第二章 线性算子

8 对角化

定义 8.1 设 $A \in \mathcal{L}(V)$. 如果 A 在 V 的某组基下的矩阵 是对角矩阵, 则称 A 是可对角化的. 如果 $A \in M_n(F)$ 相似于一个对角矩阵, 则称 A 是可对角化的.

定理 8.2 (可对角化判别法I) 设 $n = \dim(V)$ 和 $A \in \mathcal{L}(V)$. 则 A 可对角化当且仅当 A 有 n 个线性无关的特征向量.

证明. 设 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 是 \mathcal{A} 的 n 个线性无关的特征向量. 设 $\mathcal{A}(\mathbf{v}_i) = \lambda_i \mathbf{v}_i, i = 1, 2, \dots, n$. 注意到 $\lambda_1, \dots, \lambda_n \in F$ 不一定两两不同. 此时, $\mathbf{v}_1, \dots, \mathbf{v}_n$ 是 V 的一组基, 且

$$(\mathcal{A}(\mathbf{v}_1), \mathcal{A}(\mathbf{v}_2), \dots, \mathcal{A}(\mathbf{v}_n)) = (\lambda_1 \mathbf{v}_1, \lambda_2 \mathbf{v}_2, \dots, \lambda_n \mathbf{v}_n)$$

$$= (\mathbf{v}_1, \dots, \mathbf{v}_n) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

反之, 设 \mathcal{A} 在基底 $\epsilon_1, \ldots, \epsilon_n$ 下的矩阵是 $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. 则 $\mathcal{A}(\epsilon_i) = \lambda_i \epsilon_i$. 于是, ϵ_i 是 \mathcal{A} 的特征向量且 $\epsilon_1, \ldots, \epsilon_n$ 线性 无关. \square

推论 8.3 设 $A \in M_n(F)$. 则 A 可对角化当且仅当 A 有 n 个线性无关的特征向量. 设 A 有 n 个线性无关的特征向量 $\mathbf{v}_1, \ldots, \mathbf{v}_n$. 令 $P = (\mathbf{v}_1, \ldots, \mathbf{v}_n)$. 则 $P^{-1}AP$ 是对角矩阵.

证明. 把 A 看成 F^n 上的线性算子满足 $\mathbf{x} \mapsto A\mathbf{x}$. 则由上述定理可知矩阵 A 相似于对角阵当且仅当 A 有 n 个线性无关的特征向量. 此时, P 是从标准基到基底 $\mathbf{v}_1, \ldots, \mathbf{v}_n$ 的转换矩阵. 于是, $P^{-1}AP$ 是对角阵. \square

注解 8.4 线性算子 $A \in \mathcal{L}(V)$ 可对角化当且仅当 A 在 V 任何一组基下的矩阵可对角化.

例 8.5 (科斯特利金第一卷第 72页)设

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in M_2(\mathbb{R}).$$

判断 A 是否能对角化. 如果可以, 求 $P \in M_2(\mathbb{R})$ 使得 $P^{-1}AP$ 是对角矩阵.

解. 计算

$$\chi_A(t) = \det \begin{pmatrix} t & -1 \\ -1 & t - 1 \end{pmatrix} = t^2 - t - 1.$$

解方程得

$$\lambda_1 = \frac{1 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2}.$$

下面计算特征向量. 特征值 λ_1 对应得特征向量是方程组

$$\begin{pmatrix} \lambda_1 & -1 \\ -1 & \lambda_1 - 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

的非零解. 因为 $\dim(V^{\lambda_1}) = 1$, 所以取 $(1, \lambda_1)^t$ 即可. 类似取 λ_2 对应的特征向量 $(1, \lambda_2)^t$. 因为 $\lambda_1 \neq \lambda_2$, 所以这两个特征向量线性无关. 则

$$P = \begin{pmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{pmatrix}.$$

于是

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}.$$

例 8.6 由上周讲义例 7.3 可知, $\mathbb{R}[x]^{(n)}$ 中关于导数算子 \mathcal{D} 的特征向量是 $f \in \mathbb{R} \setminus \{0\}$. 不存在两个线性无关的特征向量. 于是, 当 n > 1 时 \mathcal{D} 不能对角化.

