generic Position Method 125

Proof. For each αi in (5), let Pi,j = (αi, βi,j) be the corresponding roots of Σ = 0. We
have ψs(Pi,j) = (αi + sβi,j , βi,j). Then, for the same i, different ψs(Pi,j) have different x-
coordinates. Due to the conditions in (6), we have |αi + sβi,j −αi| = |sβi,j | < (S/R) ·R = S.
That is, ψs(Pi,j) ∈ Ri = (αi − S, αi + S)× [−R, R]. Since S < 1

2 (αi+1 − αi), Ri are disjoint
for different i. Then different ψs(Pi,j) have different x-coordinates. This proves the lemma.

We project the roots of ψs(Σ) to the x-axis by computing the resultant T (X):

T (X) = Resy(ψs(f(x, y)), ψs(g(x, y))) = ResY (f(X − s Y, Y), g(X − s Y, Y)). (8)

We hope that the zeros of Σ = 0 and the roots of T (X) are in a one-to-one correspondence.
This may fail when

h(X) = gcd(LCY (ψs(f(x, y))),LCY (ψs(g(x, y)))) (9)

has real roots, where LCY (f(X, Y)) is the leading coefficient of f(X, Y) w.r.t Y .
So if we ensure that h(X) = 0 has no real roots, then the real roots of Σ = 0 and the

real roots of T (X) = 0 have a one-to-one correspondence. We can select the parameter s
properly so that LCY (ψs(f(x, y))) or LCY (ψs(g(x, y))) is a constant and h(X) = 0 has no
real roots.

Write f(x, y) and g(x, y) as the sum of their homogeneous parts:

f(x, y) = fp(x, y) + · · ·+ f0

g(x, y) = gq(x, y) + · · ·+ g0

where fi and gi are homogeneous polynomials with total degree i. It is clear that when

fp(−s, 1) 6= 0 or gq(−s, 1) 6= 0, (10)

h(X) is a constant. It is always possible to chose an s such that (6) is satisfied. Then we
further have

Lemma 2.2 Let s be a rational number satisfying (6) and (10). Then π is a one-to-one
and multiplicity preserving map between the roots of ψs(Σ) and the roots of T (X) = 0, where
T (X) is defined in (8). Furthermore, let the roots of T (X) = 0 in (αi − S, αi + S) be

βi,1 < βi,2 < · · · < βi,mi , i = 1, . . . , m (11)

where αi is defined in (5). Then the inversion of the map π is:

π−1(βi,j) = (βi,j , (βi,j − αi)/s). (12)

Proof. By the property of the resultant, π(V (ψs(Σ)) ⊂ V (T (X)). By Lemma 2.1, different
roots of ψs(Σ) are mapped to different roots of T (X) = 0. Furthermore, by (10), the
leading coefficient of ψs(f) or ψs(g) does not vanish. Then by the property of the resultant,
π(V (ψsΣ)) = V (T (X)). Hence π is one-to-one. Based on the theory in Section 1.6 of [9], we
can conclude that π is also multiplicity preserving.

π−1(βi,j) can be obtained as follows. By the proof of Lemma 2.1, a root Qi,j = (βi,j , γi,j)
of ψs(Σ) = 0 is projected one-to-one to a root of T (X) = 0 in (αi − S, αi + S). Then, from

126 J.S. Cheng, X.S. Gao, J. Li

the definition of ψs, Qi,j is on the line defined by (x−αi) = s y (the skewed lines in Fig. 1).
Then, we have γi,j = (βi,j − αi)/s.

The following result shows how to recover the roots of Σ = 0 from the roots of two
univariate polynomial equations t(x) = T (X) = 0.

Theorem 2.3 Use the notations introduced in this section. If (6) and (10) are satisfied,
then θ = π ◦ ψs is a one-to-one and multiplicity preserving map from V (Σ) to V (T (X)).
Furthermore, the roots of Σ = 0 can be obtained by the inversion of θ:

θ−1(βi,j) = (αi, (βi,j − αi)/s), |βi,j − αi| < S, i = 1, . . . , m, j = 1, . . . , mi (13)

where αi ∈ V (t(x)), βi,j ∈ V (T (X)) are defined in (5) and (11) respectively, t(x), T (X) are
defined by (4) and (8), respectively.

