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Abstract We show that perspective projections in 3-dimensions can be represented
by rotors in the homogeneous model of the Clifford Algebra for R3. We also show
that the only rotors in this Clifford Algebra, when interpreted as transformations on
R3, are rotations, reflections, perspective projections and their composites.

1 Motivation

Perspective projections are fundamental in contemporary 3-dimensional Comput-
er Graphics for generating photorealistic images. Therefore any algebraic repre-
sentation of geometry that aspires to become a computational model for modern
Computer Graphics must necessarily provide a simple technique for representing
perspective projections.

Currently the standard mathematical representations for affine and projective
transformations in Computer Graphics are 4×4 matrices applied to points and vec-
tors each represented by four homogeneous coordinates [2]. These 4× 4 transfor-
mation matrices include translations, rotations, uniform and non-uniform scalings,
shears, and orthogonal and perspective projections. Recently several authors have
advocated Geometric Algebra as an alternative to matrices as an algebraic founda-
tion for Computer Graphics[1, 7]. But these authors have yet to incorporate perspec-
tive projections as one of the natural transformations in their computational models.

Xiaohong Jia
KLMM, AMSS & NCMIS,
Chinese Academy of Sciences, Beijing, China. e-mail: xhjia@amss.ac.cn

Ron Goldman
Department of Computer Science, Rice University,
6100 Main St., MS-132, Houston, TX 77005, USA. e-mail: rng@rice.edu

1



2 Xiaohong Jia and Ron Goldman

The purpose of this paper is to correct this omission by showing that perspective
projections in 3-dimensions can be represented by rotors in the standard homoge-
neous model of the Clifford Algebra for 3-dimensional Euclidean space.

Quaternions were the first successful alternative computational model for repre-
senting perspective projections in 3-dimensions. Goldman showed that perspective
projection on a point P can be computed by sandwiching the vector from the eye
point E to the point P between two copies of a unit quaternion [3, 4].

Shortly thereafter, Goldman extended this quaternion approach to perspective
projection to the Clifford Algebra for R3 [4, 5]. Quaternions are a natural subalge-
bra of the Clifford Algebra for R3. Therefore Goldman was again able to show how
to compute perspective projections on a point P by sandwiching the vector from the
eye point E to the point P between two copies of a unit quaternion. But in Clifford
Algebra this particular sandwiching operation is not natural, since this transforma-
tion is not represented by a versor or a rotor – that is, perspective projection is
not one of the natural transformations in this model of Clifford Algebra. Indeed in
these quaternion representations for perspective projection, the composite of a pair
of perspective projections is not represented by the product of the two quaternions
that represent the two individual perspective projections.

Once again our goal in this paper is to correct this anomaly by showing that
perspective projections in 3-dimensions are indeed represented by rotors, not in the
Clifford Algebra for R3, but rather in the standard homogeneous model of the Clif-
ford Algebra for R3. We will also show that the only rotors in this homogeneous
model of the Clifford Algebra for R3, when interpreted as transformations on R3,
are rotations, reflections, perspective projections and their composites.

We shall proceed in the following fashion. We begin in Section 2 by providing a
brief review of the standard homogeneous model of the Clifford Algebra for R3. In
Section 3, we study the rotors in this model and we show that rotations, reflections,
and perspective projections on R3 can all be represented by rotors in this homoge-
neous model. In Section 4 we show that there are no other natural transformations on
R3 in this model – that is, the only rotors in this homogeneous model of the Clifford
Algebra for R3, when interpreted as transformations on R3, are rotations, reflections,
perspective projections and their composites. Finally we close in Section 4 with a
short summary of our work along with a brief discussion of the deficiencies of this
homogeneous model and our plans for future research.

2 The standard homogeneous model for R3

The standard homogeneous model of Clifford Algebra associated with 3-dimensional
Euclidean space is just the standard elliptical Clifford Algebra for R4 – that is, the
Clifford Algebra with signature (+,+,+,+) – where the generators are interpreted
as points and vectors in R3.
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Consider then an orthonormal basis e1,e2,e3,e4 for R4 with the standard inner
product and with the Clifford product defined by the following rules:

1. e2
1 = e2

2 = e2
3 = e2

4 =+1,
2. eie j =−e jei for i 6= j,

where multiplication is associative and distributes through addition.
In this algebra, the Clifford product of two arbitrary vectors u,v is given by the

expression
uv = u · v+u∧ v, (1)

where u ·v is the standard symmetric dot product and u∧v is the classical Grassmann
antisymmetric wedge product. It follows from Equation (1) that

u is a unit vector⇒ u2 = 1 (2)
u⊥ v⇒ uv =−vu. (3)

To provide a homogeneous model for R3, we interpret e4 to be the point at the
origin in R3 and the vectors e1,e2,e3 to be unit vectors along the coordinate axes
in R3. In general, a vector u = u1e1 + u2e2 + u3e3 + u4e4 in R4 has the following
interpretation in 3-dimensional Euclidean space:

1. u4 = 0⇒ u is a vector in R3 with coordinates (u1,u2,u3) relative to the coordinate
axes.

2. u4 = 1⇒ u is a point in R3 located at e4 +u1e1 +u2e2 +u3e3.
3. u4 6= 0,1⇒ u is a point in R3 located at e4 +

u1e1+u2e2+u3e3
u4

. This point is called
a weighted point or mass point with mass = u4 and has coordinates ( u1

u4
, u2

u4
, u3

u4
).

3 Transformations

The fundamental transformations in Clifford Algebra are the sandwiching maps
generated by versors and rotors. A versor is the product of any number of invert-
ible vectors in R4, and a rotor is the product of an even number of unit vectors.

Definition 1. Let u,v be two unit vectors in R4, and let w also be a vector in R4.
Then

Vv(w) =−vwv, Rvu(w) = (vu)w(uv) =Vv ◦Vu(w).

We are now going to show how to represent rotations, reflections, and perspective
projections on R3 using rotors in the standard homogeneous Clifford Algebra for R3.

3.1 Reflections

Lemma 1. Let u be a unit vector in R4, and let w also be a vector in R4 with w⊥ u.
Then Vu(w) = w.
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Proof. This result follows immediately from Equations (2) and (3). ut

Theorem 1. Let u be a unit vector in R3, and let w be a vector in R3. Then Vu(w)
represents the reflection of w about the plane perpendicular to the vector u.

Proof. Decompose w into w = w‖+w⊥, where w‖ = λu for some constant λ and
w⊥ ⊥ u. Then by Equation (2) and Lemma 1 we have

Vu(w) =Vu(w‖)+Vu(w⊥) =−w‖+w⊥,

which is the reflection of w about the plane perpendicular to the vector u. ut

From now on for two vectors u,v in R4, let 6 (u,v) denote the directed angle from
u to v, and let ‖v‖ denote the length of the vector v. Then by Theorem 1 we have the
following result.

Corollary 1. Let u be a unit vector. Then

1. 6 (v,u) = 6 (−u,Vu(v)).

2. ‖Vu(v)‖= ‖v‖.

3.2 Rotations

Proposition 1. Let u,v be two unit vectors in R4, and let w be a vector in R4. If
w⊥ u,v, then Rvu(w) = w, i.e., Rvu(·) is the identity on all vectors perpendicular to
the plane of u,v.

Proof. Since w⊥ u,v, by Lemma 1 we have Rvu(w) =Vv(Vu(w)) =Vv(w) = w. ut

Proposition 2. Let u,v be two unit vectors in R4 with 6 (u,v) = θ , and let w be a
vector in the plane of u,v. Then Rvu(w) rotates w in the plane of u,v by the angle
2θ .

Proof. Again we shall use Rvu(w) =Vv(Vu(w)). By Corollary 1,

6 (w,Vv(Vu(w))) = 6 (w,u)+ 6 (u,v)+ 6 (v,Vv(Vu(w))) (4)
= 6 (−u,Vu(w))+ 6 (u,v)+ 6 (Vu(w),−v) (5)
= 6 (−u,−v)+ 6 (u,v) = 2θ . (6)

Moreover, the length of w is not altered by Rvu since again by Corollary 1,

‖Rvu(w)‖= ‖Vv(Vu(w))‖= ‖Vu(w)‖= ‖w‖.

Therefore, Rvu(w) rotates w in the plane of u,v by the angle 2θ . ut



Title Suppressed Due to Excessive Length 5

Theorem 2. Let u,v be two unit vectors in R4 with 6 (u,v) = θ . Then Rvu represents
a simple rotation in the plane of u,v by the angle 2θ .