引理 8.7 设 $A \in \mathcal{L}(V)$, $\lambda_1, \ldots, \lambda_k \in \operatorname{spec}_F(A)$ 两两不同. 则 $V^{\lambda_1} + \cdots + V^{\lambda_k}$ 是直和.

证明. 对 k 归纳. 当 k = 1 时结论显然成立. 设 k > 1 且当 k = 1 时结论成立.

设 $\mathbf{v}_i \in V^{\lambda_i}, i = 1, 2, \dots, k,$ 满足

$$\mathbf{0} = \mathbf{v}_1 + \cdots + \mathbf{v}_k.$$

则

$$\mathbf{0} = \mathcal{A}(\mathbf{v}_1 + \dots + \mathbf{v}_{k-1} + \mathbf{v}_k)$$

$$= \mathcal{A}(\mathbf{v}_1) + \dots + \mathcal{A}(\mathbf{v}_{k-1}) + \mathcal{A}(\mathbf{v}_k)$$

$$= \lambda_1 \mathbf{v}_1 + \dots + \lambda_{k-1} \mathbf{v}_{k-1} + \lambda_k \mathbf{v}_k.$$

第一式通乘 λ_k 与第二式相减得

$$\mathbf{0} = (\lambda_k - \lambda_1)\mathbf{v}_1 + \dots + (\lambda_k - \lambda_{k-1})\mathbf{v}_{k-1}.$$

由归纳假设可知,

$$(\lambda_k - \lambda_1)\mathbf{v}_1 = \cdots = (\lambda_k - \lambda_{k-1})\mathbf{v}_{k-1} = \mathbf{0}.$$

因为 $(\lambda_k - \lambda_1), \dots, (\lambda_k - \lambda_{k-1})$ 都非零, 所以 $\mathbf{v}_1 = \dots = \mathbf{v}_{k-1} = \mathbf{0}$. 进而 $\mathbf{v}_k = \mathbf{0}$. 由第一章第一讲定理 1.11 (ii), $V^{\lambda_1} + \dots + V^{\lambda_k}$ 是直和. \square

推论 8.8 设 $A \in \mathcal{L}(V)$, $n = \dim(V)$. 如果 χ_A 在 F 中有 n 个不同的根,则 A 可对角化.设 $A \in M_n(F)$. 如果 χ_A 在 F 中有 n 个不同的根,则 A 可对角化.

证明. 设 $\lambda_1, ..., \lambda_n$ 是 \mathcal{A} 的互不相同的特征根. 任取 $\mathbf{v}_i \in V^{\lambda_i}$, i = 1, 2, ..., n. 因为 $V^{\lambda_1} + \cdots + V^{\lambda_n}$ 是直和(引理 8.7), 所以 $\mathbf{v}_1, ..., \mathbf{v}_n$ 线性无关 (第一章第一讲定理 1.11 (ii)). 于是, 特征向量 $\mathbf{v}_1, ..., \mathbf{v}_n$ 是 V 的一组基. 由定理 8.2, \mathcal{A} 可对角化. 对于矩阵情形, 把 \mathcal{A} 看成 \mathcal{F}^n 上的线性算子满足 $\mathbf{x} \mapsto A\mathbf{x}$ 即可. \square

例 8.9 设

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{C}).$$

判断 A 是否可以对角化.

解. 计算得 $\chi_A(t) = (t-1)(t^2-2t+2)$. 其导数是

$$(t^2 - 2t + 2) + 2(t - 1)^2.$$

它们是互素的. 所以 $\chi_A(t)$ 在 \mathbb{C} 中有三个互不相同的根. 由上述推论, A 可以对角化. \square

定理 8.10 (可对角化判别法II) 设 $A \in \mathcal{L}(V)$ 且

$$\operatorname{spec}_F(\mathcal{A}) = \{\lambda_1, \cdots, \lambda_k\}.$$

则 A 可对角化当且仅当 $V = V^{\lambda_1} + \cdots + V^{\lambda_k}$.