Proof. Since ψs is an inverse linear map, it is one-to-one and multiplicity preserving. Then
by Lemma 2.2, θ is also one-to-one and multiplicity preserving. The inversion map θ−1 =
ψ−1

s ◦ π−1 can be obtained directly from (12) and (7).
As corollaries of Theorem 2.3, we have

Corollary 2.4 Under the same condition of Theorem 2.3, we have

V (Σ) = {(α, (β − α)/s) |α ∈ V (t(x)), β ∈ V (T (X)) and |α− β| < S}. (14)

Due to (14), if |α− β| < S, we say that β is associated with α.

Corollary 2.5 If we separate the real roots of t(x) = 0 and T (X) = 0 with precisions ρ1

and ρ2 respectively, then the roots computed with (13) have precision max{ρ1,
ρ1+ρ2

s }.
From Theorem 2.3, the four-tuple

{t(x), T (X), s, S} (15)

provides a representation for the roots of Σ = 0, and from this representation, we can
compute the roots of Σ by solving two univariate equations. This method is called a local
generic position method because the roots of Σ = 0 with the same x-coordinate α are
mapped to (α − S, α + S) and can be recovered with a linear map (14). This makes the
precision control much easier than the usual generic position method where the roots of
Σ = 0 are represented as a univariate rational function of the roots of T (X) = 0.

3. Estimation of the parameters S, R, and s

From Section 2., we need to know the values of the parameters S, R, and s defined in
(6) in order to transform the equation system into a local generic position. In this section,
we will show how to compute such parameters efficiently.

We can use the general root bounds for zero dimensional equation systems in [24, p. 341]
to estimate S and R. But the results obtained in this way is far from optimal. In this section,
we will show how to obtain better estimations for S, R, and s.

We will use intervals to isolate the roots of a univariate equation. Let Q denote the set
of intervals of the form [a, b] where a ≤ b ∈ Q. The length of an interval I = [a, b] ∈ Q

Root Isolation with Local Generic Position Method 127

is defined to be |I| = b− a. A set BS of disjoint intervals is called isolation intervals for
the roots of t(x) = 0 if each root of t(x) = 0 is in an interval in BS and each interval in BS
contains one root of t(x) = 0.

Let t(x) be defined in (4) and the isolating intervals for the roots of t(x) = 0 be

BS = {[a1, b1], . . . , [am, bm]}. (16)

We can directly estimate S from the isolating intervals for the roots of t(x) = 0:

S =
1
2

min{ai+1 − bi, i = 1, . . . , m− 1}. (17)

Then we have

Lemma 3.1 Let αi be the roots of t(x) = 0 and [ai, bi] the isolation interval for αi. If
S is taken as (17), then the roots of T (X) = 0 associated with αi are in the intervals
(ai − S, bi + S), i = 1, . . . , m.

Proof. It is clear that the S defined in (17) satisfies (6). By Lemma 2.1, roots of T (X) = 0
are in (αi − S, αi + S) for some i. Since αi ∈ [ai, bi], the roots of T (X) = 0 associated with
αi must be in (ai − S, bi + S).

A simple way to estimate R is as follows:

R = RB(h(y)), where h(y) = Resx(f(x, y), g(x, y)) (18)

and RB(h(x)) is the root bound of h(x). If h(x) = c0y
d + · · · + cd, then RB(h(y)) can be

taken as 1 + max{|c1|, . . . , |cd|}/|c0| (page 322, [3]). In this method, we need to compute a
resultant. When the degrees of f and g in x are low, we can use this approach. Otherwise,
we can avoid the resultant computation by using the concept of sleeve functions (see [6, 17]
for details). We will explain this approach below.

