第五章 复数域和多项式

7.3 单位根

设 $n \in \mathbb{Z}^+$. 方程 $z^n = 1$ 在 \mathbb{C} 中的根称为n次单位根.

命题 7.5 方程 $z^n = 1$ 在 \mathbb{C} 中有 n 个互不相同的根

$$\epsilon_k = e^{\frac{2k\pi \mathbf{i}}{n}}, \quad k = 0, 1, \dots, n - 1.$$

证明. 直接计算得

$$\epsilon_k^n = e^{2k\pi \mathbf{i}} = 1.$$

故 $\epsilon_0, \epsilon_1, \ldots, \epsilon_{n-1}$ 都是单位根. 设 $k, m \in \{0, 1, \ldots, n-1\}$ 且 $k \leq m$. 如果 $\epsilon_k = \epsilon_m$, 则

$$1 = \epsilon_m \epsilon_k^{-1} = e^{\frac{2(m-k)\pi \mathbf{i}}{n}}.$$

因为 $m-k \in \{0,1,\ldots,n-1\}$, 所以m=k. 故 $\epsilon_0,\epsilon_1,\ldots,\epsilon_{n-1}$ 两两不同. \square

根据第五章第二讲定理 3.19, 方程 $z^n = 1$ 在 \mathbb{C} 中的至 多有 n 个根. 于是, \mathbb{C} 中恰有 n 个互不相同的单位根. 记 U_n 是这些单位根的集合.

命题 7.6 三元组 $(U_n,\cdot,1)$ 是循环群. $U_n=\langle \epsilon_\ell \rangle$ 当且仅当 $\gcd(\ell,n)=1$.

证明. 设 $\epsilon_k, \epsilon_m \in U_n$. 则 $(\epsilon_k \epsilon_m^{-1})^n = \epsilon_k^n (\epsilon_m^n)^{-1} = 1$. 故 $\epsilon_k \epsilon_m^{-1} \in U_n$. 故 $(U_n, \cdot, 1)$ 是 $(\mathbb{C}^*, \cdot, 1)$ 的子群 (第四章第一讲命题 2.24).

注意到:

$$U_n = \langle \epsilon_\ell \rangle \iff \operatorname{ord}(\epsilon_\ell) = n$$
 $\iff \frac{n}{\gcd(n,\ell)} = n \text{ (上学期第四章第一讲推论 2.41)}$
 $\iff \gcd(n,\ell) = 1 \quad \square$

当 $U_n = \langle \epsilon_\ell \rangle$ 时, ϵ_ℓ 称为 n 次本原单位根.

7.4 代数学基本定理

定理 7.7 (代数学基本定理) 设 $f \in \mathbb{C}[x] \setminus \mathbb{C}$. 则 f 在 $\mathbb{C}[x]$ 有根.

上述定理的证明要用到超出本课程范围的知识. 这里不给出证明. 但它的两个推论对下学期的学习比较重要.

推论 7.8 设 $f \in \mathbb{C}[x] \setminus \mathbb{C}$. 则存在互不相同的复数 $\alpha_1, \dots, \alpha_k$ 和非零正整数 m_1, \dots, m_k 使得

$$f = \operatorname{lc}(f)(x - \alpha_1)^{m_1} \cdots (x - \alpha_k)^{m_k}.$$

证明. 设 $n = \deg(f), \ell = \operatorname{lc}(f)$. 我们对 n 归纳.

设n > 1且结论对n - 1次复系数多项式都成立. 由代数学基本定理,存在 $\alpha \in \mathbb{C}$ 使得 $f(\alpha)=0$. 根据余式定理,

$$f(x) = (x - \alpha)g(x),$$

其中 $g \in \mathbb{C}[x]$, $\deg(g) = n - 1$ 且 $\lg(g) = \lambda$. 由归纳假设存在互不相同的复数 $\alpha_1, \dots, \alpha_k$ 和非零正整数 m_1, \dots, m_k 使得

$$g = \lambda (x - \alpha_1)^{m_1} \cdots (x - \alpha_k)^{m_k}.$$

如果 $\alpha \in \{\alpha_1, \ldots, \alpha_k\}$, 则不妨设 $\alpha = \alpha_1$. 由此得出

$$f(x) = \lambda (x - \alpha_1)^{m_1 + 1} \cdots (x - \alpha_k)^{m_k}.$$

否则

$$f(x) = \lambda(x - \alpha)(x - \alpha_1)^{m_1} \cdots (x - \alpha_k)^{m_k}$$
. \square

该推论说明 $\mathbb{C}[x]$ 中的不可约元是零次或者一次的多项式,每个复系数多项式在 \mathbb{C} 中的根的个数(计算重数)与其次数相同.