证明. 设 \mathcal{A} 可对角化. 则存在特征向量 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 构成 V 的一组基(定理 8.2). 因为 $\mathbf{v}_1, \dots, \mathbf{v}_n \in V^{\lambda_1} + \dots + V^{\lambda_k}$, 所以 $V = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle \subset V^{\lambda_1} + \dots + V^{\lambda_k}$. 于是,

$$V = V^{\lambda_1} + \dots + V^{\lambda_k}.$$

反之, 我们有 $V = V^{\lambda_1} \oplus \cdots \oplus V^{\lambda_k}$ (引理 8.7). 设 $\mathbf{e}_{i,1}, \ldots \mathbf{e}_{i,d_i}$ 是 V^{λ_i} 的一组基, $i = 1, 2, \ldots, k$. 基底中的元素 都是特征向量. 由直和分解可知,

$$\mathbf{e}_{1,1},\ldots,\mathbf{e}_{1,d_1},\ldots,\mathbf{e}_{k,1},\ldots,\mathbf{e}_{k,d_k}$$

是 V 的一组基. 由定理 8.2, \mathcal{A} 可对角化. \square

例 8.11 设 $A \in \mathcal{L}(V)$ 可对角化, V 的一组基底是

$$\mathbf{e}_{1,1},\ldots,\mathbf{e}_{1,d_1},\ldots,\mathbf{e}_{k,1},\ldots,\mathbf{e}_{k,d_k}.$$

如上述证明中给出. 则 A 在该基底下的矩阵是

$$\begin{pmatrix} \lambda_1 E_{d_1} & O & \cdots & O \\ O & \lambda_2 E_{d_2} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & \lambda_k E_{d_k} \end{pmatrix}.$$

推论 8.12 设 $A \in M_n(F)$ 且 $\operatorname{spec}_F(A) = \{\lambda_1, \dots, \lambda_k\}$. 则 A 可对角化当且仅当 $F^n = V^{\lambda_1} + \dots + V^{\lambda_k}$.

证明. 把 A 看成 F^n 上在标准基下矩阵为 A 的线性算子.

定理 8.13 (可对角化判别法III) 设 $A \in \mathcal{L}(V)$ 且

$$\operatorname{spec}_F(\mathcal{A}) = \{\lambda_1, \cdots, \lambda_k\}.$$

则A可对角化当且仅当

$$\dim(V^{\lambda_1}) + \dots + \dim(V^{\lambda_k}) = \dim(V).$$

证明. 由引理 8.7 可知,

$$\dim(V^{\lambda_1} + \dots + V^{\lambda_k}) = \dim(V^{\lambda_1}) + \dots + \dim(V^{\lambda_k}).$$

于是

$$\dim(V^{\lambda_1} + \dots + V^{\lambda_k}) = \dim(V) \implies V^{\lambda_1} + \dots + V^{\lambda_k} = V.$$

由定理 8.10, A 可对角化当且仅当

$$\dim(V^{\lambda_1}) + \cdots + \dim(V^{\lambda_k}) = \dim(V). \quad \Box$$

推论 8.14 设 $A \in M_n(F)$ 且 $\operatorname{spec}_F(A) = \{\lambda_1, \dots, \lambda_k\}$. 则 A 可对角化当且仅当

$$\dim(V^{\lambda_1}) + \cdots + \dim(V^{\lambda_k}) = n.$$

证明. 把 A 看成 F^n 上在标准基下矩阵为 A 的线性算子即可. \square

例 8.15 设 $A \in M_n(F)$ 是非零的幂零矩阵. 证明 A 不可对角化.