Given f ∈ Q[x, y], we decompose it uniquely as f = f+−f−, where each f+, f− ∈ Q[x, y]
has positive coefficients and with minimal number of monomials. Given an isolating interval
I = [a, b] for a root α of a univariate equation t(x) = 0, we define

fu
I (y) = f+(b, y)− f−(a, y) ∈ Q[y],

fd
I (y) = f+(a, y)− f−(b, y) ∈ Q[y]. (19)

Then f(I, y) = [fd
I , fu

I] is called a sleeve of f(α, y) due to the following reasons. We assume
that a, b ≥ 0 in the rest of our paper, since we can consider F (x, y) = f(−x, y) for −α in
[−b,−a] when a, b < 0. When considering y ≥ 0, the following result is clearly true (Fig. 2).

Lemma 3.2 We have fd
I (y) ≤ f(α, y) ≤ fu

I (y), or equivalently, f(α, y) ∈ f(I, y). Further-
more, when |I| approaches to zero, the interval f(I, y) converts to f(α, y) for each y.

We could use the sleeve to estimate the root bound R.

Lemma 3.3 For Σ = {f(x, y), g(x, y)}, let Ii = [ai, bi], i = 1, . . . , m be the intervals defined
in (16). If ai ≥ 0, bi ≥ 0, fd

Ii
(y), fu

Ii
(y) have the same degree in y, and their leading

coefficients in y have the same sign, then we can take

R = max{RB(fd
Ii

),RB(fu
Ii

),RB(f̄d
Ii

),RB(f̄u
Ii

), i = 1, . . . , m} (20)

where f̄ = f(x,−y).

128 J.S. Cheng, X.S. Gao, J. Li

Proof. Consider the case that di = deg(fd
Ii

(y), y) = deg(fu
Ii

(y), y) is odd and the leading
coefficients of fu

Ii
and fd

Ii
are positive. Other cases can be treated similarly. Then there

exists a positive number r1 such that fd
Ii

(y) > 0 for y > r1. By Lemma 3.2, we have
f(αi, y) > fd

Ii
(y) > 0 for y > r1. Then, the largest positive root of f(αi, y) = 0 is bounded

by RB(fd
Ii

(y)). See Fig. 2 for an illustration.
Note that if cu and cd are the leading coefficients of fu

Ii
and fd

Ii
, then the leading coeffi-

cients of f̄u
Ii

and f̄d
Ii

are cu(−1)d = −cu < 0 and cd(−1)d = −cd < 0 respectively, since d is
odd. Then there exists a positive number r2 such that f̄d

Ii
(y) > 0 for y > r2. By Lemma 3.2,

we have f̄(αi, y) > f̄u
Ii

(y) > 0 for y > r2. Then, the largest positive root of f̄(αi, y) = 0, or
equivalently, the absolute value of the smallest negative root of f(αi, y) = 0, is bounded by
RB(f̄u

Ii
(y)).

Fig. 2. An illustration for sleeve: the dot curves are the sleeve for the solid curve.

In the above lemma, instead of f(x, y), we can also use g(x, y) to compute R. If fd
Ii

(y) or
fu

Ii
(y) does not have the same degree, we can subdivide the interval Ii. When Ii is sufficiently

small, they will have the same degree.
Based on the above result, we give the following algorithm to estimate R.

Algorithm 3.4 RootB(f(x, y), t(x),BS) The inputs are f(x, y) ∈ Q[x, y], t(x) defined in
(4), BS isolation intervals of t(x) = 0 defined in (16). Output is an R satisfying (6).

1. Without loss of generality, we assume that t(x) is an irreducible polynomial. Otherwise,
we will execute the following steps for the irreducible factors of t(x) and output the
maximal R obtained from these factors.

2. If a1 < 0, do a translation x := x + a1 and still use t(x), f(x, y), and Ii = [ai, bi] to
denote the translated polynomials and intervals.

3. Write f = F (x)yd + Fd−1(x)yd−1 + · · ·+ F0(x). We assume that t(x) is not a factor of
F ; otherwise, we may remove F (x)yd from f since we have t(x) = 0.

4. For each root I ∈ BS, let α ∈ I be the root of t(x) = 0 in I. Then F (αi) 6= 0. We
assume that p = F u

I F d
I > 0, where F u

I and F d
I are computed with (19); otherwise we

Root Isolation with Local Generic Position Method 129

repeatedly subdivide I and still denote I as the new interval containing α2) until p > 0.