推论 7.9 在 $\mathbb{R}[x]$ 中的不可约元的次数至多是二次.

证明. 假设 $f(x) = f_n x^n + f_{n-1} x^{n-1} + \cdots + f_0 \in \mathbb{R}[x]$ 是不可约的且 n > 2 和 $f_n \neq 0$. 因为 f 也是复系数多项式, 所以代数学基本定理蕴含 f 由复根 α . 注意到 $\alpha \notin \mathbb{R}$. 否则

由余式定理 f 会有一次实系数因子 $x - \alpha$, 与 f 的不可约性矛盾. 特别地, $\bar{\alpha} \neq \bar{\alpha}$.

因为实数的共轭是它自身, 所以

$$0 = f(\alpha) = \overline{f(\alpha)} = \sum_{i=0}^{n} \overline{f_i} \bar{\alpha}^i = \sum_{i=0}^{n} f_i \bar{\alpha}^i = f(\bar{\alpha}).$$

故 f 由两个互不相同的复根 α 和 $\bar{\alpha}$. 因为 $\bar{\alpha} \neq \bar{\alpha}$, 所以 $x-\alpha$ 与 $x-\bar{\alpha}$ 不相伴. 由第二讲命题 6.27, $g:=(x-\alpha)(x-\bar{\alpha})$ 在 $\mathbb{C}[x]$ 中整除 f. 注意到 $f,g\in\mathbb{R}[x]$, 存在 $h\in\mathbb{R}[x]$ 使得 f=gh. 因为 $\deg(f)>2$ 和 $\deg(g)=2$, 所以 f 在 $\mathbb{R}[x]$ 中可约. 矛盾. \square

该推论说明 $\mathbb{R}[x] \setminus \mathbb{R}$ 中的多项式, 都是 $\mathbb{R}[x]$ 中若干一次或二次不可约多项式的乘积.

7.5 应用举例

例 7.10 设循环矩阵

$$A = \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & \cdots & a_{n-3} & a_{n-2} \\ a_{n-2} & a_{n-1} & \cdots & a_{n-4} & a_{n-3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & \cdots & a_{n-1} & a_0 \end{pmatrix} \in M_n(\mathbb{R}).$$

计算 A 的行列式. 当矩阵 A 可逆时, 求 A^{-1} .

解. 设 $\epsilon_0, \ldots, \epsilon_{n-1}$ 是 $n \wedge n$ 次单位根. 令

$$f = a_0 + a_1 x + \dots + a_{n-2} x^{n-2} + a_{n-1} x^{n-1} \in \mathbb{C}[x].$$

对 $k \in \{0, 1, ..., n-1\}$, 利用 $\epsilon_k^n = 1$ 得到

$$f(\epsilon_k) = a_0 + a_1 \epsilon_k + \dots + a_{n-2} \epsilon_k^{n-2} + a_{n-1} \epsilon_k^{n-1},$$

$$\epsilon_k f(\epsilon_k) = a_{n-1} + a_0 \epsilon_k + \dots + a_{n-3} \epsilon_k^{n-2} + a_{n-2} \epsilon_k^{n-1},$$

$$\epsilon_k^2 f(\epsilon_k) = a_{n-2} + a_{n-1} \epsilon_k + \dots + a_{n-4} \epsilon_k^{n-2} + a_{n-3} \epsilon_k^{n-1},$$

:

$$\epsilon_k^{n-1} f(\epsilon_k) = a_1 + a_2 \epsilon_k + \dots + a_{n-1} \epsilon_k^{n-2} + a_0 \epsilon_k^{n-1}.$$

利用矩阵写成

$$f(\epsilon_k) \begin{pmatrix} 1 \\ \epsilon_k \\ \epsilon_k^2 \\ \vdots \\ \epsilon_k^{n-1} \end{pmatrix} = A \begin{pmatrix} 1 \\ \epsilon_k \\ \epsilon_k^2 \\ \vdots \\ \epsilon_k^{n-1} \end{pmatrix}, \quad k = 0, 1, \dots, n-1.$$

