第二章 线性算子

根据命题 7.2 非零 \mathbf{v} 是 \mathbf{A} 特征向量当且仅当存在 $\lambda \in F$ 使得 $\mathbf{A}(\mathbf{v}) = \lambda \mathbf{v}$. 我们称 λ 是 关于特征向量 \mathbf{v} 的特征值 (eigenvalue). 简称 \mathbf{A} 的特征值. 反之, 设 $\lambda \in F$ 是 \mathbf{A} 的特征值. 令

$$V^{\lambda} = \{ \mathbf{x} \in V \, | \, \mathcal{A}(\mathbf{x}) = \lambda \mathbf{x} \}$$

称为A关于 λ 的特征子空间(eigenspace). 下面我们来验证 V^{λ} 是A-子空间.

设 $\alpha, \beta \in F, \mathbf{x}, \mathbf{y} \in V^{\lambda}$. 则

$$\mathcal{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathcal{A}(\mathbf{x}) + \beta \mathcal{A}(\mathbf{y}) = \alpha \lambda \mathbf{x} + \beta \lambda \mathbf{y} = \lambda(\alpha \mathbf{x} + \beta \mathbf{y}).$$

由此可知 $\alpha \mathbf{x} + \beta \mathbf{y} \in V^{\lambda}$. 即 V^{λ} 是子空间. 因为

$$\mathcal{A}(\mathbf{x}) = \lambda \mathbf{x} \in V^{\lambda},$$

所以 V^{λ} 是 A 不变的.

例 7.4 设 $A = \lambda \mathcal{E}, \lambda \in F$. 则 A 的唯一特征值是 λ 且 $V^{\lambda} = V$.

设 $A = A^2$ 且 A 既不等于 \mathcal{E} 也不等于 \mathcal{O} . 则 A 不可逆. 故 0 是它的特征值且 $V^0 = \ker(A)$.

再设 $\lambda \in F \setminus \{0\}$ 是 A 的特征值和 \mathbf{v} 是其对应的特征向量. 则 $A(\mathbf{v}) = \lambda \mathbf{v}$ 故 $A^2(\mathbf{v}) = \lambda A(\mathbf{v})$. 因为 $A = A^2$,

所以 $\lambda \mathbf{v} = \lambda^2 \mathbf{v}$. 故 $\lambda = 1$. 可直接验证 $\operatorname{im}(\mathcal{A})$ 中关于的非零向量都是关于 1 的特征向量. 因为 $\mathcal{A} \neq \mathcal{O}$, 所以 $\operatorname{im}(\mathcal{A}) \neq \{\mathbf{0}\}$. 故 1 是 \mathcal{A} 的特征值且 $\operatorname{im}(\mathcal{A}) \subset V^1$. 而 $V^1 \subset \operatorname{im}(\mathcal{A})$ 是显然的. 故 $V^1 = \operatorname{im}(\mathcal{A})$.

设 $k \in \mathbb{Z}^+$ 使得 $A^k = \mathcal{O}$ 且 $A \neq \mathcal{O}$. 因为 A 不可逆, 所以 0 是 A 的特征值且 $V^0 = \ker(cA)$. 再设 $\lambda \in F \setminus \{0\}$ 是 A 的特征值和 \mathbf{v} 是其对应的特征向量. 则 $A^k(\mathbf{v}) = \lambda^k \mathbf{v} = \mathbf{0}$. 故 $\lambda = 0$, 矛盾. 由此可知, 0 是 A 唯一的特征值且对应的特征子空间是 $V^0 = \ker(A)$.

当我们把矩阵 $A \in M_n(F)$ 看成 $\mathcal{L}(F^n)$ 中由 $A(\mathbf{x}) = A\mathbf{x}$ 定义得线性算子时, 我们同样有矩阵 A 的特征向量, 特征值和特征子空间的概念.