5. As a consequence, fu
I (y) and fd

I (y) have same degree and their leading coefficients have
the same sign. Then, by Lemma 3.3, we compute R according to (20).

Proof of the correctness. The correctness is obvious. We just show that Step 4 will terminate
when we subdivide I. By Lemma 3.2, the coefficients of fu

I (y) and fd
I (y) can approximate the

coefficients of f(α, y) as close as we want. Since F (α) 6= 0, when I is sufficiently subdivided,
F u

I and F d
I will have the same sign. And the program will terminate.

Now, we show how to compute s which satisfies (6) and (10). One way to do this is as
follows.

Lemma 3.5 Let d = deg(f(x, y)) and S,R rational numbers satisfying (6). Then one of
si = (3d+i)S

(4d+2)R , i = 1, . . . , d + 1 must satisfy (10) (fd(−si, 1) 6= 0) and thus can be used as s.

Proof. Each si satisfies (6). Since fd(x, y) is homogenous and is of total degree d, fd(x, 1) = 0
can have at most d roots. Then, one of the si must satisfy fd(−si, 1) 6= 0.

Ideally, we want the bitsize of s to be as small as possible to make the computation of
T (X) easier. For instance, 1

3 is much better than 1000004
3000001 . As a heuristic, we may take s to

be the rational number satisfying (10) and with the smallest bitsize.

4. Root isolation of bivariate polynomial systems

In this section, we will present the local generic position method for real root isolation.
We first find the parameters R, S, and s, then obtain T (x) with (8), and finally isolate the real
roots of the equation system with (14) by isolating the real roots of t(x) = 0 and T (X) = 0.

Let Q2 be the set of interval boxes of the form [a, b]× [c, d] where [a, b], [c, d] ∈ Q. The
length of an interval box B = [a, b]× [c, d] ∈ Q2 is defined to be |B| = max{b− a, d− c}.

Let Σ = {f(x, y), g(x, y)} and ξ = (ξ1, ξ2) be a root of Σ = 0. Then an interval box
B = [a1, b1]× [a2, b2] ∈ Q2 is called an isolation box of ξ if ξi ∈ (ai, bi) and ξ is the only
root of Σ = 0 in B. A set BS of disjoint interval boxes is called isolation boxes for Σ = 0 if
each real root of Σ = 0 is in a box in BS and each box in BS contains one root of Σ = 0. A
set of root isolation boxes of Σ = 0 is called ε-isolation boxes if each box has size smaller
than a given positive number ε.

In this section, we will present an algorithm to compute a set of ε-isolation boxes for
Σ = {f(x, y), g(x, y)}.

In Theorem 2.3, roots of Σ = 0 are represented by algebraic numbers. In the following,
we will give an interval version of this result, which leads to an algorithm directly.

Let the isolation boxes for αi in (5) and βi,j in (11) be

B = {[a1, b1], . . . , [am, bm]} (21)
Bi = {[ci,1, di,1], . . . , [ci,mi , di,mi]}, i = 1, . . . , m,

respectively. Theorem 4.1 shows how to compute isolation boxes for Σ = 0.

2)This can be easily done since t(x) is irreducible.

130 J.S. Cheng, X.S. Gao, J. Li

Fig. 3. Recover an isolation box Fig. 4. Separation of two boxes

Theorem 4.1 Let ε be a positive number and s a number satisfying (6) and (10). If the
intervals in (21) satisfy

bi − ai < ε and bi − ai + di,j − ci,j < sε, i = 1, . . . , m, j = 1, . . . , mi (22)
bi − ai < min{ci,j+1 − di,j , j = 1, . . . , mi − 1}, i = 1, . . . , m (23)

then a set of ε-isolation boxes for the roots Pi,j = (αi, βi,j) of Σ = 0 are

Bi,j = [ai, bi]× [(ci,j − bi)/s, (di,j − ai)/s]. (24)

Proof. Since [ai, bi] is an isolation interval of αi and [ci,j , di,j] is an isolation interval of
βi,j , from the basic rules of interval computation, we have Pi,j ∈ Bi,j . See Fig. 3 for an
illustration. We need only to show that |Bi,j | < ε and Bi,j are disjoint.

