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We present algebraic expressions for characterizing three configurations formed by two
ellipsoids in R

3 that are relevant to collision detection: separation, external touching
and overlapping. These conditions are given in terms of explicit formulae expressed by
the subresultant sequence of the characteristic polynomial of the two ellipsoids and its
derivative. For any two ellipsoids, the signs of these formulae can easily be evaluated to
classify their configuration. Furthermore, based on these algebraic conditions, an efficient
method is developed for continuous collision detection of two moving ellipsoids under
arbitrary motions.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Collision detection finds many applications in computer graphics, computer animation, CAD/CAM as well as computa-
tional physics (see Eberly, 2001). Since collision detection for general free-form moving objects is computationally very
expensive, bounding volumes are often used to approximate the free-form objects in order to reduce the computational
cost. Ellipsoids are good candidates for such bounding volumes since they have low algebraic degree and are tight bounding
volumes for a wide class of objects (Bouville, 1985; Lu et al., 2007). Minimum bounding (or enclosing) ellipsoids and their
computations have long been studied as a classical mathematical problem, see e.g., Welzl (1991), Kumar and Yildirim (2005),
Todd and Yildirim (2007), Schröker (2008), and have important applications to not only CAGD and computer graphics but
also other areas such as data uncertainty analysis.

Collision detection for ellipsoids has been an active research topic over the past years, see Ju et al. (2001), Rimon and
Boyd (1997), Shiang et al. (2000), Wang et al. (2004), Choi et al. (2006, 2009). Wang et al. (2001) provide algebraic conditions
for the three important configurations, i.e., separation, external touching and overlapping, of two static ellipsoids in R

3, the
three dimensional affine space. It is shown that the relative position of two ellipsoids is related to the root pattern of their
characteristic equation. Specifically, two ellipsoids are separate if and only if their characteristic equation has two distinct
positive roots; and they touch each other externally if and only if the characteristic equation has one positive double root;
and otherwise they overlap. This result allows us to determine the configuration of two ellipsoids by simply counting the
number of positive roots of the characteristic polynomial. The algebraic conditions given by Wang et al. (2001) lays the
theoretical foundation for the follow-up practical applications in collision detection for ellipsoids.

Collision detection mostly deals with moving objects. When the positions of the two ellipsoids are given in a sequence of
discrete time frames, which is often the situation in computer animation, temporal and geometric coherence are exploited
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in Wang et al. (2004) for speeding up the computations. A separating plane for two non-intersecting ellipsoids at a frame is
calculated to help quickly identify whether the ellipsoids are still separate or not in the next frame. A more computationally
intensive ellipsoid–ellipsoid intersection test needs to be carried out only when the separating plane fails to guarantee the
separation of the ellipsoids.

Continuous collision detection (CCD) in which object motions are given by continuous functions of a time parameter t
has been gaining increasing interests in the past decade (see e.g., Redon et al., 2002; Teschner et al., 2005). It focuses on
determining the collision status of objects over a specific time span and is exact in the sense that no discretization of the
time domain is needed. When comes to the CCD of two moving ellipsoids with continuous motions, the method in Wang et
al. (2004) mentioned above cannot easily be extended since the computation of a separating plane requires solving for the
roots of the characteristic equation. Based on the algebraic condition by Wang et al. (2001), Choi et al. (2003) reduces the
problem to analyzing the zero set of the bivariate characteristic polynomial equation formed by the two moving ellipsoids;
however, their algorithm involves the brute-force computation of the zero set and is therefore slow. Later Choi et al. (2009)
further develop an efficient search scheme to determine the collision time instants from the bivariate characteristic equation
in real time. The basic idea is to find the contact time instants by alternative searches in the two parameter domains of
the characteristic equation. Unfortunately, the use of Bézier clipping in the search makes the method only applicable to
ellipsoids moving under rational motions.

In this paper, we aim at establishing a symbolic approach to determine the relative position of two ellipsoids, which can
then be applied to the CCD of two moving ellipsoids under arbitrary motions (such as the commonly used helical motions
as in Example 5.2). Our theoretical background is still Wang et al. (2001), but with the difference that we count the number
of positive roots of the characteristic polynomial symbolically without resorting to solving for the roots of the characteristic
polynomial. This symbolical approach is derived from the classical Descarte’s rule and the modified sign variation number
of the signed subresultant sequence (e.g., see Basu et al., 2006), and requires only the computation of five explicit formulae
from the subresultant sequences of the characteristic polynomial and its derivative. We thereafter develop an algorithm for
CCD of two moving ellipsoids under arbitrary continuous motions which are not necessarily rational. In CCD case, the five
explicit formulae directly lead to five functions in the time parameter t , and CCD can simply be done by solving these five
functions.

We note that Gonzalez-Vega and Mainar (2008) translate the algebraic conditions in Wang et al. (2001) to a set of closed
form formulae to characterize the separation of two ellipsoids, and their results are also based on the subresultant sequence
of the characteristic polynomial and its first derivative. However, their conditions do not distinguish the two conditions of
external touching and overlapping. Our present work improves Gonzalez-Vega and Mainar (2008) by further distinguishing
external touching and overlapping, which is significant in collision detection.

The remainder of the paper is organized as follows. In Section 2 we review the algebraic conditions given by Wang et
al. (2001) and present the algebraic tool of subresultant sequences which will later be used to derive our explicit formulae.
We then derive in Section 3 the five explicit formulae for distinguishing the root patterns of the characteristic equation,
thus characterizing the configurations of two ellipsoids. In Section 4, we examine the computational cost by optimizing the
evaluation of the five explicit formulae. In Section 5, we present examples on applying our method to continuous collision
detection for ellipsoids and compare the efficiency of our approach with Choi et al. (2009). We conclude the paper in Section
6.