7.2 特征多项式

设 $A \in M_n(F)$, $\mathbf{x} = (x_1, \dots, x_n)^t \in F^n \setminus \{\mathbf{0}\}$. 则存在 $\lambda \in F$ 使得 $A\mathbf{x} = \lambda \mathbf{x}$, 即 \mathbf{x} 是 A的特征向量, 当且仅当

$$\lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \iff (\lambda E - A) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

由此推出 \mathbf{x} 是 \mathbf{A} 的特征向量蕴含 $\det(\lambda E - A) = 0$.

定义 7.5 设 $A \in M_n(F)$, $t \neq F$ 上的未定元. 多项式

$$\det(tE - A) \in F[t]$$

称为 A 的特征多项式, 记为 $\chi_A(t)$.

定义 7.6 设 $A \in M_n(F)$. 特征多项式 χ_A 在 F 中的根 称为 A 的特征根 (eigenroots). 这些特征根的集合记为 $\operatorname{spec}_F(A)$, 称为 A 在 F 中的谱 (spectrum).

矩阵的特征根就是矩阵的特征值.

例 7.7 设实二阶矩阵

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

求 A和 B的所有特征根和特征向量.

解. 直接计算得

$$\chi_A(t) = \det(tE - A) = \det\begin{pmatrix} t & -1 \\ -1 & t \end{pmatrix} = t^2 - 1$$

和

$$\chi_B(t) = \det(tE - B) = \det\begin{pmatrix} t & 1 \\ -1 & t \end{pmatrix} = t^2 + 1.$$

于是, $\operatorname{spec}_{\mathbb{R}}(A) = \{1, -1\}$, $\operatorname{spec}_{\mathbb{R}}(B) = \emptyset$. 从而 B 没有实特征根, 从而没有特征向量和特征子空间.

设特征根 $\lambda_1 = 1$. 它对应的特征子空间是方程组

$$(\lambda_1 E - A) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

的解空间. 即方程组

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

的解空间. 解方程组得 $V^{\lambda_1} = \langle (1,1)^t \rangle$. 类似地, 特征根 $\lambda_2 = -1$ 对应的特征子空间是 $V^{\lambda_2} = \langle (1,-1)^t \rangle$.

例 7.8 设上例中矩阵 B 是复矩阵. 求它的特征值和特征向量.

解. 由上例可知.

$$\chi_B(t) = t^2 + 1.$$

于是, $\operatorname{spec}_{\mathbb{C}}(B) = \{\sqrt{-1}, -\sqrt{-1}\}$. 设特征根 $\lambda_1 = \sqrt{-1}$. 它对应的特征子空间是方程组

$$(\lambda_1 E - A) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

的解空间. 即方程组

$$\begin{pmatrix} \sqrt{-1} & 1 \\ -1 & \sqrt{-1} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

的解空间. 解方程组得 $V^{\lambda_1} = \langle (1, -\sqrt{-1})^t \rangle$. 类似地, 特征根 $\lambda_2 = -\sqrt{-1}$ 对应的特征子空间是 $V^{\lambda_2} = \langle (1, \sqrt{-1})^t \rangle$.

设 $\chi_A(t) = \det(tE - A) \in F[t]$. 则 \mathbf{x} 是 A 的特征向量 蕴含着它对应的特征值 λ 是 $\chi_A(t)$ 的根. 反之, 设 $\lambda \in F$ 是 $\chi_A(t)$ 的根. 则方程组

$$(\lambda E - A) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

由非零解 $(\alpha_1, \ldots, \alpha_n)$. 于是, $\mathbf{v} = \alpha_1 \mathbf{e}_1 + \cdots + \alpha_n \mathbf{e}_n$ 满足 $\mathcal{A}(\mathbf{v}) = \lambda \mathbf{v}$. 由此推出 $\lambda \in F$ 是 $\chi_A(t)$ 的根当且仅当 λ 是 \mathcal{A} 的特征值.