设

$$V = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \epsilon_0 & \epsilon_1 & \cdots & \epsilon_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ \epsilon_0^{n-1} & \epsilon_1^{n-1} & \cdots & \epsilon_{n-1}^{n-1} \end{pmatrix}.$$

则 $V \operatorname{diag}(f(\epsilon_0), \ldots, f(\epsilon_{n-1})) = AV$. 由 Vandermonde 行列 式可知, V 可逆. 故

$$A = V \operatorname{diag}(f(\epsilon_0), \dots, f(\epsilon_{n-1}))V^{-1}.$$

两边取行列式得

$$\det(A) = f(\epsilon_0) \cdots f(\epsilon_{n-1}).$$

而 A 可逆当且仅当任何 n 次单位根都不是 f 的根. 此时,

$$A^{-1} = V \operatorname{diag}(f(\epsilon_0)^{-1}, \dots, f(\epsilon_{n-1})^{-1})V^{-1}.$$

例 7.11 设

$$H = \left\{ \begin{pmatrix} u & v \\ -\bar{v} & \bar{u} \end{pmatrix} \mid u, v \in \mathbb{C} \right\}.$$

则 $(H,+,O,\cdot,E)$ 是 $M_2(\mathbb{C})$ 中的非交换子环,且 H 中的每个非零元在 H 中有可逆元.这是数学史上第一个斜域 (skew-field), 称为 Hamilton 四元数系.

验证如下:

$$(i)$$
 设 $W = \begin{pmatrix} u & v \\ -\bar{v} & \bar{u} \end{pmatrix}$ 和 $Z = \begin{pmatrix} x & y \\ -\bar{y} & \bar{x} \end{pmatrix}$, 其中 $u, v, x, y \in \mathbb{C}$.

我们有

$$W - Z = \begin{pmatrix} u - x & v - y \\ -\bar{v} + \bar{y} & \bar{u} - \bar{x} \end{pmatrix} = \begin{pmatrix} u - x & v - y \\ -\overline{v - y} & \overline{u - x} \end{pmatrix} \in H.$$

故 (H,+,O) 是 $(M_2(\mathbb{C}),+,O)$ 的子群. 计算

$$WZ = \begin{pmatrix} ux - v\bar{y} & uy + v\bar{x} \\ -\bar{v}x - \bar{u}\bar{y} & -\bar{v}y + \bar{u}\bar{x} \end{pmatrix} = \begin{pmatrix} ux - v\bar{y} & uy + v\bar{x} \\ -\overline{(uy + v\bar{x})} & \overline{ux - v\bar{y}} \end{pmatrix} \in H.$$

注意到

$$E_2 = \begin{pmatrix} 1 & 0 \\ -\bar{0} & \bar{1} \end{pmatrix} \in H.$$

故 H 是 $M_2(\mathbb{C})$ 的子环.

(ii) 设
$$A = \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix}$$
 和 $B = \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}$. 则 $A, B \in H$.

直接计算得

$$AB = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad BA = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

因为 $AB \neq BA$, 所以 H 不是交换环.

(iii) 设 $W \neq O$. 则 $\det(W) = |u|^2 + |v^2| \neq 0$. 故 W 是可逆矩阵. 在 $M_n(\mathbb{C})$ 中,

$$W^{-1} = \frac{1}{u\bar{u} + v\bar{v}} \begin{pmatrix} \bar{u} & -v \\ \bar{v} & u \end{pmatrix} \in H.$$

故W在H中可逆.

例 7.12 设
$$\mathbb{Z}[\sqrt{-5}] = \{x + y\sqrt{-5} \mid x, y \in \mathbb{Z}\}.$$

断言. $\mathbb{Z}[\sqrt{-5}]$ 是整环, 且它的可逆元是 ± 1 .

断言的证明. 设 $a,b \in \mathbb{Z}[\sqrt{-5}]$. 则存在整数 k,ℓ,m,n 使得

$$a = k + \ell \sqrt{-5}$$
 for $b = m + n \sqrt{-5}$.

则

$$a - b = (k - m) + (\ell - n)\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}].$$

故 $(\mathbb{Z}[\sqrt{-5}],+,0)$ 是交换群. 因为

$$ab = (km - 5\ell n) + (kn + \ell m)\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$$

且

$$1 = 1 + 0\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}],$$

所以 $(\mathbb{Z}[\sqrt{-5}], +, 0)$ 是交换的含幺半群.于是, $\mathbb{Z}[\sqrt{-5}]$ 是交换环.又因为 $\mathbb{Z}[\sqrt{-5}] \in \mathbb{C}$, 所以它是整环.

