第一章 预备知识

定义 5.13 设 \sim 是 S 上的等价关系. 关于 \sim 的所有等价 类的集合称为 S 关于 \sim 的商集. 记为 S/\sim . 映射

$$\pi: S \longrightarrow S/\sim$$

$$x \mapsto \bar{x}$$

称为关于~的商映射或自然投射.

注意到商映射是满射. 对于等价关系 \sim_c , 其商映射就是判断每位同学是哪个班的. 对于 \equiv_2 , 其商映射就是判断每个整数的奇偶性.

5.4 集合的划分

定义 5.14 设 S 是非空集, P 是 S 中一些非空子集组成的集合 (有限或无限). 如果

(i) 对任意不相等的 $U, V \in \mathcal{P}, U \cap V = \emptyset$,

(ii)
$$S = \bigcup_{U \in \mathcal{P}} U$$
,

则称 \mathcal{P} 是 S 的一个划分 (partition).

设~是S上的等价关系. 根据上一讲中命题 5.11 和等价关系的自反性, S/\sim 是S的一个划分. 反之, 设 \mathcal{P} 是S的一

个划分. 我们定义 S 上的二元关系 $\sim_{\mathcal{P}}$ 如下: 对 $x,y \in S$, 如果存在 $U \in \mathcal{P}$ 使得 $x,y \in U$, 则 $x \sim_{\mathcal{P}} y$.

下面我们来验证 $\sim_{\mathcal{P}}$ 是等价关系. 由定义 5.14 中的条件 (ii) 可知, 对任意 $x \in S$, 存在 $U \in \mathcal{P}$ 使得 $x \in U$. 于是, $x \sim_{\mathcal{P}} x$. 自反性成立. 设 $x \sim_{\mathcal{P}} y$. 则存在 $U \in \mathcal{P}$ 使得 $x, y \in U$. 故 $y, x \in U$. 于是, $y \sim_{\mathcal{P}} x$. 对称性成立. 设 $x \sim_{\mathcal{P}} y$ 和 $y \sim_{\mathcal{P}} z$. 则存在存在 $U, V \in \mathcal{P}$, 使得 $x, y \in U$ 和 $y, z \in V$. 于是, $y \in U \cap V$. 由定义 5.14 中的条件 (ii) 可知, U = V. 故 $x, z \in U$. 从而, $x \sim_{\mathcal{P}} z$. 传递性成立. 称 $\sim_{\mathcal{P}}$ 是 由划分 \mathcal{P} 诱导的等价关系.

根据命题 5.11, 对于给定的集合 S 上的等价关系 \sim , 划分 S/\sim 诱导的等价关系就是 \sim .

反之, 对于给定的集合 S 的划分 \mathcal{P} , 其诱导等价关系的商集 $S/\sim_{\mathcal{P}}$ 就是 \mathcal{P} .

因此,等价关系通过其商集对集合分类,而商映射意味着对集合中的元素归类.另一方面,对集合元素进行分类(划分)就是在集合上引入一个等价关系.

例 5.15 设
$$S = [0,3] \times [0,1]$$
. 令

$$\mathcal{P} = \{\{(x,y)\} \mid (x,y) \in S \perp 0 < x < 3\}$$

$$\cup \{\{(0,y), (3,y)\} \mid 0 \le y \le 1\}.$$

则 S/\sim_P 是一个圆柱. 令

$$\mathcal{Q} = \{\{(x,y)\} \mid (x,y) \in S \text{ If } 0 < x < 3\}$$
$$\cup \{\{(0,y), (3,1-y)\} \mid 0 \le y \le 1\}.$$

则 $S/\sim_{\mathcal{Q}}$ 是 Möbius 带.

5.5 映射分解定理

定义 5.16 设 $f: S \longrightarrow T$ 是映射. 如果 f(x) = f(y), 则记 $x \sim_f y$. 称 \sim_f 是由 f 诱导的等价关系.

我们来验证 \sim_f 是等价关系. 对任意 $x \in S$, f(x) = f(x). 于是, $x \sim_f x$. 自反性成立. 设 $x \sim_f y$. 则 f(x) = f(y). 故 f(y) = f(x). 于是, $y \sim_f x$. 对称性成立. 设 $x \sim_f y$ 和 $y \sim_f z$. 则 f(x) = f(y) 且 f(y) = f(z). 故 f(x) = f(z). 于是, $x \sim_f z$. 传递性成立. 验证完毕.