Proof. Let w be a vector in R4. Decompose w into w=w‖+w⊥, where w‖ is a vector
in the plane spanned by u,v, and w⊥ is perpendicular to the plane of u,v. Then by
Proposition 1 Rvu(w⊥) = w⊥ and by Proposition 2 Rvu(w‖) rotates w‖ in the plane
of u,v by the angle 2θ . Therefore Rvu(w) = Rvu(w‖)+Rvu(w⊥) represents a simple
rotation in the plane of u,v by the angle 2θ . ut

Corollary 2. Let u,v be unit vectors in R3 with 6 (u,v) = θ , and let w be a vector in
R3. Then Rvu(w) rotates w in the plane of u,v by the angle 2θ .

3.3 Perspective projections

We begin by investigating certain canonical positions for the eye point and the per-
spective plane.

Theorem 3. Let v be a unit vector in R3, and let u = cos(θ)e4+sin(θ)v, 0 < θ ≤ π

2 .
Place the eye point at

E = e4 +(cot(2θ)− csc(2θ))v.

Then for any point P, the map Re4u(P−E) represents the perspective projection
of the point P from the eye point E to the plane perpendicular to v at a distance
d = csc(2θ) from E.

Proof. Since P−E is a vector in R3, we can write P−E = λv+ v⊥, where λ is
a constant and v⊥ ⊥ v is also a vector in R3, so v⊥ ⊥ e4. Since v⊥ ⊥ e4,u and
6 (u,e4) =−θ , it follows by Propositions 2 and 1 that

Re4u(P−E) = λRe4u(v)+Re4u(v⊥) (7)

= λ (cos(
π

2
−2θ)e4 + sin(

π

2
−2θ)v)+ v⊥ (8)

= λ
(

sin(2θ)e4 + cos(2θ)v
)
+ v⊥ (9)

≡ e4 + cot(2θ)v+
csc(2θ)

λ
v⊥, (10)

which by similar triangles is the perspective projection of the point P from the eye
point E into the plane perpendicular to v at a distance d = csc(2θ) from the eye (see
Figure 1). ut

Given a fixed distance d = csc(2θ) between the eye point and the perspective
plane and a unit vector v normal to the perspective plane, Theorem 3 shows how to
position the eye point so that we can use a rotor to represent perspective projection.
We can extend this result to arbitrary positions of the eye point and the perspective
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Fig. 1 Perspective projection. Here E is the eye point, Q is the orthogonal projection of the eye
point E onto the perspective plane, and Pnew is the perspective projection of the point P onto the
perspective plane.

plane because translation and perspective projection commute. Indeed, let E∗ be an
arbitrary eye point at a distance d = csc(2θ) from a perspective plane with unit
normal v, and let t = E−E∗. If we project from the eye point E∗ and then translate
the image by t, we get the same result as when we first translate the entire scene,
including the eye point and the perspective plane, by the vector t and then project
from the eye point E to the plane normal to v at a distance d = csc(2θ) from E.
Therefore we have the following result.

Corollary 3. Let v be a unit vector in R3, and let u= cos(θ)e4+sin(θ)v, 0< θ ≤ π

2 .
Then for any point P∗, the map Re4u(P∗−E∗) represents the perspective projection
of the point P∗ from the eye point E∗ to the plane perpendicular to v at a distance d =
csc(2θ) from E∗, but the image appears in the canonical plane with unit normal v at
a distance d = csc(2θ) from the canonical eye point E = e4+(cot(2θ)−csc(2θ))v.

Finally note that Theorem 3 and Corollary 3 are valid only when the distance
d from the eye point to the perspective plane is at least one, since csc(2θ) ≥ 1.
Nevertheless, when this distance d < 1, we can still compute perspective projection
using rotors because perspective projection and uniform scaling from the eye point
commute. Thus when d < 1, we first scale the entire scene from the eye point by 1

d ,
then use our rotors to compute perspective projection, and lastly we scale the image
from the eye point by d to get the final image.
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3.4 Composites

Theorem 4. Let u,v be two unit vectors in R4. Then the sandwiching map Rvu in-
duced by the rotor vu corresponds to one of the following three transformations on
R3:

1. Rvu represents a rotation in R3.
2. Rvu represents a reflection on vectors in R3, and rotates all the points in R3 by

the angle π around the axis through the origin and parallel to the normal to the
reflection plane.