From (22), we have |Bi,j | = max{bi − ai, (di,j − ai)/s− (ci,j − bi)/s} < max{ε, (bi − ai +
di,j − ci,j)/s} < max{ε, ε} = ε.

Finally, we will show that different Bi,j are disjoint. If i 6= k, then it is obvious that Bi,j

and Bk,s are disjoint. Consider Bi,j and Bi,k for j 6= k. From the construction procedure
for Bi,j , we need only to show that for i = 1, . . . , mi − 1, Bi,j and Bi,j+1 are disjoint which
is equivalent to the condition (di,j − ai)/s < (ci,j+1 − bi)/s. See Fig. 4 for an illustration.
Since s > 0, this is equivalent to bi − ai < ci,j+1 − di,j which is valid by (23).

It is well-known on how to isolate the real roots for a univariate polynomial equation,
which is given as the following algorithm.

Algorithm 4.2 RootIsolU(f(x), ε). Input f(x) ∈ Q[x]. Output the set of isolation in-
tervals [ai, bi], i = 1, . . . , m for the real roots of f(x) = 0 such that |bi − ai| < ε and
a1 < a2 < · · · < am.

Now we can give the algorithm to compute the isolation boxes for Σ = 0.

Algorithm 4.3 LGP(Σ, ε). Σ = {f(x, y), g(x, y)} is a zero-dimensional bivariate system
and ε is a positive number. Output a set of ε-isolation boxes BS for the roots of Σ = 0.

1. Let t(x) = Resy(f(x, y), g(x, y)).

Root Isolation with Local Generic Position Method 131

2. Set ρ1 = ε and compute B =RootIsolU(t(x), ρ1) = {[a1, b1], . . . , [am, bm]}.
3. Compute R with Algorithm RootBN with input f, t,B.

4. Let D = 1
2 min{|ai+1 − bi|, i = 1, . . . , m− 1}.

(a) If D > 2ε, let ε1 = ε, S = D − ε1 and compute s according to Lemma 3.5.
(b) If D ≤ 2ε, let ε1 = D/2, S = D − ε1 and compute s according to Lemma 3.5.

5. Compute T (X) = Resy(f(X − sY, y), g(X − sY, Y)).

6. Set ρ2 = min{sε/2, ε1} and compute T =RootIsolU(T (X), ρ2) = {[p1, q1], . . . , [pt, qt]}
and the multiplicities of the corresponding roots, if needed.

7. Compute ρ = min{|pi+1 − qi|, i = 1, . . . , t− 1}. Let θ = min(ρ
2 , ε1, sε/2). If ρ1 > θ, set

ρ1 = θ and compute B = RootIsolU(t(x), ρ1).

8. For each element [pj , qj] ∈ T, there exists a unique [ai, bi] in B such that [pj , qj] ⊂
[ai −D, bi + D]. Then [ai, bi] × [pj−bi

s ,
qj−ai

s] is an isolation box of one root of Σ = 0.
And the multiplicity of the root of Σ = 0 in the isolation box is the multiplicity of the
root of T (X) in [pj , qj]. Let BS be the set of these boxes and return BS.

Proof of Correctness of Algorithm 4.3. From Step 2, we know bi − ai < ε. From Steps 6 and
7, we know bi − ai < sε/2, qj − pj < sε/2 and hence bi − ai + qj − pj < sε. Then, condition
(22) is valid. From Step 7, we know that condition (23) is also valid. From Steps 3 and 4, it
is clear that condition (6) and (10) are satisfied. Then, Theorem 4.1 can be used to compute
the isolation boxes. What we need to do is to chose those [pj , qj] which are associated with
a given [ai, bi], which is the purpose of Step 8.