例 5.17 设

$$\begin{array}{ccc} f & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ & (x,y) & \mapsto & \sqrt{x^2 + y^2} \end{array}.$$

则 \mathbb{R}^2 中两点关于 \sim_f 等价当且仅当这两点在以原点为圆心的同心圆上. 而 \mathbb{R}^2/\sim_f 是以原点为圆心的所有圆构成的集合.

定理 5.18 设 $f: S \longrightarrow T$ 是映射, π 是关于 \sim_f 的商映射. 则存在唯一的映射 $\bar{f}: S/\sim_f \longrightarrow T$ 使得 $f = \bar{f} \circ \pi$, 且该映射是单射.

$$S \xrightarrow{f} T$$

$$\pi \sqrt{f}$$

$$(S/\sim_f)$$

证明.设:

$$\bar{f}: S/\sim_f \longrightarrow T$$
 $\bar{x} \mapsto f(x).$

因为 \bar{x} 可能有不同的代表元, 所以我们需要验证 \bar{f} 是良定义的. 设 $\bar{x} = \bar{y}$. 根据命题 5.11, $x \sim_f y$. 即 f(x) = f(y). 故 $\bar{f}(\bar{x}) = \bar{f}(\bar{y})$. 于是, \bar{f} 是良定义的.

对任意 $x\in S,\, \bar f\circ\pi(x)=\bar f(\bar x)=f(x).$ 故 $f=\bar f\circ\pi.$ 存在性成立.

再设 $g: S/\sim_f \longrightarrow T$ 是映射使得 $f=g\circ\pi$. 则对于任意 $x\in S, f(x)=g\circ\pi(x) \Longrightarrow g(\bar{x})=f(x)=\bar{f}(\bar{x})$. 即 $g=\bar{f}$. 唯一性成立.

设 $\bar{f}(\bar{x}) = \bar{f}(\bar{y})$. 则 f(x) = f(y). 故 $x \sim_f y$. 根据命题 5.11 (i), $\bar{x} = \bar{y}$. 故 \bar{f} 是单射. \square

例 5.19 设 S 是某中学全体学生的集合, T 是该中学全体老师的集合. 定义:

$$f: S \longrightarrow T$$
 $x \mapsto x$ 的班主任.

则 \sim_f 是关于同学的等价关系 \sim_c . 商集 S/\sim_f 是该中学所有的班. 而诱导映射 \bar{f} 把班映到班主任, 它显然是单射.

例 5.20 设 $m \in \mathbb{Z}^+$. 定义:

$$r: \mathbb{Z} \longrightarrow \mathbb{Z}$$

$$x \mapsto \operatorname{rem}(x, m).$$

则 \sim_r 是关于 m 的同余关系. 商集 S/\sim_r 是集合

$$\{\overline{0},\overline{1},\ldots,\overline{m-1}\}.$$

而诱导映射 \bar{r} 把 \bar{x} 映到 \bar{x} 最小的非负代表元 $\mathrm{rem}(x,m)$, 它显然是单射. \square

5.6 序关系

定义 5.21 设 \leq 是集合 S 上的二元关系. 如果

- (i) 对任意 $x \in S$, $x \leq x$ (自反性),
- (ii) 如果 $x, y \in S$ 且 $x \leq y$ 和 $y \leq x$, 则 y = x (反对称性),

(iii) 如果 $x,y,z \in S$, $x \leq y$ 且 $y \leq z$, 则 $x \leq z$ (传递性),则称 \leq 是偏序. 进而,设 \leq 是 S 上的偏序. 如果对任意 $x,y \in S$, 我们有 $x \leq y$ 或 $y \leq x$. 则称 \leq 是全序.

例 5.22 在实数集上, $\leq n \geq$ 都是全序. 设 S 是非空集合, T 是 S 中所有子集的集合. 则 $\subset n \supset$ 是 T 上的偏序关系.

定义 5.23 设 \preceq 是集合 S 上的偏序关系, $z \in S$. 如果不存在 $x \in S \setminus \{z\}$ 使得 $z \preceq x$, 则称 z 是 S 中关于 \preceq 的极大元. 如果对于任意 $x \in S$, 我们都有 $x \preceq z$. 则称 z 是 S 中关于 \preceq 的最大元. 类似地, 我们可以定义关于偏序的极小元和最小元.

注解 5.24 极小元意味着集合 S 中没有其它元素比它更小. 最小元意味着集合 S 中的其它元素都比它大. 对极大元和最大原有类似的直观描述.