定义 7.9 设 $A \in M_n(F)$, $t \in F$ 上的未定元. 多项式

$$\det(tE - A) \in F[t]$$

称为 A 的特征多项式, 记为 $\chi_A(t)$.

命题 7.10 矩阵特征多项式是相似不变量.

证明. 设 $A, B \in M_n(F)$ 且 $A \sim_s B$. 则存在 $P \in GL_n(F)$ 使得 $B = P^{-1}AP$. 直接计算得

$$\det(tE-B) = \det(tE-P^{-1}AP) = \det(P^{-1}(tE-A)P) = \det(tE-A).$$

$$\mathbb{P}_{A} = \chi_{B}. \square$$

定义 7.11 设 $A \in M_n(F)$. 特征多项式 χ_A 在 F 中的根 称为 A 的特征根 (eigenroots). 这些特征根的集合记为 $\operatorname{spec}_F(A)$, 称为 A 在 F 中的谱 (spectrum).

矩阵的特征根就是矩阵的特征值. 由命题 7.10 可知, $\operatorname{spec}_F(A)$ 也是相似不变量.

命题 **7.12** 设 $A \in M_n(F)$,

$$\chi_A = t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0, \quad a_i \in F.$$

则 $a_{n-1} = -\text{tr}(A)$ 和 $a_n = (-1)^n \det(A)$. 特别地, A 可逆当且仅当 0 不是 A 的特征根.

证明. 设 $A = (a_{i,j})_{n \times n}$. Note that

$$\chi_A = \det \begin{pmatrix} t - a_{1,1} & -a_{1,2} & \cdots & -a_{1,n} \\ -a_{2,1} & t - a_{2,2} & \cdots & -a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n,1} & -a_{n,2} & \cdots & t - a_{n,n} \end{pmatrix}.$$

故 $\chi_A = (t - a_{1,1})(t - a_{2,2}) \cdots (t - a_{n,n}) + p$, 其中 $\deg(p) < n - 1$. 于是 $\chi_A = t^n - \operatorname{tr}(A)t^{n-1} + q$, 其中 $\deg(q) < n - 1$. 因为 $\chi_A(0) = \det(-A)$, 所以 $a_n = (-1)^n \det(A)$. 进而, $\chi_A(0) \neq 0$ 当且仅当 $\det(A) \neq 0$, 即 A 可逆. \square

定义 7.13 设 $A \in \mathcal{L}(V)$, $\mathbf{e}_1, \dots, \mathbf{e}_n$ 是 V 的一组基, A 在 该基下的矩阵等于 A. 则 $\det(tE-A)$ 称为 A 的特征多项 式 $(characteristic\ polynomial)$, 记为 χ_A . 特征多项式 $\chi_A(t)$ 在 F 中所有根的集合记为 $\operatorname{spec}_F(A)$, 称为 A 的在 F 中的 谱 (spectrum)

本节中关于矩阵特征向量和特征值的结果可以翻译成算子的语言, 表述如下设 $A \in \mathcal{L}(V)$.

- 1. χ_{A} 是良定义的 (命题 7.10).
- 2. χ_A 是次数为 dim(V) 的首一多项式, A 可逆当且仅当 $\chi_A(0) \neq 0$. (命题 7.12)

下面我们描述定义 7.13 中 A 与 A 特征向量之间的关系. 设 $\mathbf{v} \in V \setminus \mathbf{0}$ 且

$$\mathbf{v} = (\mathbf{e}_1, \dots, \mathbf{e}_n) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}.$$

则 \mathbf{v} 是关于特征值 λ 的特征向量当且仅当

$$\mathcal{A}(\mathbf{v}) = \lambda \mathbf{v} \iff (\mathbf{e}_1, \dots, \mathbf{e}_n) A \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \lambda (\mathbf{e}_1, \dots, \mathbf{e}_n) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$\iff A \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}.$$

故 \mathbf{v} 是 \mathbf{A} 关于 λ 的特征向量当且仅当其坐标是 \mathbf{A} 关于 λ 的特征向量. 由此可知, 计算线性算子的特征值和特征 向量的问题可以转化为计算其矩阵表示的特征值和特征 向量的问题.