再设 ab=1. 则 |a||b|=1. 故 $|a|\leq 1$ 或 $|b|\leq 1$. 不妨 设 $|a|\leq 1$. 故

$$\sqrt{k^2 + 5\ell^2} \le 1 \implies k^2 = 1 \text{ If } \ell = 0 \implies a = \pm 1.$$

从而, $b = \pm 1$. 断言成立.

下面说明 $\mathbb{Z}[\sqrt{-5}]$ 不是唯一因子分解整环. 注意到

$$9 = 3 \cdot 3 = (2 + \sqrt{-5})(2 - \sqrt{-5}).$$

下面我们证明 3 和 $2 \pm \sqrt{-5}$ 都是 $\mathbb{Z}[\sqrt{-5}]$ 中的不可约元.

设 $3=(m+n\sqrt{-5})(k+\ell\sqrt{-5})$, 其中 $m,n,k,\ell\in\mathbb{Z}$. 两边取共轭得 $3=(m-n\sqrt{-5})(k-\ell\sqrt{-5})$. 于是

$$9 = (m^2 + 5n^2)(k^2 + 5\ell^2).$$

但 $m^2 + 5n^2 = 3$ 无整数解. 故 $m^2 + 5n^2 = 1$ 或 $m^2 + 5n^2 = 9$. 前者意味着 $m = \pm 1$, n = 0, 即 $m + n\sqrt{-5} = \pm 1$ 是可逆元. 而后者意味着 $k + \ell\sqrt{-5}$ 是可逆元. 故 3 不可约.

类似地,设 $2+\sqrt{-5}=(m+n\sqrt{-5})(k+\ell\sqrt{-5})$,其中 $m,n,k,\ell\in\mathbb{Z}$.两边取共轭得

$$2 - \sqrt{-5} = (m - n\sqrt{-5})(k - \ell\sqrt{-5}).$$

于是, $9 = (m^2 + 5n^2)(k^2 + 5\ell^2)$. 同样的推理可知 $2 + \sqrt{-5}$ 不可约. 同理 $2 - \sqrt{-5}$ 也不可约. 显然 3 与 $2 \pm \sqrt{-5}$ 都不相伴. 故 $\mathbb{Z}[\sqrt{-5}]$ 不是唯一因子分解整环.

第一章 空间与形式

1 线性空间

1.1 抽象的线性空间

定义 1.1 设 $(V, +, \mathbf{0})$ 是交换群, $(F, +, 0, \cdot, 1)$ 域. 设数乘是映射:

数乘:
$$F \times V \longrightarrow V$$

 $(\alpha, \mathbf{v}) \mapsto \alpha \mathbf{v}$

满足以下规律

(i)
$$\forall \alpha, \beta \in F, \mathbf{v} \in V, (\alpha \beta) \mathbf{v} = \alpha(\beta \mathbf{v});$$

(ii)
$$\forall \mathbf{v} \in V$$
, $1\mathbf{v} = \mathbf{v}$;

(iii)
$$\forall \alpha, \beta \in F, \mathbf{v} \in V, (\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v};$$

(iv)
$$\forall \alpha \in F, \mathbf{u}, \mathbf{v} \in V, \ \alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}.$$

我们称 $(V, +, \mathbf{0},$ 数乘, 1) 是域 F 上的线性空间或向量空间. 域 F 称为 V 的基域.

例 1.2 (坐标空间). 设 F 是域, F^n 是 n 维坐标空间. 具体实例 \mathbb{R}^n , \mathbb{Q}^n , \mathbb{C}^n , \mathbb{Z}_p^n , 其中 p 是素数. 值得注意的是 \mathbb{Z}_p^n 共有 p^n 个元素.

例 1.3 (矩阵空间). 设 F 是域, $F^{m\times n}$ 是 F 上 m 行 n 列 的矩阵的集合. 关于矩阵的加法和数乘, $F^{m\times n}$ 是 F 上的线性空间.