注解 5.25 设 \leq 是集合 S 上的偏序关系, z_1 和 z_2 是关于 \leq 的两个最大元. 则 $z_1 \leq z_2$ 和 $z_2 \leq z_1$. 根据反对称性 $z_1 = z_2$. 故当最大元存在时,它是唯一的. 此时它也是唯一的极大元. 类似的结论也适用于最小元和极小元.

例 5.26 设 $S = \{1, 2, 3\}$, $T \in S$ 的所有真子集组成的集合. 则 $\subset E$ T 上的偏序. 关于该偏序的极大元是

$$\{1,2\},\{2,3\},\{1,3\},$$

没有最大元. 关于该偏序的最小元是 ∅, 也是唯一的极小元. □

6 置换

6.1 置换的定义和乘法

令

$$[n] = \{1, 2, \dots, n\},\$$

 S_n 是从 [n] 到 [n] 的所有双射的集合. 则 $\operatorname{card}(S_n) = n!$.

设 $\sigma \in S_n$ 使得 $\sigma(k) = i_k, k = 1, 2, ..., n$. 我们可以把 σ 表示为

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix},$$

其中 $i_1, i_2, \ldots, i_n \in [n]$, 两两不同. 我们称 σ 是关于 $1, 2, \ldots, n$ 的置换. 设 e 是 [n] 上的恒同映射, 即

$$e = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix},$$

因为双射的复合仍是双射, 所以, 对任意 $\sigma, \tau \in S_n$, $\sigma \circ \tau \in S_n$. 我们把 $\sigma \circ \tau$ 简记为 $\sigma \tau$, 并简称为 σ 和 τ 的积. 由映射复合的性质可知, 对任意 $\sigma, \tau, \delta \in S_n$,

$$(\sigma \tau)\delta = \sigma(\tau \delta)$$
 π $e\sigma = \sigma e = \sigma$.

又因为 σ 是双射, 所以 $\sigma^{-1} \in S_n$ 且

$$\sigma\sigma^{-1} = \sigma^{-1}\sigma = e.$$

例 6.1 设在 S₄ 中

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \quad \not = \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

计算 $\sigma\tau$ 和 $\tau\sigma$,

解. 根据映射复合的定义可知:

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}.$$

和

$$\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}.$$

注解 6.2 在上例中, $\sigma \tau \neq \tau \sigma$. 故 S_n 中的乘法不满足交换律. 特别地,

$$(\sigma\tau)^2 = \sigma\tau\sigma\tau$$

一般不等于 $\sigma^2 \tau^2$.

设 $k \in \mathbb{Z}$, $\sigma \in S_n$. 如果 k > 0, 则

$$\sigma^k := \underbrace{\sigma \circ \cdots \circ \sigma}_{k}.$$

当 k = 0 时, $\sigma^k := e$. 当 k < 0,

$$\sigma^k := \underbrace{\sigma^{-1} \circ \cdots \circ \sigma^{-1}}_{-k}.$$

可直接验证, 对任意 $i, j \in \mathbb{Z}$,

$$\sigma^i \sigma^j = \sigma^{i+j}, \quad \sigma^{ij} = (\sigma^i)^j = (\sigma^j)^i.$$

根据穿衣脱衣规则, 对任意 $\tau \in S_n$,

$$(\sigma \tau)^{-1} = \tau^{-1} \sigma^{-1}$$
.

引理 6.3 设 $\sigma \in S_n$. 则存在 $k \in \mathbb{Z}^+$ 使得 $\sigma^k = e$.

证明. 考虑无穷序列: σ , σ^2 , 则存在 $i, j \in \mathbb{Z}^+$ 且 i < j 使得 $\sigma^j = \sigma^i$. 于是, $\sigma^{j-i} = e$. \square

定义 **6.4** 设 $\sigma \in S_n$. 使得 $\sigma^k = e$ 的最小正整数称为 σ 的阶, 记为 $\operatorname{ord}(\sigma)$.

例 6.5 设

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \in S_4.$$

求 $\operatorname{ord}(\sigma)$.

解. 直接计算得

$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}.$$

进而,

$$\sigma^{3} = \sigma\sigma^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = e.$$

于是, $\operatorname{ord}(\sigma) = 3$.

命题 6.6 设 $\sigma \in S_n$ 且 $k = \operatorname{ord}(\sigma)$. 则对任意 $m \in \mathbb{Z}$, $\sigma^m = e \iff k|m$.