3. Rvu = R1 ◦R2, where R1 is a perspective projection in R3, and R2 is a rotation in
R3.

Proof. Suppose 6 (u,v) = θ . Let p be a unit vector in R4. Then by Theorem 2 pnew =
Rvu(p) rotates p in the plane of u,v by the angle 2θ . Now let p = e4.

1. If pnew = e4, then the rotation plane spanned by u,v is perpendicular to e4. Hence
u,v⊥ e4 are both vectors in R3. Therefore, by Corollary 2 Rvu is actually a rota-
tion in R3.

2. If pnew = −e4, decompose e4 into e4 = e‖+ e⊥, where e‖ is in the plane of u,v,
and e⊥ ⊥ u,v. Then by linearity,

Rvu(e4) = Rvu(e‖)+Rvu(e⊥) = ẽ‖+ e⊥ =−e4 =−e‖− e⊥,

where ẽ‖ is rotation of e‖ in the plane of u,v. Hence

ẽ‖+ e‖+2e⊥ = 0.

Since e⊥ ⊥ e‖ and e⊥ ⊥ ẽ‖, we have e⊥ = 0 and ẽ‖ =−e‖ =−e4. Therefore Rvu

represents rotation in the plane of u,v (in R4) by the angle π , and e4 is contained
in the plane of u,v. Hence there is a vector α ∈ R3 in the plane of u,v and per-
pendicular to e4. Since Rvu represents rotation by the angle π in the plane of u,v,
clearly Rvu(α) =−α .
Now for any vector w in R3, we can decompose w into w = w‖+w⊥, where w‖
is parallel to the vector α , and w⊥ is perpendicular to α . Then w⊥ ⊥ u,v, since
w⊥ ⊥ α,e4. Therefore by Proposition 1 and the fact that Rvu(α) =−α , it follows
that

Rvu(w) = Rvu(w‖)+Rvu(w⊥) =−w‖+w⊥,

which reflects w in the plane perpendicular to α .
On the other hand, for a point Q in R3, we can write Q = e4 +(Q− e4). Hence

Rvu(Q) = Rvu(e4)+Rvu(Q− e4) =−e4 +Rvu(Q− e4)≡ e4−Rvu(Q− e4).

Since Rvu(Q− e4) reflects the vector Q− e4 in the plane perpendicular to α , the
map −Rvu(Q− e4) rotates the vector Q− e4 by the angle π around the axis α .
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Therefore in R3, Rvu(Q) essentially rotates the point Q by the angle π around the
axis line through the origin e4 parallel to the vector α .

3. If pnew 6= ±e4, suppose that 6 (e4, pnew) = φ , and let w be the unit vector in the
plane of pnew and e4 with 6 (w,e4) =

φ

2 . By Proposition 2

Rvu(e4) = pnew = Re4w(e4).

Note that Re4w(∗) is a rotation in the plane spanned by e4,w by the angle φ , so
Rwe4 is rotation in the plane spanned by e4,w by the angle −φ . Hence

Rwe4 ◦Rvu(e4) = Rwe4(pnew) = e4.

Therefore, Rwe4 ◦Rvu(∗) is a rotation by some angle 2ψ in R3. Suppose this ro-
tation plane is spanned by two unit vectors w1 and w2 with 6 (w1,w2) = −ψ .
Then

Rwe4 ◦Rvu(∗) = Rw1w2(∗).

Hence
Rvu(∗) = R−1

we4
◦Rw1w2(∗) = Re4w ◦Rw1w2(∗),

where by Theorem 3 Re4w is a perspective projection in R3 and by Corollary 2
Rw1w2 is a rotation in R3.

4 Conclusions and future research

We have shown that perspective projections on R3 can indeed be represented by ro-
tors in the standard homogeneous model of the Clifford Algebra for R3. Nevertheless
this homogeneous representation is a bit clumsy because translation and uniform s-
caling are not represented by rotors in this homogeneous model. Thus when the eye
is not in special position, the perspective image appears in a translated plane rather
than in the given perspective plane. Moreover, when the distance between the eye
point and the perspective plane is less than one, we need to perform uniform scal-
ing before and after we perform perspective projection, but uniform scaling is not
presented by a rotor in this Clifford Algebra.

To overcome these deficiencies, several authors have suggested the conformal
model [1, 7] as a more appropriate computational model for contemporary Comput-
er Graphics because in the conformal model both translation and uniform scaling
can be represented by rotors. In the future using some of the insights developed here
we plan to show that we can also represent perspective projections by rotors in the
conformal model [6].
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