2. Preliminaries

Given two ellipsoids A: X T A X = 0 and B: X T B X = 0, where X = (x, y, z, w)T are the homogeneous coordinates of
points ( x

w ,
y
w , z

w ) ∈ R
3 and A, B are 4 × 4 coefficient matrices with elements in R, the characteristic polynomial of the

ellipsoids A and B is defined by

f̃ (λ) = det(λA + B).

The characteristic polynomial f̃ (λ) has degree 4 in R[λ], where R[λ] is the polynomial ring with real coefficients. We define
the normalization of f̃ (λ) by f (λ) = f̃ (λ)/det(A), which can be written as

f (λ) = λ4 + aλ3 + bλ2 + cλ + d

with a,b, c,d ∈ R. In the following we also call f (λ) the characteristic polynomial. Since A and B represent ellipsoids, we
have det(A) < 0 and det(B) < 0; hence d = det(B)/det(A) > 0. It then follows that zero cannot be a root of f (λ) = 0. We
further assume that the interiors of the ellipsoids A and B are defined by X T A X < 0 and X T B X < 0.

Now we define the three configurations of two ellipsoids: separate, external touching and overlapping. An ellipsoid is
regarded as a solid bounded by the boundary surface X T A X = 0. Two ellipsoids are separate if their boundary surfaces and
interiors share no common points; otherwise, they are said to intersect. Furthermore, two intersecting ellipsoids are said
to overlap if their interiors have a common point; otherwise they touch externally. That is, two intersecting ellipsoids may
overlap or touch externally.

The following algebraic conditions are given by Wang et al. (2001) on the configurations of two ellipsoids A and B.
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Theorem 2.1. (See Wang et al., 2001.)

1. The characteristic equation f (λ) = 0 always has at least two negative roots;
2. The two ellipsoids A and B are separate if and only if f (λ) = 0 has two distinct positive roots;
3. The two ellipsoids A and B touch each other externally if and only if f (λ) = 0 has a positive double root;
4. The two ellipsoids A and B overlap if and only if f (λ) = 0 has no positive root.

We shall derive explicit expressions to symbolically determine the root pattern as described in Theorem 2.1. Such a
symbolic approach avoids solving for the roots of the characteristic equation and can then be applied for continuous collision
of two moving ellipsoids when there is a time parameter involved. Note that a symbolic treatment has been proposed for
two ellipses in Choi et al. (2006), which provides a basis for continuous collision detection for two moving ellipses therein.
However, it is more difficult for ellipsoids because, unlike the case of ellipses, the appearance of a double root of the
characteristic equation does not necessarily mean any configuration change for two ellipsoid. See Choi et al. (2006) for a
brief discussion about this difficulty.

We now introduce the concept of the subresultant sequence, an algebraic tool to be used in our derivation. For more
details, see for example, Geddes et al. (1992), Basu et al. (2006), von zur Gathen and Gerhard (1999), Kerber (2009).

Definition 2.2. (See Basu et al., 2006.) Let

f (λ) =
n∑

k=0

pkλ
k, g(λ) =

m∑
k=0

qkλ
k

be two polynomials in R[λ] with degrees n = deg( f ) � deg(g) = m. The i-th Sylvester–Habicht matrix of f and g , denoted
by SyHai( f , g), is defined by

SyHai( f , g) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pn · · · · · · · · · · · · p0 0 0

0
. . .

. . . 0
...

. . . pn · · · · · · · · · · · · p0

... 0 qm · · · · · · · · · q0

... . .
.

. .
.

. .
.

0

0 . .
.

. .
.

. .
. ...

qm · · · · · · · · · q0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

m − i

⎫⎪⎪⎬
⎪⎪⎭

n − i.

The i-th signed subresultant sri(λ) of f and g is the determinant of the (n + m − 2i) × (n + m − 2i) matrix whose first
n +m −2i −1 columns are taken from the first n +m −2i −1 columns of SyHai( f , g), and the last column is the polynomial
sequence λn−i−1 f , λn−i−2 f , . . . , f , g, λg, . . . , λm−i−1 g. Note that the first signed subresultant sr0(λ) is equal to the resultant
Res( f , g) of f and g .

In the sequel, we consider the signed subresultant sequence of a polynomial f and its first derivative f ′ . Denote the co-
efficient of the degree j term of the polynomial sri by sri j , j = 0, . . . ,deg(sri). The following property of signed subresultant
sequence will be important to our later analysis.

Lemma 2.3. Let f (λ) ∈ R[x]. Then deg(gcd( f (λ), f ′(λ))) = k if and only if srkk �= 0 and srii ≡ 0, i = 0, . . . ,k − 1. Furthermore, we
have srk(λ) = gcd( f (λ), f ′(λ)).

3. Explicit formulae for configurations of two ellipsoids

In this section we shall derive explicit formulae for characterizing the configurations of two static ellipsoids. Throughout
we shall repeatedly apply the classical Descartes’ rule of signs and the modified sign variations of the signed subresultants.
See the details in, for example, Basu et al. (2006).

Proposition 3.1 (Descartes’ rule of signs). Let f (λ) = anλn + · · · + a0 ∈ R[λ]. Then the number of positive roots of f (λ) = 0 is equal
to Var(an, . . . ,a0) − 2k for some non-negative integer k, where Var(s) is the number of sign variations in a sequence s.

Corollary 3.2. The number of negative roots of f (λ) = 0 is equal to Var((−1)nan, (−1)n−1an−1, . . . ,a0) − 2k for some non-negative
integer k.
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Table 1
Configurations of two ellipsoids and the corresponding values for Var(1,a,b, c,d) and the number of real roots for f (λ) = 0.