证明. 设 q = quo(m, k), r = rem(m, k). 则

$$\sigma^m = \sigma^{qk+r} = (\sigma^k)^q \sigma^r = \sigma^r.$$

于是, $\sigma^m = e \iff \sigma^r = e$. 因为 $0 \le r < k$, 所以

$$\sigma^m = e \iff r = 0.$$

6.2 循环分解

定义 6.7 设 $\sigma \in S_n$. 如果存在 $i_1, i_2, \ldots, i_k \in [n]$ 两两不同 使得

$$\sigma(i_1) = i_2, \sigma(i_2) = i_3, \dots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1$$

且对任意 $m \in [n] \setminus \{i_1, \ldots, i_k\}$,

$$\sigma(m) = m$$

则称 σ 是长度为k的循环. 我们把这样的循环记为 $(i_1i_2...i_k)$.

注意到

$$(i_1i_2,\ldots,i_k)=(i_2i_3\ldots i_ki_1)=(i_3i_4\ldots i_ki_1i_2)=\cdots$$

此外, 长度为1的循环只有e.

例 6.8 可直接验证循环 $(i_1i_2...i_k)^{-1}=(i_ki_{k-1}...i_2i_1)$.

引理 6.9 设 $\sigma \in S_n$ 是长度为 k 的循环. 则 $\operatorname{ord}(\sigma) = k$.

证明. 设 $\sigma = (i_1 i_2 \dots i_k)$ 且 $m \in \{1, 2, \dots, k-1\}$,则

$$\sigma^m(i_1) = i_{1+m}.$$

故 $\sigma^m \neq e$. 而 $\sigma^k(i_1) = i_1$. 注意到对任意 $\ell \in \{2, \ldots, k\}$,

$$\sigma = (i_{\ell}i_{\ell+1} \dots i_k i_1 \dots i_{\ell-1}).$$

故 $\sigma^k(i_\ell) = i_\ell$. 于是, $\sigma^k = e$. 我们得到 $\operatorname{ord}(\sigma) = k$. 口 恒同映射也称为长度等于 1 的循环, 它是平凡的.

例 6.10 把

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 3 & 2 & 4 & 5 & 7 & 6 & 1 & 8 \end{pmatrix}$$

写成循环之积.

解. $\sigma = (198)(23)(67)$.

设 $\sigma \in S_n$. 定义 $M_{\sigma} = \{i \in [n] \mid \sigma(i) \neq i\}$.

例 6.11 我们有 $M_e = \emptyset$ 和 $M_{(i_1,...,i_k)} = \{i_1,...,i_k\}$.

引理 6.12 设 $\sigma \in S_n$ 且 $i \in M_{\sigma}$. 则 $\sigma(i) \in M_{\sigma}$.

证明. 假设设 $\sigma(i) \notin M_{\sigma}$. 则 $\sigma^{2}(i) = \sigma(i)$. 两边同时作用 σ^{-1} 得 $\sigma(i) = i$, 矛盾. \square

定义 6.13 设 $\sigma, \tau \in S_n$. 如果 $M_{\sigma} \cap M_{\tau} = \emptyset$, 则称 σ 和 τ 是两个互不相交的置换.

引理 6.14 设 $\sigma, \tau \in S_n$ 互不相交. 则 $\sigma\tau = \tau\sigma$.

证明. 如果 $\sigma = e$ 或 $\tau = e$, 则结论显然成立.

设 $\sigma \neq e$ 和 $\tau \neq e$. 令 $i \in M_{\sigma}$. 则 $i \notin M_{\tau}$. 故 $\tau(i) = i$. 从而, $\sigma\tau(i) = \sigma(i)$. 另一方面, 引理6.12 蕴含 $\sigma(i) \in M_{\sigma}$. 故 $\sigma(i) \notin M_{\tau}$. 我们有 $\tau\sigma(i) = \sigma(i)$. 于是, 对任意 $i \in M_{\sigma}$,

$$\sigma \tau(i) = \tau \sigma(i).$$

类似地, 对任意 $j \in M_{\tau}$, $\sigma \tau(j) = \tau \sigma(j)$.

而对任意 $k \in [n] \setminus (M_{\sigma} \cup M_{\tau}),$

$$\sigma \tau(k) = k = \tau \sigma(k)$$

显然成立. 综上所述, $\sigma\tau = \tau\sigma$. \square

命题 **6.15** 设 $\sigma \in S_n \setminus \{e\}$. 则 σ 是有限个两两互不相交的长度大于1的循环之积.