例 1.4 (代数空间). 设 R 是环(不一定交换). 再设 $F \subset R$ 是 R 的子域. 则 R 是 F 上的线性空间. 验证如下: 首先, (R,+,0) 是交换群. 由 R 中的乘法结合律可知

$$\forall \alpha, \beta \in F, r \in R, (\alpha \beta)r = \alpha(\beta r).$$

具体实例: \mathbb{C} 是 \mathbb{R} 上的线性空间, \mathbb{R} 是 \mathbb{Q} 上的线性空间, $F[x_1, \ldots, x_n]$ 是域 F 上的线性空间. Hamilton 四元数环是 \mathbb{C} 上的线性空间. 设 K 是 F 的子域. 则 F 上的线性空间也是 K 上的线性空间.

例 1.5 (映射空间) 设 S 是非空集合, V 是域 F 上的线性空间. 令 $\mathrm{Map}(S,V)$ 是从 S 到 V 的所有映射的集合. 对任意 $f,g\in\mathrm{Map}(S,V)$, $\alpha\in F$ 定义:

令 $\tilde{\mathbf{0}}: S \longrightarrow V$ 是把 S 中的元素都映成 $\mathbf{0}$ 的映射. 则

$$(\operatorname{Map}(S, V), +, \tilde{\mathbf{0}}, \, \mathfrak{D}, \, \mathfrak{m}, \, 1)$$

是线性空间. 实例 $\mathrm{Map}(\mathbb{R},\mathbb{R})$ 是线性空间.

命题 1.6 设 V 是域 F 上的线性空间. 设 $\lambda \in F, \mathbf{v} \in V$. 则

- (i) $\lambda \mathbf{0} = \mathbf{0}$;
- (ii) $\lambda \mathbf{v} = \mathbf{0}$ 当且仅当 $\lambda = 0$ 或 $\mathbf{v} = \mathbf{0}$;
- (iii) $(-1)\mathbf{v} = -\mathbf{v}$.

证明. (i) 直接计算得

$$\lambda \mathbf{0} = \lambda (\mathbf{0} + \mathbf{0}) = \lambda \mathbf{0} + \lambda \mathbf{0} \implies \lambda \mathbf{0} = \mathbf{0}.$$

(ii) 设 $\lambda \mathbf{v} = \mathbf{0}$ 且 $\lambda \neq 0$. 则

$$\mathbf{v} = 1\mathbf{v} = (\lambda^{-1}\lambda)\mathbf{v} = \lambda^{-1}(\lambda\mathbf{v}) = \lambda^{-1}\mathbf{0} \stackrel{(i)}{=} \mathbf{0}.$$

当 $\lambda = 0$ 时,反之,由(i)只要证明0**v** = **0**. 直接计算得

$$0\mathbf{v} = (0+0)\mathbf{v} = 0\mathbf{v} + 0\mathbf{v} \implies 0\mathbf{v} = \mathbf{0}.$$

(iii) 直接计算得

$$\mathbf{0} \stackrel{(ii)}{=} 0\mathbf{v} = (1 + (-1))\mathbf{v}$$
$$= 1\mathbf{v} + (-1)\mathbf{v} = \mathbf{v} + (-1)\mathbf{v}$$
$$\implies (-1)\mathbf{v} = -\mathbf{v}. \quad \Box$$

例 1.7 证明: $(\mathbb{Z}, +, 0)$ 不可能是任何域 F 上的线性空间. 证明. 设结论不成立. 再设 0_F 和 1_F 分别是 F 中的加法和乘法单位. 先考虑 F 的特征不等于 2 的情形. 此时, $\lambda := 1_F + 1_F \neq 0_F$. 于是 λ^{-1} 存在. 通过直接计算得:

$$2 = 1 + 1 = (1_F 1 + 1_F 1) = (1_F + 1_F)1 = \lambda 1$$

$$\implies \lambda^{-1} 2 = 1$$

$$\implies \lambda^{-1} (1+1) = 1$$

$$\implies \lambda^{-1} 1 + \lambda^{-1} 1 = 1.$$

矛盾, 因为两个相同整数之和不可能等于 1.

再设F的特征等于2的情形.则

$$2 = 1 + 1 = (1_F 1 + 1_F 1) = (1_F + 1_F)1 = 0_F 1 = 0.$$
矛盾.

1.2 线性相关性

设 $\alpha_1, \ldots, \alpha_k \in F$ 和 $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$. 则 $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k$ 称 为 $\mathbf{v}_1, \ldots, \mathbf{v}_k$ 在 F 上的一个线性组合. 如果存在不全为零 的 $\alpha_1, \ldots, \alpha_k$ 使得上述线性组合等于 $\mathbf{0}$, 则称 $\mathbf{v}_1, \ldots, \mathbf{v}_k$ 在 F 上线性相关. 否则, 称 $\mathbf{v}_1, \ldots, \mathbf{v}_k$ 是在 F 上线性无关.