Var(1,a,b, c,d) # of real roots for f (λ) = 0 Configuration of two ellipsoids

0 2 or 4 overlap
2 4 separate or externally touch

2 overlap
4 impossible

Let f (λ) = λ4 +aλ3 +bλ2 +cλ+d be the characteristic polynomial of two ellipsoids A and B. Since d > 0, Var(1,a,b, c,d)

is even. Then we have the following lemma.

Lemma 3.3. Var(1,a,b, c,d) �= 4.

Proof. Suppose on the contrary that Var(1,a,b, c,d) = 4. Then we shall have Var(1,−a,b,−c,d) = 0, which by Corollary 3.2
means that the characteristic equation f (λ) = 0 has no negative root. This contradicts Theorem 2.1. �
Lemma 3.4. If Var(1,a,b, c,d) = 0, the two ellipsoids A and B overlap.

Proof. By Descartes’ rule of signs, Var(1,a,b, c,d) = 0 implies that the characteristic equation f (λ) = 0 has no positive root.
By Theorem 2.1, the two ellipsoids overlap. �

Hence given the characteristic polynomial f (λ) of two static ellipsoids, we can immediately tell that the two ellipsoids
overlap if Var(1,a,b, c,d) = 0. However, the converse of Lemma 3.4 is not true.

Lemma 3.5. If two ellipsoids A and B overlap, then Var(1,a,b, c,d) = 0 or 2; furthermore if their characteristic equation f (λ) = 0
has four real roots, then Var(1,a,b, c,d) = 0.

Proof. Since the ellipsoids A and B overlap, f (λ) = 0 has no positive root. By Descartes’ rule of signs and Lemma 3.3,
Var(1,a,b, c,d) = 0 or 2.

Now if f (λ) = 0 has four real roots, since none of these roots can be positive, we have Var(1,−a,b,−c,d) = 4 and
therefore Var(1,a,b, c,d) = 0. �

Using the above lemmas, we have

Lemma 3.6. Two ellipsoids A and B are separate or externally touching if and only if their characteristic equation f (λ) = 0 has four
real roots and Var(1,a,b, c,d) = 2.

Proof. “�⇒”: By Theorem 2.1, the configuration of separation or external touch implies that the characteristic equation has
four real roots. On the other hand, by Proposition 3.1, Var(1,a,b, c,d) is an even number, hence can be 0, 2 or 4. But by
Lemma 3.3 Var(1,a,b, c,d) �= 4, and by Lemma 3.4 Var(1,a,b, c,d) �= 0. So Var(1,a,b, c,d) = 2.

“⇐�”: Since Var(1,a,b, c,d) = 2, by Proposition 3.1 f (λ) = 0 has zero or two positive roots. If f (λ) = 0 has no posi-
tive root, the two ellipsoids overlap. Now since f (λ) = 0 has four real roots, by Lemma 3.5 we have Var(1,a,b, c,d) = 0,
a contradiction. Therefore f (λ) = 0 has two positive roots, that is, the two ellipsoids are either separate or externally touch-
ing. �

Table 1 summarizes Lemma 3.3 to Lemma 3.6.
Next we are going to show how to determine whether the characteristic equation f (λ) = 0 has four real roots. Con-

sider the characteristic polynomial f (λ) and its derivative f ′(λ), together with their first three signed subresultants
sr0(λ), sr1(λ), sr2(λ). Denote the sequence

P = f (λ), f ′(λ), sr2(λ), sr1(λ), sr0, (1)

where by Definition 2.2,

f (λ) = λ4 + aλ3 + bλ2 + cλ + d,

f ′(λ) = 4λ3 + 3aλ2 + 2bλ + c,

sr2(λ) = (−8b + 3a2)λ2 + (2ab − 12c)λ + ac − 16d,

sr1(λ) = (−6a3c + 2a2b2 − 12a2d + 28abc − 8b3 − 36c2 + 32bd
)
λ − 9a3d + a2bc + 3ac2 + 32abd − 4b2c − 48cd,
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sr0 = −192cd2a + 256d3 + 144c2db + b2a2c2 − 6c2da2 + 18c3ba + 144ba2d2 − 4b3a2d + 16b4d − 4c3a3

− 128d2b2 − 4b3c2 − 27a4d2 − 80cb2ad + 18cba3d − 27c4. (2)

Using the same notation as in Basu et al. (2006), let MVar(P ;a) denote the modified1 number of sign variations in
a sequence of polynomials P = P0, . . . , Pn evaluated at a ∈ R ∪ {−∞,+∞}, that is, MVar(P ;a) = MVar(P0(a), . . . , Pn(a)).
Also, denote MVar(P ;a,b) = MVar(P ;a) − MVar(P ;b), where a,b ∈ R ∪ {−∞,+∞}.

Proposition 3.7. (See Basu et al., 2006.) Let f be a polynomial of degree n in R[λ], and let a < b be elements in R ∪ {−∞,+∞} that
are not roots of f . Denote by P the signed subresultant sequence { f , f ′, srn−2( f , f ′), . . . , sr0( f , f ′)}. Then the number of real roots
of f counting without multiplicities in R is equal to MVar(P ;a,b).

Lemma 3.8. The characteristic equation f (λ) = 0 has four real roots if and only if one of the following four cases holds.

1. sr22 > 0, sr11 > 0, sr0 > 0; this occurs if and only if f (λ) = 0 has four distinct simple roots.
2. sr22 > 0, sr11 > 0, sr0 = 0; this occurs if and only if f (λ) = 0 has one double root and two distinct simple roots.
3. sr22 > 0, sr11 = 0, sr0 = 0; this occurs if and only if f (λ) = 0 has two double roots or a simple and a triple root.
4. sr22 = 0, sr11 = 0, sr0 = 0; this occurs if and only if f (λ) = 0 has one quadruple root.