We will show that Step 8 is correct. By Lemma 3.1, a root βj of T (X) = 0 associated with
a root αi of r(x) = 0 is in (ai−S, bi+S). By Step 6, the isolation interval [pj , qj] of βj satisfies
qj − pj < ε1. By Step 4, D = S + ε1. Then qj < βj + qj − pj < βj + ε1 < bi +S + ε1 = bi +D.
Similarly, pj > ai −D. Therefore, each [pj , qj] is in a unique [ai −D, bi + D]. The isolating
box for a root (αi, βj) of Σ = 0 is formed based on (24).

Remark 4.4 1. In the algorithm, we may need to isolate the roots of t(x) = 0 twice.
When isolating their roots in the second time, we need only subdivide the existing
intervals. It is not necessary to start the isolation procedure from scratch.

2. An advantage of this method is that we need only to isolate the roots of T (X) = 0 once
and isolate the roots of t(x) = 0 at most twice for a given specific precision. In other
words, we do not need to repeatedly subdivide the isolation intervals as in most existing
methods.

3. The most time consuming step of the algorithm is Step 5 and Step 6. There are two
reasons for this. First, the shear transformation changes a spare polynomial into a
dense one. Second, if the bitsize of s is large, the coefficients of T (X) could be very
large.

132 J.S. Cheng, X.S. Gao, J. Li

Example 4.5 We use a simple example f = x2 − y2 − 1 and g = 2x2 + 3y2 − 6 to illustrate
the algorithm. The precision is ε = 10−3.

1. t(x) = (−5 ∗ x2 + 9)2.

2. ρ1 = 10−3 and B = {[−687
512 ,−1373

1024], [1373
1024 , 687

512]}.
3. Compute R, we get R = 1.

4. S = 1373
1024 . Since S > 2 ε, we choose 1 to replace S in the computation of s. We obtain

s = 1.

5. T (X) = 5 ∗X4 − 26 ∗X2 + 5.

6. ρ2 = sε/2 = 10−3/2 and T = {[−1145
512 ,−4579

2048], [−229
512 ,− 915

2048], [915
2048 , 229

512], [45792048 , 1145
512]}.

The multiplicities of all the roots are one.

7. ρ = 3663
2048 . θ = min{3663

4096 , 10−3, 1∗10−3/2} = 10−3/2. Since ρ1 > θ, refine B with ρ1 = θ
and derive B = {[−687

512 ,−2747
2048], [2747

2048 , 687
512]}.

8. For each element of T, recover the isolation box of the corresponding root of {f, g}.
Consider the first element T1 = [−1145

512 ,−4579
2048]. It is easy to check that T1 is associated

with B1 = [−687
512 ,−1373

1024]. Then, the corresponding isolation box can be computed with
(24), which is [−687

512 ,−2747
2048]× [−1833

2048 ,−1831
2048]. The multiplicity of the root of the system

is one. In a similar way, we can find other isolation boxes.

5. Implementation and experiments

We have implemented Algorithm 4.3 as a software package LGP in Maple, which is
available at http://www.mmrc.iss.ac.cn/˜ xgao/software.html. Extensive experiments with
this package show that this approach is efficient and stable, especially for bivariate equation
systems with multiple roots.

We compare our method with Discoverer [23], GRUR[7], Hybrid [15], and Isolate[21].
Discoverer is a tool for solving problems about polynomial equations and inequalities. GRUR
is a tool to solve bivariate equation systems. Hybrid is a numeric and symbolic hybrid
algorithm for solving bivariate equation systems. Isolate is a tool to solve general equation
systems based on the Realsolving C library by Rouillier.

We did three sets of experiments. All the results are collected on a PC with a 3.2GHz
CPU, 2.00G memory, and running Microsoft Windows XP. We use Maple 12 in the exper-
iments. The precision in these experiments is set to be 10−3. In the these experiments, f
and g are generated as follows.

• Both f and g are randomly generated dense polynomials with the same degree and
with integer coefficients between −99 and 99. The results are given in Fig. 5. In order
to give more details, we show the results of Isolate, Hybrid, and LGP in Fig. 6 with a
smaller time scaling.

• Both f and g are randomly generated sparse polynomials in the same degree, with
sparsity 10%, and with integer coefficients between −99 and 99. The results are given
in Fig. 7 and Fig. 8.