证明. 设 $k \in \mathbb{Z}^+$ 使得 $A^k = O$. 假设 $\lambda \in F \setminus \{0\}$ 是 A 的特征根且其对应的特征向量是 y. 则

$$A^{k}(\mathbf{y}) = A^{k-1}A(\mathbf{y}) = A^{k-1}(\lambda \mathbf{y}) = \lambda A^{k-1}(\mathbf{y}) = \dots = \lambda^{k}\mathbf{y}.$$

因为 $A^k = O$, 所以 $\lambda^k \mathbf{y} = \mathbf{0}$. 矛盾. 由此得出, $\operatorname{spec}_F(A) = \{0\}$. 假设 A 可对角化. 则 $\dim(V^0) = n$ (定理 8.13). 于是, $\operatorname{rank}(A) = 0$, 即 A = O. 矛盾. \square

定义 8.16 设 $A \in \mathcal{L}(V)$, $\lambda \in \operatorname{spec}_F(A)$. 特征根 λ 在 $\chi_A(t)$ 中的重数称为 λ 的代数重数. 特征子空间 V^{λ} 的维数称为 λ 的几何重数. 类似地, 我们可以定义矩阵特征根的代数和几何重数.

引理 8.17 设 $A \in \mathcal{L}(V)$, $\lambda \in \operatorname{spec}_F(A)$. 则 λ 的代数重数 不低于它的几何重数. 对矩阵也有类似的结论.

证明. 设 $d \in \lambda$ 的几何重数. 则 V^{λ} 是 A 的 d-维不变子空间 (第二章第三讲第十页第一段验证了特征子空间是 A 不变的). 于是, 在 V 的某组基下 A 的矩阵是

$$\begin{pmatrix} B & * \\ O & C \end{pmatrix},$$

其中 $B \in \mathcal{A}_{V^{\lambda}}$ 在 V^{λ} 某组基下的矩阵(第二章第二讲命题 5.3). 因为 $\mathcal{A}_{V^{\lambda}} = \lambda \mathcal{E}_d$, 所以 $B = \lambda E_d$. 于是,

$$\chi_{\mathcal{A}}(t) = \chi_{\mathcal{B}}(t)\chi_{\mathcal{C}}(t) = (t - \lambda)^d \chi_{\mathcal{C}}(t)$$

(见第二章第三讲例 8.15). 我们有 $(t - \lambda)^d | \chi_A(t)$. 而 λ 的代数重数是最大的整数 m 使得 $(t - \lambda)^m | \chi_A(t)$. 故 $d \leq m$. 口**定理 8.18** (可对角化判别法IV) 设 $A \in \mathcal{L}(V)$. 则 A 可对角化当且仅当以下两个条件成立

(i) $\chi_A(t)$ 在 F[t] 中可以分解为一次因子之积, 即 $\chi_A(t)$ 的所有根都在 F 中;

(ii) ∀ $\lambda \in \operatorname{spec}_F(A)$, λ 的几何重数等于它的代数重数.

证明. 设 $\operatorname{spec}_F(A) = \{\lambda_1, \cdots, \lambda_k\}.$

设 A 可对角化. 由例 8.11, A 在某组基下的矩阵是

$$\begin{pmatrix} \lambda_1 E_{d_1} & O & \cdots & O \\ O & \lambda_2 E_{d_2} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & \lambda_k E_{d_k} \end{pmatrix},$$

其中 d_i 是 λ_i 的几何重数, $i = 1, 2, \ldots, k$. 于是,

$$\chi_{\mathcal{A}}(t) = (t - \lambda_1)^{d_1} (t - \lambda_2)^{d_2} \cdots (t - \lambda_k)^{d_k}.$$

条件(i)和(ii)都成立.

反之, 设条件(i)和(ii)成立.则

$$\chi_{\mathcal{A}}(t) = (t - \lambda_1)^{d_1} (t - \lambda_2)^{d_2} \cdots (t - \lambda_k)^{d_k},$$

其中 d_i 是 λ_i 的几何重数, $i = 1, 2, \ldots, k$. 于是,

$$d_1 + \cdots + d_k = \deg(\chi_{\mathcal{A}}) = \dim(V).$$

根据定理 8.13, A 可对角化. □

推论 8.19 设 $A \in M_n(F)$. 则 A 可对角化当且仅当以下两个条件成立

(i) $\chi_A(t)$ 在 F[t] 中可以分解为一次因子之积, 即 $\chi_A(t)$ 的所有根都在 F 中;

(ii) 对任意 $\lambda \in \operatorname{spec}_F(A)$, λ 的几何重数等于其代数重数.