Proof. The above enumeration covers all possible cases under which the characteristic equation f (λ) = 0 has four real roots.
We now establish the corresponding algebraic conditions for these cases.

For case 1, by Proposition 3.7, MVar(P ;−∞,+∞) = 4. Note that

MVar(P;−∞) = MVar(+,−, sr22,−sr11, sr0),

MVar(P;+∞) = MVar(+,+, sr22, sr11, sr0).

Hence the only possible choice is that sr22 > 0, sr11 > 0 and sr0 > 0.
For case 2, since f (λ) = 0 has a double root, by Lemma 2.3 we have sr0 = 0. Again by Proposition 3.7, MVar(P ;−∞,

+∞) = 3. Note that

MVar(P;−∞) = MVar(+,−, sr22,−sr11,0),

MVar(P;+∞) = MVar(+,+, sr22, sr11,0).

Hence the only possible choice is that sr22 > 0, sr11 > 0.
For case 3, since f (λ) = 0 has two double roots or a simple and a triple root, the degree of gcd( f (λ), f ′(λ)) is 2. By

Lemma 2.3, we have sr0 = 0 and sr11 = 0. By Proposition 3.7, MVar(P ;−∞,+∞) = 2. Note that

MVar(P;−∞) = MVar(+,−, sr22,0,0),

MVar(P;+∞) = MVar(+,+, sr22,0,0).

Hence the only possible choice here is that sr22 > 0.
For case 4, by Lemma 2.3, f (λ) = 0 has one quadruple root if and only if sr22 = sr11 = sr0 = 0. �
Next we shall provide algebraic conditions for characterizing the configurations of two ellipsoids.

Lemma 3.9. Let f (λ) = 0 be the characteristic equation of two ellipsoids A: X T A X = 0 and B: X T B X = 0. If sr22 � 0 then the two
ellipsoids overlap.

Proof. If sr22 � 0, then MVar(P ;−∞,+∞) � 2. By Proposition 3.7, f (λ) = 0 has at most 2 distinct real roots. As f (λ) = 0
has at least two negative roots (counted with multiplicity), considering f (−∞) > 0, f (+∞) > 0 and f (0) = d > 0, f has
either no positive roots or two double roots of opposite signs. For the latter case, we must have both MVar(P ;−∞,+∞) = 2
and sr11 = sr0 = 0. But sr22 � 0 yields MVar(P ;−∞,+∞) � 1, which is a contradiction. Thus f (λ) = 0 has no positive root
and by Lemma 2.1 the two ellipsoids overlap. �
Theorem 3.10. Let f (λ) = 0 be the characteristic equation of two ellipsoids A: X T A X = 0 and B: X T B X = 0.

1. The two ellipsoids A and B are separate if and only if Var(1,a,b, c,d) = 2 and

1 We first delete those polynomials identical to zero in the sequence P . Then the modified number of sign variations MVar(P,a) is similarly defined
as the commonly used number of sign variations Var(P,a) except that the case {+,0,0,+} or {−,0,0,−} (exactly two zeros between the two nonzero
number) counts the variation for two but not zero. See page 330 of Basu et al. (2006) for details.
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(a) sr22 > 0, sr11 > 0, sr0 > 0; or
(b) sr22 > 0, sr11 > 0, sr10 > 0, sr0 = 0.

2. The two ellipsoids A and B touch each other externally if and only if
(a) sr22 > 0, sr11 > 0, sr10 < 0, sr0 = 0; or
(b) sr22 > 0, sr20 < 0, sr11 = 0, sr0 = 0.

In the other cases, the two ellipsoids overlap.

Proof.

1. “�⇒”: Since A and B are separate, by Lemma 3.6, Var(1,a,b, c,d) = 2 and f (λ) = 0 has four real roots, two of which
are distinct positive reals and the other two are negative. This leads to two subcases:
(a) f (λ) = 0 has two distinct negative roots. By Lemma 3.8, we have sr22 > 0, sr11 > 0, sr0 > 0;
(b) f (λ) = 0 has one negative double root. By Lemma 3.8, sr22 > 0, sr11 > 0, sr0 = 0. By Lemma 2.3, gcd( f (λ), f ′(λ)) =

sr1 = sr11λ + sr10 = sr11(λ − λ0), where λ0 = −sr10/sr11 is the negative double root of f (λ) = 0. Hence sr11 > 0
yields sr10 > 0.

“⇐�”: By Lemma 3.8, both (a) and (b) indicate that f (λ) = 0 has four real roots. Since Var(1,a,b, c,d) = 2, by
Lemma 3.6 the two ellipsoids are separate or externally touch.
(a) Since sr0 �= 0, f (λ) = 0 has no multiple root. Hence by Theorem 2.1 the two ellipsoids are separate.
(b) Since sr0 = 0 and sr11 �= 0, f (λ) = 0 has one double root and two simple roots. The double root λ0 is the root

of sr1 = sr11λ + sr10, and hence negative because sr11 > 0, sr10 > 0. Therefore by Theorem 2.1 the two ellipsoids
cannot be externally touching, and are therefore separate.

2. “�⇒”: Since A and B are externally touching, by Lemma 3.6 f (λ) = 0 has four real roots, two of which are a positive
double root and the other two are negative. This also leads to two subcases:
(a) f (λ) = 0 has two distinct negative roots, which by Lemma 3.8 yields sr22 > 0, sr11 > 0, sr0 = 0. By Lemma 2.3,

sr1 = sr11λ + sr10 = gcd( f (λ), f ′(λ)) and therefore λ0 = −sr10/sr11 is the positive double root of f (λ) = 0. Now
since sr11 > 0, we have sr10 < 0.