Root Isolation with Local Generic Position Method 133

• The third set of experiments is done with polynomial systems with multiple roots. We
randomly generate a polynomial h(x, y, z) and take f(x, y) = Resz(h, hz), g(x, y) =
fy(x, y). Since f(x, y) is the projection of a space curve to the xy-plane, it most
probably has singular points and f = g = 0 is an equation system with multiple roots.
The results are given in Fig. 9 and Fig. 10.

GRUR
Discoverer

Isolate

LGP

Hybrid

0 10 20 30

0

200

400

600

800

1000

1200

Total degree

Time (sec)

Fig. 5. Σ consists of dense polynomials
and has no multiple roots.

Isolate LGP

Hybrid

10 15 20 25 30

0

50

100

150

200

Total degree

Time (sec)

Fig. 6. Same as Fig. 5, with a smaller
time scaling.

For each possible degree, we generate ten examples and the results are the average values
for the ten examples. According to Figures 5, 7, and 9, we have the following observations.

• In all cases, GRUR and Discoverer generally work for equation systems with degrees
not higher than ten within reasonable time.

• In the first two cases, the equations are randomly generated and hence have no multi-
ple roots. For systems without multiple roots, Hybrid is the fastest method, which is
significantly faster than LGP and Isolate. Both Hybrid and LGP compute two resul-
tants and isolate their real roots. LGP is slow, because the polynomials obtained by
the shear map are usually dense and with large coefficients.

We also observe that all methods spend more time with sparse polynomials than with
dense polynomials in the same high degree. This phenomenon needs further explo-
ration.

• For systems with multiple roots, LGP is the fastest method, which is significantly faster
than Hybrid and Isolate. Note that our method is quite stable for equation systems
with and without multiple roots. Isolate is also quite stable, but slower than LGP for
bivariate equation systems.

Of course, we should mention that Discoverer and Isolate can be used to solve general
polynomial equations and even inequalities. Our comparison here is limited to the bivariate
case.

134 J.S. Cheng, X.S. Gao, J. Li

GRUR Discoverer

Isolate

LGP

Hybrid

0 10 20 30

0

200

400

600

800

1000

1200

Total degree

Time (sec)

Fig. 7. Σ consists of sparse polynomials
and has no multiple roots.

Isolate LGP

Hybrid

10 15 20 25 30

0

50

100

150

200

Total degree

Time (sec)

Fig. 8. Same as Fig. 7, with a smaller
time scaling.

GRUR
Discoverer Hybrid

LGP

Isolate

5 10 15 20

0

200

400

600

800

1000

1200

Total degree

Time (sec)

Fig. 9. Σ is a system with multiple roots.

Isolate

LGP

Hybrid

8 10 12 14 16 18 20

0

50

100

150

200

Total degree

Time (sec)

Fig. 10. Same as Fig. 9, with a smaller
time scaling.

6. Conclusion

In this paper, we propose a local generic position method to solve bivariate polynomial
equation systems. The method can be used to represent the roots of a bivariate equation
system as the linear combination of the roots of two univariate equations. As a result, root
isolation for bivariate systems is reduced easily to root isolation of univariate equations. The
multiplicities of the roots are also derived.

The results of this paper can be extended to isolate the real roots of bivariate equation
systems with more than two polynomials by using the resultant systems for several poly-
nomials given in [22]. It is also possible to extend the method to multivariate equation
systems. But, the procedure is very complicated. It is an interesting problem to give a
simple and effective algorithm for multivariate equation solving based on the idea of local
generic position.

Root Isolation with Local Generic Position Method 135

Acknowledgement

The authors would like to thank Prof. Hoon Hong and Ms. Meijing Shan for providing
the Maple code of their method.

References

[1] M.E. Alonso, E. Becker, M.F. Roy, T. Wörmann, Multiplicities and idempotents for zerodi-
mensional systems. In Algorithms in Algebraic Geometry and Applicatiobns, 1-20, Birkhauser,
1996.

[2] D.S. Arnon, G. Collins, S. McCallum, Cylindrical algebraic decomposition, II: an adjacency
algorithm for plane, SIAM J. on Comput., 13(4), 878-889, 1984.