上学期讲的关于线性组合, 线性相关和无关的结论在抽象线性空间中都成立. 我们回忆线性组合引理 (上学期第五周讲义引理 1.13).

引理 1.8 设 $\mathbf{v}_1, \dots, \mathbf{v}_k$; $\mathbf{w}_1, \dots, \mathbf{w}_\ell$ 是 V 中两组向量. 如果 $k > \ell$ 且 \mathbf{v}_i 是 $\mathbf{w}_1, \dots, \mathbf{w}_\ell$ 的线性组合, $i = 1, \dots, k$. 则 $\mathbf{v}_1, \dots, \mathbf{v}_k$ 线性相关.

该定理的另一个证明见席南华《基础代数》定理1.18.

我们通过(推广的)矩阵乘法的记号再次证明线性组合引理. 设 $A = (a_{i,j}) \in F^{m \times n}, \mathbf{x}_1, \dots, \mathbf{x}_m \in V$. 记

$$(\mathbf{x}_1,\ldots,\mathbf{x}_m)A = \left(\sum_{i=1}^m a_{i,1}\mathbf{x}_i,\ldots,\sum_{i=1}^m a_{i,n}\mathbf{x}_i\right).$$

可直接验证, 对任意 $B \in F^{n \times s}$,

$$((\mathbf{x}_1,\ldots,\mathbf{x}_m)A)B=(\mathbf{x}_1,\ldots,\mathbf{x}_m)(AB).$$

根据线性组合引理的条件, 存在 $A \in F^{\ell \times k}$ 使得

$$(\mathbf{v}_1,\ldots,\mathbf{v}_k)=(\mathbf{w}_1,\ldots,\mathbf{w}_\ell)A.$$

因为 $k > \ell$, 所以存在 $\alpha_1, \ldots, \alpha_k \in F$ 不全为零, 使得

$$A \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} =: \mathbf{0}_{\ell}.$$

由此得出,

$$(\mathbf{v}_1,\ldots,\mathbf{v}_k)$$
 $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} = (\mathbf{w}_1,\ldots,\mathbf{w}_\ell)A \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} = (\mathbf{w}_1,\ldots,\mathbf{w}_\ell)\mathbf{0}_\ell.$

故 $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k = \mathbf{0}$, 即 $\mathbf{v}_1, \ldots, \mathbf{v}_k$ 线性相关. \square

定义 1.9 设 $S \neq V$ 的一个非空子集. 如果 S 中存在一个有限子集是线性相关的,则称 S 是一个线性相关集. 否则,称 S 是线性无关集.

例 1.10 令 V = F[x]. 则 $\{1, x, x^2, \ldots\}$ 是一个线性无关集.

例 1.11 在 $Map(\mathbb{R}, \mathbb{R})$ 中, $sin(x)^2$, $cos(x)^2$, 1 是线性相关的 $(:: sin(x)^2 + cos(x)^2 = 1)$.

例 1.12 设 $e^{\alpha_1 x}, \dots, e^{\alpha_n x} \in \operatorname{Map}(\mathbb{R}, \mathbb{R})$, 其中 $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ 两两不同. 证明: $e^{\alpha_1 x}, \dots, e^{\alpha_n x}$ 在 \mathbb{R} 上线性无关. 证明. 设 $\beta_1, \dots, \beta_n \in \mathbb{R}$ 使得

$$\beta_1 e^{\alpha_1 x} + \dots + \beta_n e^{\alpha_n x} = 0.$$

对上式求 k 阶导数得

$$\beta_1 \alpha_1^k e^{\alpha_1 x} + \dots + \beta_n \alpha_n^k e^{\alpha_n x} = 0.$$

取 k = 0, 1, ..., n - 1, 我们有

$$\underbrace{\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_1^{n-1} & \alpha_2^{n-1} & \alpha_3^{n-1} & \cdots & \alpha_n^{n-1}
\end{pmatrix}}_{A}
\begin{pmatrix}
\beta_1 e^{\alpha_1 x} \\
\beta_2 e^{\alpha_2 x} \\
\vdots \\
\beta_n e^{\alpha_n x}
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}.$$