(b) f (λ) = 0 has one negative double root. By Lemma 3.8 sr22 > 0, sr11 = 0, sr0 = 0. By Lemma 2.3 sr2 = sr22λ
2 +

sr21λ + sr20 = gcd( f (λ), f ′(λ)) = sr22(λ − λ0)(λ − λ1), where λ0 is the positive double root and λ1 is the negative
double root. Hence sr20/sr22 = λ0λ1 < 0. Since sr22 > 0, we have sr20 < 0.

“⇐�”:
(a) By Lemma 3.8, f (λ) = 0 has one double root and two simple roots. By Lemma 2.3, sr1 = sr11λ + sr10 =

gcd( f (λ), f ′(λ)) and therefore λ0 = −sr10/sr11 > 0 is the double root of f (λ) = 0. By Lemma 2.1 the two ellip-
soids are externally touching.

(b) By Lemma 3.8 there are two subcases:
(i) f (λ) = 0 has two double roots. By Lemma 2.3 sr2 = sr22λ

2 + sr21λ + sr20 = gcd( f (λ), f ′(λ)) = sr22(λ − λ0)(λ −
λ1), where λ0 and λ1 are the two double roots. Since λ0λ1 = sr20/sr22 < 0, one of the double root should be
positive. By Theorem 2.1 the two ellipsoids are in external touch.

(ii) f (λ) = 0 has one simple root and one triple root λ0. Then sr20/sr22 = λ2
0 > 0, which contradicts the fact that

sr22 > 0 and sr20 < 0. Hence this subcase never happens. �
Remark 3.1. According to Theorem 3.10, the subresultant coefficient sr10 is crucial for distinguishing the two configurations
of separation and external touching. Note that Gonzalez-Vega and Mainar (2008) uses principal subresultant sequences (i.e.,
sr22, sr11, sr0) to derive the explicit formulae which do not distinguish separation from external touching of two static
ellipsoids. We achieves this distinction by considering the sign of sr10.

Table 2 summarizes Theorem 3.10 on characterizing the configuration, i.e., separation, external touching or overlapping,
of two static ellipsoids.

4. Computation costs

Our method for determining the configuration of two ellipsoids involves only the evaluation of the explicit formulae
sr22, sr20, sr11, sr10, sr0 and Var(1,a,b, c,d). Here we adopt the optimized evaluation of these five polynomials provided
by Emiris and Tsigaridas (2008) obtained from the Bezoutian matrix. Let

b̄ = −a

4
, c̄ = b

6
, d̄ = − c

4
, ē = d,

and let
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Table 2
Algebraic conditions for characterizing the configuration of two ellipsoids. The case numbers correspond to that of Lemma 3.8.

Cases Var(1,a,b, c,d) sr2(λ) sr1(λ) Ellipsoids
configurationssr22 sr20 sr11 sr10 sr0

(1) 2 > 0 > 0 > 0 separate

(2) 2 > 0 > 0 > 0 = 0 separate

> 0 > 0 < 0 = 0 externally touch

(3) > 0 < 0 = 0 = 0 externally touch

The remaining cases correspond to overlapping ellipsoids.

�2 = b̄2 − c̄, W1 = d̄ − b̄c̄, T = −9W 2
1 + 27�2�3 − 3W3�2,

�3 = c̄2 − b̄d̄, W2 = b̄ē − c̄d̄, A = W3 + 3�3,

W3 = ē − b̄d̄, B = −d̄W1 − ē�2 − c̄�3,

T2 = AW1 − 3b̄B,

�1 = A3 − 27B2.

The two explicit formulae are then given by

sr22 := �2, sr20 := −W3, sr11 := T , sr10 := T2, sr0 := �1

up to a positive constant multiple. The above expressions take 28 multiplications and 12 additions.

5. Application: continuous collision detection for two moving ellipsoids

5.1. Algorithm

Let M(t) be a 4 × 4 matrix, whose entries are arbitrary smooth functions in t , that represents an arbitrary continuous
deformation and motion in R

3. By applying such deformation and motion to an ellipsoid A: X T A X = 0, we obtain a moving
ellipsoid A(t): X T M−1(t)T AM−1(t)X = X T A(t)X = 0. Next we extend our method to solving continuous collision detection
for two moving ellipsoids A(t): X T A(t)X = 0 and B(t): X T B(t)X = 0, whose center positions vary and shapes deform with
respect to a continuously varied parameter t ∈ [0,1]. The two moving ellipsoids A(t) and B(t) are said to be collision-free if
A(t) and B(t) are separate for all t ∈ [0,1]; otherwise A(t) and B(t) collide.

In this continuous setting, the characteristic polynomial associated with A(t) and B(t) becomes a bivariate polynomial
both in parameter λ and parameter t which is given by f (λ; t) = det(λA(t) + B(t)). Clearly, f (λ; t) is of degree 4 in λ with
coefficients as functions of t . We divide f (λ; t) by its leading coefficient in λ and get

f (λ; t) = λ4 + a(t)λ3 + b(t)λ2 + c(t)λ + d(t), (3)

where a(t),b(t), c(t),d(t) are all functions in t . We shall study the signed subresultants sr0(t) and sri(λ; t), i = 1,2, of
f (λ; t) and fλ(λ; t), and denote the coefficient of the degree j term in λ of the polynomial sri(λ; t) by sri j(t), i = 1,2,
j = 0, . . . ,degλ(sri).