证明. 我们对 $\operatorname{card}(M_{\sigma})$ 归纳.

根据引理 6.12, $\operatorname{card}(M_{\sigma}) > 1$. 如果 $\operatorname{card}(M_{\sigma}) = 2$, 则设 $M_{\sigma} = \{i_1, i_2\}$. 再利用引理 6.12 可知 $\sigma = (i_1 i_2)$. 设对 $2 \leq \operatorname{card}(M_{\sigma}) < m$ 结论都成立. 考虑 $\operatorname{card}(M_{\sigma}) = m$ 的情形. 设 $i_1 \in M_{\sigma}$ 且 $p = \operatorname{ord}(\sigma)$. 则 $\sigma^p(i_1) = i_1$. 于是, 存在最小正整数 k 使得 $\sigma^k(i_1) = i_1$. 则

$$i_1, i_2 := \sigma(i_1), \dots, i_k := \sigma^{k-1}(i_1)$$
 (1)

两两不同. 否则, 存在 $r, s \in \{0, 1, ..., k-1\}$ 使得 r < s 且 $\sigma^s(i_1) = \sigma^r(i_1)$. 则 $\sigma^{s-r}(i_1) = i_1$. 但 0 < s-r < k, 矛盾. 由 (1) 和 $\sigma(i_k) = \sigma^k(i_1) = i_1$ 可知, 循环 $\tau = (i_1 i_2, ..., i_k)$ 满足 $\tau(i_1) = \sigma(i_1), ..., \tau(i_{k-1}) = \sigma(i_{k-1}), \tau(i_k) = i_1 = \sigma(i_k)$. 换言之,

$$\tau^{-1}\sigma(i_1)=i_1,\ldots,\,\tau^{-1}\sigma(i_{k-1})=i_{k-1},\,\tau^{-1}\sigma(i_k)=i_k.$$

令 $\lambda = \tau^{-1}\sigma$. 则 $i_1, \ldots, i_k \notin M_{\lambda}$. 设 $j \in [n] \setminus M_{\sigma}$. 则 $j \notin \{i_1, \ldots, i_k\}$. 故 $\lambda(j) = \tau^{-1}\sigma(j) = \tau^{-1}(j) = j$. 于是,

$$M_{\lambda} \subset M_{\sigma} \setminus \{i_1, \dots, i_k\} \implies \operatorname{card}(M_{\lambda}) < m.$$

如果 $M_{\lambda} = \emptyset$, 则 $\lambda = e$. 故 $\sigma = \tau$ 是循环. 否则, 归纳假设蕴含 $\lambda = \lambda_1 \cdots \lambda_s$, 其中 $\lambda_1, \ldots, \lambda_s$ 是两两互不相交的循环. 又因为 $i_1, \ldots, i_k \notin M_{\lambda}$, 所以每个循环 $\lambda_1, \ldots, \lambda_s$ 与 τ 都不相交. 从而 $\sigma = \tau \lambda = \tau \lambda_1 \cdots \lambda_s$ 即为所求. \square

下面来证明上述定理中循环分解的唯一性.

定理 6.16 设 $\sigma \in S_n \setminus \{e\}$. 则在不计循环出现顺序的前提下, σ 可以唯一地写成有限个两两互不相交的(长度大于1的)循环之积.

证明. 分解的存在性见命题 6.15. 下面证明唯一性. 设

$$\sigma = \tau_1 \cdots \tau_p = \lambda_1 \cdots \lambda_q,$$

其中 τ_1, \ldots, τ_p 是一组两两互不相交的循环, $\lambda_1, \ldots, \lambda_q$ 是另一组互不相交的循环. 我们要证明 p = q 且适当调整下标后, $\tau_1 = \lambda_1, \ldots, \tau_p = \lambda_p$.