命题 7.14 设 V 是复数域 \mathbb{C} 上的线性空间, $A \in \mathcal{L}(V)$. 则 A 一定有特征向量.

证明. 因为 $\chi_A \in \mathbb{C}[t] \setminus \mathbb{C}$, 所以 χ_A 在 \mathbb{C} 中至少有一个根 λ (代数学基本定理). 即 A 有特征根. 于是有特征向量. \square

例 7.15 设 $A \in M_n(\mathbb{C})$. 证明: A 相似于一个上三角矩阵. 证明. 对 n 归纳. 当 n = 1 时, 结论显然成立. 设 n > 1 且 n - 1 时结论成立.

考虑 $A \in M_n(\mathbb{C})$. 把 A 看成 \mathbb{C}^n 上在标准基 $\mathbf{e}_1, \ldots, \mathbf{e}_n$ 下矩阵等于 A 的线性算子. 有上例可知, A 有一个 1 维 A

子空间 $\langle \mathbf{u} \rangle$. 根据第二章第二讲命题 5.3,

$$A \sim_s \begin{pmatrix} \lambda & * \\ O_{(n-1)\times 1} & B \end{pmatrix},$$

其中 $\lambda \in \mathbb{C}$, $B \in M_{n-1}(\mathbb{C})$. 根据归纳假设. 存在 $P \in GL_{n-1}(\mathbb{C})$ 使得 $P^{-1}BP$ 是上三角的. 令

$$Q = \begin{pmatrix} 1 & O_{1 \times n - 1} \\ O_{(n-1) \times 1} & P \end{pmatrix}.$$

则P可逆且

$$\begin{split} Q^{-1}\begin{pmatrix} \lambda & * \\ O_{(n-1)\times 1} & B \end{pmatrix} Q \\ &= \begin{pmatrix} 1 & O_{1\times(n-1)} \\ O_{(n-1)\times 1} & P^{-1} \end{pmatrix} \begin{pmatrix} \lambda & * \\ O_{(n-1)\times 1} & B \end{pmatrix} \begin{pmatrix} 1 & O_{1\times(n-1)} \\ O_{(n-1)\times 1} & P \end{pmatrix} \\ &= \begin{pmatrix} \lambda & * \\ O_{(n-1)\times 1} & P^{-1}BP \end{pmatrix}. \end{split}$$

因为 $P^{-1}BP$ 已经是上三角矩阵, 所以 T 也是上三角矩阵. 显然, $A \sim_s T$. \square

例 7.16 设 $A \in M_n(F)$ 是如下分块上三角形

$$\begin{pmatrix} A_1 & * & * & \cdots & * \\ O & A_2 & * & \cdots & * \\ O & O & A_3 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & * \\ O & O & O & \cdots & A_k \end{pmatrix}.$$

证明: $\chi_A = \chi_{A_1} \cdots \chi_{A_k}$.

证明. 由定义可知:

$$\chi_A(t) = \det(tE - A)$$

$$= \det(tE - A)$$

$$= \begin{pmatrix} tE_{n_1} - A_1 & * & * & \cdots & * \\ O & tE_{n_2} - A_2 & * & \cdots & * \\ O & O & tE_{n_3} - A_3 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & * \\ O & O & O & \cdots & tE_{n_k} - A_k \end{pmatrix},$$

其中 A_i 是 n_i 阶方阵, i = 1, 2, ..., k. 于是,

$$\chi_A(t) = \prod_{i=1}^k \det(tE_{n_i} - A_i) = \prod_{i=1}^k \chi_{A_i}(t). \quad \Box$$