Theorem 5.1. Let 0 � t1 < t2 < · · · < tm � 1, m � 0, be all the distinct contact time instants in [0,1] at which two given moving
ellipsoids are in external touch. Let t0 = 0, tm+1 = 1 and let δi be an arbitrary number in interval (ti, ti+1), i = 0, . . . ,m. Then
the configuration of the two moving ellipsoids (i.e., whether they are separate or overlapping) does not change during time interval
(ti, ti+1), and therefore can be decided by their configuration at the time instant t = δi, i = 0, . . . ,m.
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Proof. Since the center positions and the shapes of the two moving ellipsoids vary continuously, if the configuration of
two ellipsoids changes from separation to overlapping, or vice versa, there must be a contact time instant t∗ at which the
ellipsoids are in external touch. Therefore, within a time interval (ti, ti+1) that does not contain any other contact time
instants, the configuration of the ellipsoids remains the same. Hence we need only check the status of the two moving
ellipsoids at a time instant δi ∈ (ti, ti+1) to decide their configuration during the entire time interval (ti, ti+1). �

We can see from the above theorem that the primary task for continuous collision detection for two moving ellipsoids
is to determine the so-called contact time instants at which the ellipsoids are touching externally. The configuration of the
ellipsoids between two contact time instants can then be easily identified using the algebraic conditions as established in
Theorem 3.10.

Next we explain how to find these contact time instants.

Theorem 5.2. Suppose that sr0(t) �≡ 0. If two ellipsoids A(t) and B(t) touch externally at t0 , we have sr0(t0) = 0.

Proof. This follows immediately from Theorem 3.10. �
Note 1. The special situation sr0(t) ≡ 0 happens when the characteristic equation f (λ; t) = 0 always has a double root
λ(t) for any time instant t ∈ [0,1], i.e., f (λ; t) = (λ − λ∗(t))2 f̃ (λ; t). Geometrically this occurs when two moving ellipsoids,
at every time instant t , touch internally or externally, or have a reducible intersection in C

3 (see Tu et al., 2009 and
Example 5.1).

Lemma 5.3. Given two moving ellipsoids A(t) and B(t), t ∈ [0,1], we have either one of the following cases:

1. A(t) and B(t) are in external touch for all t ∈ [0,1];
2. A(t) and B(t) are in external touch at some discrete time instants ti ∈ [0,1];
3. A(t) and B(t) never touch during [0,1].

Proof. Suppose that A(t) and B(t) touch externally at all t within a time interval I0 := [t0, t1] ⊂ [0,1] with t0 < t1. Suppose
moreover that [t0, t1] is maximal for this property. Then according to Table 2, sr0(t) vanishes on I0, thus sr0(t) ≡ 0 and
f (λ, t) = 0 has 4 real roots α1(t) � α2(t) � α3(t) � α4(t) for t ∈ I0. As f (0, t) �= 0 and f (λ, t) = 0 has a double positive root
for t ∈ I0, we have

α1(t) � α2(t) < 0 < α3(t) = α4(t)

on t ∈ I0. Suppose that [t0, t1] �= [0,1], for instance that t0 ∈ (0,1) (the same arguments will apply if t1 ∈ (0,1)). The root
functions αi(t) (i = 1, . . . ,4) admit a Puiseux expansion in a neighborhood of t = t0 (see e.g. Abhyankar, 1990, Chaps. 12–
14). As α3(t) = α4(t) on [t0, t1], the Puiseux expansion of α3(t) and α4(t) at t0 are identical. Thus they coincide in a
neighborhood of t0 and the two ellipsoids are touching on an interval strictly containing I0. This is a contradiction. We
deduce that I0 := [0,1] and that the moving ellipsoids can either be in external touch for all t ∈ [0,1] or be in external
touch only at some (if there is any) discrete contact time instants. �
Theorem 5.4. Suppose that sr0(t) ≡ 0. If the moving ellipsoids A(t) and B(t) are in external touch only at some discrete contact time
instants ti ∈ [0,1], where i = 1, . . . ,n and n � 0, then at each ti , we have sr11(ti) = 0.

Proof. Since sr0(t) ≡ 0, we have f (λ; t) = (λ − λ∗(t))2 f̃ (λ; t) (Note 1). Since A(t) and B(t) are not in external touch for all
t , λ∗(t) cannot always be a positive double root. Also, since λ∗(t) �= 0 for any t , by the continuity of the root function λ∗(t),
we must have λ∗(t) < 0 for all t . Now, consider at a contact time instant ti , f (λ; t) = 0 has an additional positive double
root and therefore f (λ; ti) = 0 has two double roots. By Lemma 3.8, we therefore have sr11(ti) = 0. �
Note 2. Consider two moving spheres that are in external touch at only some discrete contact time instants. Since they
always have a reducible intersection in C

3, no matter whether they are separate or not, their characteristic equation always
contains a double root (which is negative). Hence, sr0(t) ≡ 0. Furthermore, sr11(ti) = 0 if the two spheres are in external
touch at ti .

Theorem 5.5. Suppose that sr0(t) ≡ 0 and sr11(t) �≡ 0. Let t1, t2, . . . , tn, n � 0, be all the distinct real roots of sr11(t) = 0 in [0,1]. Let
δ be an arbitrary number in [0,1] \ {t1, t2, . . . , tn}. If the ellipsoids A(δ) and B(δ) touch externally, then A(t) and B(t) are in external
touch throughout [0,1].

Proof. This follows from Lemma 5.3 and Theorem 5.4. �
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Algorithm 1: Collision detection of two moving ellipsoids.