我们对 p 归纳. 设 $\tau_1 = (i_1 i_2 \dots i_k)$. 则 $i_1 \in M_\sigma$, 故 i_1 会被唯一的一个第二组的循环移动. 由引理 6.14 可知, 不 妨设 λ_1 移动 i_1 . 则

$$\sigma(i_1) = \tau_1 \tau_2 \cdots \tau_p(i_1) = \tau_1(i_1) = i_2$$

且

$$\sigma(i_1) = \lambda_1 \lambda_2 \cdots \lambda_p(i_1) = \lambda_1(i_1).$$

故 $\lambda_1(i_1) = i_2$. 特别地, i_2 在循环 λ_1 中出现且不在其它循环中出现. 利用上述推理方式可得 $\lambda_1(i_2) = i_3$. 进而

$$\lambda_1(i_j) = i_{j+1}, \ j \in \{3, \dots, k-1\}$$
 \mathbb{H} $\lambda_1(i_k) = i_1.$

于是, $\lambda_1 = \tau_1$. 特别地, 当 p = 1 时, $\sigma = \tau_1 = \lambda_1$.

设 p > 1 且结论对 p - 1 成立. 则根据 $\tau_1 = \lambda_1$, 我们有 $\tau_2 \cdots \tau_p = \lambda_2 \cdots \lambda_q$. 由归纳假设可知, p = q 且在适当调整下标后, $\tau_2 = \lambda_2, \ldots, \tau_p = \lambda_p$. \square

推论 6.17 设 $\sigma \in S_n \setminus \{e\}$ 是互不相交的循环 τ_1, \ldots, τ_m 之积. 则 $\operatorname{ord}(\sigma) = \operatorname{lcm}(\operatorname{ord}(\tau_1), \ldots, \operatorname{ord}(\tau_m))$.

证明. 设 $\ell_i = \operatorname{ord}(\tau_i), i = 1, \ldots, m, \ell = \operatorname{lcm}(\ell_1, \ldots, \ell_m).$ 令

$$\ell = k_i \ell_i$$

其中 $k_i \in \mathbb{Z}^+$, i = 1, 2, ..., m. 第三讲引理 6.11 蕴含

$$\sigma^{\ell} = \tau_1^{\ell} \cdots \tau_m^{\ell} = \tau_1^{\ell_1 k_1} \cdots \tau_m^{\ell_m k_m} = e.$$

设 $k = \operatorname{ord}(\sigma)$. 根据第三讲命题 6.6, $k | \ell$. 我们有

$$\sigma^k = \tau_1^k \cdots \tau_m^k = e.$$

不妨设 $\tau_1(1) \neq 1$. 因为 τ_1 与 τ_2, \ldots, τ_m 都不相交,所以 $\tau_2(1) = \cdots = \tau_m(1) = 1$. 于是, $\tau_1^k(1) = 1$. 故 $\tau_1^k = e$. 根据 第三讲命题 6.6,我们得到 $\ell_1|k$. 同理, $\ell_2|k, \ldots, \ell_m|k$. 故 k 也是 ℓ_1, \ldots, ℓ_k 的公倍数. 再根据 $k|\ell$ 可知, $k = \ell$. □

例 6.18 计算
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 5 & 4 & 6 & 10 & 8 & 2 & 9 & 1 & 7 \end{pmatrix}$$
 的阶.
解. $\sigma = (134689)(25\underline{107}) \Longrightarrow \operatorname{ord}(\sigma) = \operatorname{lcm}(6, 4) = 12.$

命题 **6.19** 设 σ , $(i_1, \ldots, i_k) \in S_n$. 则

$$\sigma(i_1,\ldots,i_k)\sigma^{-1}=(\sigma(i_1),\ldots,\sigma(i_k)).$$

证明. 只要验证: $\sigma(i_1,\ldots,i_k)=(\sigma(i_1),\ldots,\sigma(i_k))\sigma$. 设 $a\in\{1,\ldots,n\}\setminus\{i_1,\ldots,i_k\}$. 则

$$\sigma(i_1,\ldots,i_k)(a) = \sigma(a)$$
 π $(\sigma(i_1),\ldots,\sigma(i_k))\sigma(a) = \sigma(a).$

设
$$j \in \{1, \ldots, k-1\}$$
. 则

$$\sigma(i_1,\ldots,i_k)(i_j)=\sigma(i_{j+1})$$
 Π $(\sigma(i_1),\ldots,\sigma(i_k))\sigma(i_j)=\sigma(i_{j+1}).$

进而,

$$\sigma(i_1,\ldots,i_k)(i_k)=\sigma(i_1)$$
 π $(\sigma(i_1),\ldots,\sigma(i_k))\sigma(i_k)=\sigma(i_1).$

综上所述,
$$\sigma(i_1,\ldots,i_k)=(\sigma(i_1),\ldots,\sigma(i_k))\sigma$$
. \square