因为 $det(A) \neq 0$, 所以 A 可逆. 故

$$\beta_1 e^{\alpha_1 x} = \beta_2 e^{\alpha_2 x} = \dots = \beta_2 e^{\alpha_n x} = 0 \Longrightarrow \beta_1 = \beta_2 = \dots = \beta_n = 0.$$

故, $e^{\alpha_1 x}, \dots, e^{\alpha_n x}$ 在 \mathbb{R} 上线性无关. \square

例 1.13 设 $a = \sqrt{-1}$ 和 $b = \sqrt{-2}$. 则 a,b 在 \mathbb{R} 上线性相关. 这是因为 $\sqrt{2}a - b = 0$. 但它们在 \mathbb{Q} 上线性无关. 否则, 存在 $q \in \mathbb{Q}$ 使得 b = qa. 于是, $q = \sqrt{2}$. 矛盾.

例 1.14 设 $f, g \in C^1(a, b)$. 证明:

(i) 如果 f, g 在 \mathbb{R} 上线性相关,则对任意 $x \in (a, b)$,

$$W_2 = \det \begin{pmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{pmatrix} = 0.$$
 W_2 称为二阶 Wronskian.

(ii) 设 f 在 (a,b) 上恒正. 则 (i) 的逆命题成立.

证明. (i) 设 $\lambda, \mu \in \mathbb{R}$, 不全为零, 使得对任意 $x \in (a, b)$ 使 得 $\lambda f(x) + \mu g(x) = 0$. 则 $\lambda f'(x) + \mu g'(x) = 0$. 于是

$$\begin{pmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

对任意 $x \in (a,b)$ 成立. 于是, $W_2 = 0$.

(ii) 注意到 f 在 (a,b) 上恒正蕴含 $1/f(x) \in C^1(a,b)$. 因为 W_2 在 (a,b) 上恒为零, 所以在 (a,b) 上

$$\left(\frac{g}{f}\right)' = 0.$$

故存在 $c \in \mathbb{R}$ 使得 g/f = c, 即 g - cf = 0 在 (a,b) 上成立. 由此得出 f,g 在 \mathbb{R} 上线性相关. \square

1.3 子空间

符号约定. 在本小节和以后的各小节中V是域F上的线性空间.

定义 1.15 设 W 是 V 的非空子集. 如果对于任意的 $\alpha, \beta \in F$, $\mathbf{x}, \mathbf{y} \in W$, 我们有 $\alpha \mathbf{x} + \beta \mathbf{y} \in W$, 则称 W 是 V 的子空间.

每个子空间都是线性空间.

- **例 1.16** (i) 设 $\phi: F^n \longrightarrow F^m$ 是线性映射. 则 $\ker(\phi)$ 是 F^n 的子空间, $\operatorname{im}(\phi)$ 是 F^m 的子空间.
 - (ii) 设 $SM_n(F)$ 是 F 上所有 n 阶对称方阵的集合, $SSM_n(F)$ 是 F 上所有 n 阶斜对称方阵的集合. 则它们都是 $M_n(F)$ 上的子空间.

验证如下: 设 $A, B \in SM_n(F), \alpha, \beta \in F$. 我们有

$$(\alpha A + \beta B)^t = \alpha A^t + \beta B^t = \alpha A + \beta B \implies \alpha A + \beta B \in SM_n(F).$$

斜对称情形类似.

- (iii) 设 $F[x]^{(d)} = \{ p \in F[x] | \deg(p) < d \}$. 则 $F[x]^{(d)}$ 是 F[x] 的子空间.
- (iv) 闭区间 [a,b] 上的连续函数的集合 C[a,b] 和连续可微 函数的集合 $C^1[a,b]$ 是 $\mathrm{Map}([a,b],\mathbb{R})$ 的子空间.

线性空间 V 中的任意个子空间的交仍是子空间, 其证明与上学期第二章第一讲命题 1.19 类似. 设 V_1, \ldots, V_k 是 V 的子空间, 定义

 $V_1+V_2+\cdots+V_k = \{\mathbf{v}_1+\mathbf{v}_2+\cdots+\mathbf{v}_k \mid \mathbf{v}_1 \in V_1, \mathbf{v}_2 \in V_2, \dots, \mathbf{v}_k \in V_k\}.$

则 $V_1 + V_2 + \cdots + V_k$ 是子空间. 称之为 V_1, \ldots, V_k 的和. 验证见上学期第二章第一讲命题 1.23.