[3] S. Basu, R. Pollack, M.F. Roy, Algorithms in Real Algebraic Geometry, Springer, Berlin, 2003.
[4] E. Becker, T. Wörmann, Radical computations of zero-dimensional ideals and real root counting,

Mathematics and Computers in Simulation, 42(4-6), 561-569, 1993.
[5] J.F. Canny, Some algebraic and geometric computation in pspace, ACM Symp Theory of Com-

puting, 460-467, 1988.
[6] J.S. Cheng, X.S. Gao, C.K. Yap, Complete numerical isolation of real roots in zero-dimensional

triangular systems, accepted by Journal of Symbolic Computation.
[7] D.I. Diochnos, I.Z. Emiris, E.P. Tsigaridas, On the complexity of real solving bivaraite systems,

Proc. ISSAC 2007, 127-134, ACM Press, 2007.
[8] A. Eigenwillig, M. Kerber, N. Wolpert, Fast and exact geometric analysis of real algebraic plane

curves, Proc. ISSAC 2007, 151-158, ACM Press, 2007.
[9] W. Fulton. Introduction to Intersection Theory in Algebraic Geometry, Vol. 54 of CBMS, Wash-

ington, DC, 1984
[10] X.S. Gao, S.C. Chou, On the theory of resolvents and its applications, Sys. Sci. and Math. Sci.,

12, Suppl., 17-30, 1999.
[11] X.S. Gao, M. Li, Rational quadratic approximation to real algebraic curves, Computer Aided

Geometric Design, 21, 805-828, 2004.
[12] M. Giusti, J. Heintz, Algorithmes - disons rapides -pour la dècomposition d’une varièté algébrique

en composantes irréducibles et équidimensionnelles, Proc MEGA’ 90, 169-193, Birkhäuser, 1991.
[13] L. Gonzalez-Vega, I. Necula, Efficient topology determination of implicitly defined algebraic

plane curves, Computer Aided Geometric Design, 19, 719-743, 2002.
[14] H. Hong, V. Stahl, Safe start region by fixed points and tightening, Computing, 53(3-4), 323-335,

1994.
[15] H. Hong, M. Shan, Z. Zeng, Hybrid method for solving bivariate polynomial system, SRATC

2008, Shanghai, 2008. http://www.is.pku.edu.cn/˜ xbc/SRATC2008/meijing.pdf.
[16] H. Kobayashi, S. Moritsugu, R.W. Hogan, Solving systems of algebraic equations, Proc. of ISSAC

1988, 139-149, LNCS No. 358, Springer-Verlag, 1988.
[17] Z. Lu, B. He, Y. Luo, L. Pan, An algorithm of real root isolation for polynomial systems. Proc.

SNC’05, 94-107, 2005.
[18] B. Mourrain, Computing the isolated roots by matrix methods, Journal of Symbolic Computation,

26, 715-738, 1998.
[19] B. Mourrain, JP Pavone, Subdivision methods for solving polynomial equations, Technical Re-

port, no. 5658, INRIA Sophia Antipolis, http://www.inria.fr/rrrt/rr-5658.html.

136 J.S. Cheng, X.S. Gao, J. Li

[20] J. Reneger, On the computational complexity and geometry of the first-order theory of the reals,
Journal of Symbolic Computation, 13, 255-352, 1992.

[21] F. Rouillier. Solving zero-dimensional systems through the rational univariate representation.
AAECC, 9, 433-461, 1999.

[22] B.L. Van der Waerden, Einfürung in die Algebraischen Geometrie, SpringerVerlag, Berlin, 1973.
[23] B. Xia, L. Yang, An algorithm for isolating the real solutions of semi-algebraic systems, Journal

of Symbolic Computation, 34, 461-477, 2002.
[24] C.K. Yap, Fundamental problems of algorithmic algebra, Oxford Press, 2000.
[25] K. Yokoyama, M. Noro, T. Takeshima, Computing primitive elements of extension fields, Journal

of Symbolic Computation, 8, 553-580, 1989.