Input : The characteristic polynomial f (λ; t) = λ4 + a(t)λ3 + b(t)λ2 + c(t)λ + d(t) of two moving ellipsoids A(t) and B(t).
Output: Three sets S , I and T containing time instants or intervals in which A(t) and B(t) are separate, overlap and touching externally,

respectively.
begin

Z ← ∅, Z̃ ← ∅, S ← ∅, I ← ∅, T ← ∅;
if sr0(t) ≡ 0 then

if sr11(t) ≡ 0 then // Theorem 5.6
if A(0) and B(0) are separate then S ← [0,1];
else if A(0) and B(0) overlap then I ← [0,1];
else if A(0) and B(0) are touching externally then T ← [0,1];
return;

else
Z ← {t | sr11(t) = 0}; // Theorem 5.5
Select δ ∈ [0,1] \ Z ;
if A(δ) and B(δ) touch externally then // Conditions of Theorem 3.10(2)

T ← [0,1];
return;

else
Z ← {t | sr0(t) = 0}

foreach ti ∈ Z do
if A(ti) and B(ti) touch externally then T ← T ∪ {ti}; // Conditions of Theorem 3.10(2)

Z̃ ← T ∪ {0,1};
Let Z̃ = {t1, . . . , tn} where 0 = t1 < · · · < tn = 1;
foreach i = 1, . . . ,n − 1, select δi ∈ (ti , ti+1) do // Theorem 5.1

if A(δi) and B(δi) are separate then // Conditions of Theorem 3.10(1)
S ← (ti , ti+1);

else
I ← (ti , ti+1)

end

Theorem 5.6. Suppose that sr0(t) ≡ 0 and sr11(t) ≡ 0. Then either the two ellipsoids A(t) and B(t) touch externally throughout
[0,1], or they do not have any external touch at all in [0,1].

Proof. Since sr0(t) ≡ 0 and sr11(t) ≡ 0, by Lemma 3.8, f (λ; t) = 0 always have two double roots or one quadruple root in λ.
Due to the continuity of the root functions of a polynomial (see e.g., Bhatia, 1997) and the fact that λ = 0, λ = ±∞ are not
roots of f (λ; t) = 0, the signs of the roots remain the same in [0,1]. Now, if f (λ; ti) = 0 has a positive double root λ0(ti)

for some ti ∈ [0,1], then λ0(t) remains positive throughout [0,1], which means that A(t) and B(t) are in external touch
throughout [0,1]. On the other hand, if f (λ; t) = 0 does not have a positive double root for any t ∈ [0,1], then A(t) and
B(t) do not touch externally at all in the interval. �
Note 3. Theorem 5.6 implies that when sr0(t) ≡ 0 and sr11(t) ≡ 0, the configuration of the ellipsoids throughout the time
span can be determined by their configuration at any particular time instant, e.g., at t = 0.

We now summarize the above analysis in Algorithm 1 for continuous collision detection for two moving ellipsoids. Using
Theorems 5.2, 5.4, 5.5 and 5.6, we obtain a set Z of time instants which captures all the contact time instants of two moving
ellipsoids by solving for the roots of some functions under different conditions. The set Z may also contain other time
instants not corresponding to any contact, which can be eliminated easily by checking with the algebraic conditions given
by Theorem 3.10. Again by Theorem 3.10, the configuration of the ellipsoids at each interval defined by two consecutive
contact time instants can then be determined.

5.2. Examples

Example 5.1. Let A(t) and B(t) be two moving ellipsoids defined by

(x + 12t − 11)2

4
+ y2 + z2 = 1 and

(x − 3)2

4
+ (y − 4t + 2)2 + (z − 4t + 4)2 = 1,

respectively, where t ∈ [0,1]. The characteristic polynomial associated with A(t) and B(t) is

f (λ; t) = λ4 + (−68t2 + 96t − 32
)
λ3 + (−136t2 + 192t − 66

)
λ2 + (−68t2 + 96t − 32

)
λ + 1

= −(λ + 1)2(−λ2 + (
68t2 − 96t + 34

)
λ − 1

)

up to a constant multiple. Since sr0(t) ≡ 0, we shall next compute
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Fig. 1. Configurations of two moving ellipsoids under rational motion in Example 5.1. The ellipsoids touch externally at t = t1 and t = t2.

sr11(t) = 42 762 752t8 − 241 483 776t7 + 599 418 368t6 − 854 175 744t5 + 764 204 544t4 − 439 492 608t3

+ 158 630 400t2 − 32 845 824t + 2 985 984.

Solving the real roots for sr11(t) in [0,1], we obtain t1 = 0.5395042868, t2 = 0.8722604191 which are both confirmed to be
the contact time instants of the ellipsoids by checking against the conditions in Theorem 3.10. Selecting

δ0 = 0.2 ∈ (0, t1), δ1 = 0.7 ∈ (t1, t2), δ2 = 0.95 ∈ (t2,1),

and by checking the collision states at t = δ0, δ1, δ2, we conclude that the two ellipsoids are separate during time interval
[0, t1), overlap during (t1, t2), and are separate again during (t2,1] (Fig. 1).

The following example shows that our approach not only works for rational motions but also allows arbitrary functional
motions, e.g., helical motions, of two moving ellipsoids.

Example 5.2. Let A and B be two static ellipsoids defined by

x2 + y2

4
+ z2 = 1 and x2 + y2 + (z − 5)2

9
= 1,

respectively. Let A(t) be a moving ellipsoid defined by applying to A a rotation about the axis (1,0,0)T by an angle 10t and
then a translation along the helical curve P (t) = (cos 10t, sin 10t,10t), where t ∈ [0,1]. The coefficients of the characteristic
polynomial associated with the moving ellipsoid A(t) and the static ellipsoid B are functions in t that contains trigonometric
terms; the expressions are long and hence are omitted here.

We solve the transcendental function sr0(t) by the simple bracketing and bisection method. Other methods, such as the
secant method, can also be used for root finding (see Press et al., 2007 for more details). The real roots of sr0(t) in [0,1]
are found to be t1 = 0.0749830692 and t2 = 0.8913371204, which are both confirmed to be the contact time instants of the
ellipsoids. We check the collision states at

δ0 = 0.02 ∈ (0, t1), δ1 = 0.4 ∈ (t1, t2), δ2 = 0.95 ∈ (t2,1),

and conclude that the two ellipsoids are separate in [0, t1), overlap in (t1, t2), and are separate again in (t2,1] (Fig. 2).

5.3. Comparison

In this section, we compare our method with Choi et al. (2009) on continuous collision detection for two ellipsoids.
Since the method in Choi et al. (2009) only deals with ellipsoids under rational motions, the examples we use here are also
confined to rational motions. Both algorithms are implemented in C++ and the tests are run on a workstation with an Intel
Xeon 3.33-GHz CPU. Double precision floating-point arithmetic is used for all computations in the comparison. Polynomials
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Fig. 2. Configurations of two ellipsoids, one static and the other moves under non-rational helical motion, in Example 5.2. The ellipsoids touch externally at
t = t1 and t = t2.

are represented in the Bernstein form in order to improve the robustness and accuracy of the computations. Root solving
of polynomials are then done by subdivision using the de Casteljau algorithm. The algorithms are applied to three pairs of
moving ellipsoids under different motion types to detect their collision states over a specific time span and the performance
of the algorithms are listed in Table 3. Each test is run for 1000 times and the average running time is taken.

The degree 2 rational rigid motion includes the simple yet commonly used motion in which an object assumes a degree 2
rotation plus a linear translation. Under this kind of rigid motion, the two methods have comparable performances and can
both complete CCD in about 0.1 ms. The next pair of ellipsoids we study are under degree 2 rational affine motion, that is,
one with deformation. The degree of f (λ; t) in t is 36 in this particular example. The method in Choi et al. (2009) needs
much longer (about 2.5 ms) to compute CCD, because their method deals with a bivariate function f (λ; t) and basically
needs to find a pathway λ(t) such that f (λ; t) > 0 for all t to declare that the ellipsoids are always separate. The time taken
therefore depends not only on the degree of the motion but also on the topology of the zero set of f (λ; t). In this example,
the two moving ellipsoids are in close proximity from time to time but remain separate within the entire time span. The
approach in Choi et al. (2009) therefore takes longer to find the pathway λ(t). On the other hand, our method does not
depend on the complexity of f (λ; t) and can solve the CCD in 0.7 ms.

In the last example, the moving ellipsoids are under rational motions of degree 4 with large deformations (Example 2
of Choi et al., 2009). The degree of f (λ; t) in t is 48. The Choi et al. (2009) method takes about 1 ms while ours takes about
13 ms to complete CCD. The slower performance of our method is due to the high degree in the subresultant expressions.
The degree of sr0(t) is 288; its composition and root finding are therefore time consuming. When only the first contact time
instant of two moving ellipsoids is required (which is a common output for CCD), our method does not need to solve for
all roots of the subresultants and can complete CCD in 0.4 ms.

We remark here that the above examples serve to demonstrate the efficiency of our method when time performance is
of major concern. Both Choi et al. (2009) and ours are exact continuous collision detection methods in the sense that no
discretization of the time domain is needed. However, as we mentioned in Section 1, Choi et al. (2009) solve a bivariate
characteristic equation using numerical computations. We therefore use a float-point implementation of our method for
comparison with Choi et al. (2009). Note that, when high numerical accuracy is desired, our method has the advantage
that exact arithmetic can be used to achieve any required accuracy. We also listed in Table 4 the corresponding time
costs for the same collision detection examples under degree 2 rigid motion and degree 2 affine motion using symbolic
computation.
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Table 3
Run-time performance of our method against Choi et al. (2009) to solve CCD of two moving ellipsoids under rational motions. The timing under the column
“Solve f (λ; t)” is the time taken for determining the collision states over a given time span. The total time for CCD is the sum of the time taken for setting
up and solving f (λ; t). All timings are averaged over 1000 runs.

Motion type degt ( f (λ; t)) deg(sr0(t)) Time (ms)

Set up
f (λ; t)

Solve f (λ; t) Total for CCD

Choi et al. (2009) Our Choi et al. (2009) Our

Degree 2 rigid 4 24 0.014 0.094 0.096 0.108 0.11
Degree 2 affine 36 216 0.12 2.411 0.571 2.531 0.691
Degree 4 affine 48 288 0.202 0.965 12.707 1.167 12.909

Table 4
Run-time performance of our method to symbolically solve CCD of two moving ellipsoids under rational motions. All timings are averaged over 1000 runs.

Motion type degt ( f (λ; t)) deg(sr0(t)) Time (s)

Set up f (λ; t) Solve f (λ; t) Total for CCD

Degree 2 rigid 4 24 0.002169 0.016 0.018169
Degree 2 affine 36 216 0.002683 1.326 1.328683

6. Conclusions

We use five explicit formulae to decide the geometric configurations, that are, separate, externally touching or overlap-
ping of two ellipsoids. Our derivation is based on the algebraic conditions provided in Wang et al. (2001), which shows
the correspondence between the root patterns of the characteristic polynomial and the configurations of two ellipsoids.
The explicit formulae are composed of the coefficients of the signed subresultant sequence of the characteristic polynomial
and its first derivative. These algebraic formulae can be applied naturally to continuous collision detection for two moving
ellipsoids whose relative positions as well as shapes vary along time governed by arbitrary continuous functions. In future
work, we expect to apply simple techniques and develop explicit formulae to determine the relative geometric configuration
of two general quadrics.
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