证明. 把 A 看成 F^n 上在标准基下矩阵为 A 的算子. \square

定理 8.20 (可对角化判别法V) 设 $A \in \mathcal{L}(V)$. 则 A 可对角化当且仅当 $\mu_A(t)$ 在 F[t] 中可以分解为两两互素一次因子之积.

证明. 设 \mathcal{A} 在 V 的某组基下的矩阵是 $\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$. 则

$$\mu_{\mathcal{A}}(t) = \mu_{A}(t) = \operatorname{lcm}(t - \lambda_{1}, \dots, t - \lambda_{n}) = \prod_{\alpha \in \{\lambda_{1}, \dots, \lambda_{n}\}} (t - \alpha).$$

(见第二章第三讲引理 5.7). 于是, $\mu_A(t)$ 在 F[t] 中可以分解为两两互素一次因子之积.

反之, 设 $\mu_{\mathcal{A}}(t) = (t - \beta_1) \cdots (t - \beta_k)$, 其中 $\beta_1, \ldots, \beta_k \in F$ 两两不同. 则 $t - \beta_i, t - \beta_j$ 互素, $i \neq j$. 由定理 5.11 (扩展的核核分解定理之极小多项式版), 我们有

$$V = U_1 \oplus \cdots \oplus U_k$$
,

其中 $U_i = \ker(\mathcal{A} - \beta_i \mathcal{E}), i = 1, ..., k$. 根据第二章第二讲命题 5.5, U_i 是 \mathcal{A} -不变的. 由 U_i 的定义可知, 对任意 $\mathbf{x} \in U_i$, $\mathcal{A}(\mathbf{x}) = \beta_i \mathbf{x}$, 即限制算子 \mathcal{A}_{U_i} 是的数乘算子 $\beta_i \mathcal{E}_{d_i}$, 其中

 $d_i = \dim(U_i)$. 故 \mathcal{A} 在 V 的某组基下的矩阵是

$$\begin{pmatrix}
\beta_1 E_{d_1} & O & \cdots & O \\
O & \beta_2 E_{d_2} & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & \beta_k E_{d_k}
\end{pmatrix}. \quad \Box$$

推论 8.21 (可对角化判别法V) 设 $A \in M_n(F)$. 则 A 可对角化当且仅当 $\mu_A(t)$ 在 F[t] 中可以分解为两两互素一次因子之积.

用上述定理推论考虑例 8.15. 因为 A 是非零的幂零矩阵, 所以 $\mu_A = t^k$ 且 k > 1. 于是, A 不能对角化.

例 8.22 设 F 的特征不等于 2. 证明: V 上的对合算子 A, 即满足 $A^2 = \mathcal{E}$, 是可对角化.

证明. 设 $f(t) = t^2 - 1$. 则 f(A) = O. 由第二章第二讲引理 4.2, $\mu_A(t)|f(t)$. 于是, $\mu_A(t) = t - 1$ 或 $\mu_A(t) = t + 1$ 或 $\mu_A(t) = (t - 1)(t + 1)$. 它的不可约因子都是一次的且两两互素. 于是, A 可对角化. \square

注解 8.23 设 F 的特征等于 2. 则对合算子可对角化当且仅当 $A = \mathcal{E}$. 这是因为 $A \neq \mathcal{E}$ 当且仅当 $\mu_A = (t-1)^2$.

注解 8.24 当算子或矩阵是通过多项式关系给出时, 第五 个判别法比较容易应用.

9 循环子空间

定义 9.1 设 $A \in \mathcal{L}(V)$ 和 $\mathbf{v} \in V$. 由 $\mathbf{v}, A(\mathbf{v}), A^2(\mathbf{v}), \dots$ 生成的子空间称为由 A 和 \mathbf{v} 生成的循环子空间. 记为 $F[A] \cdot \mathbf{v}$

命题 9.2 设 $A \in \mathcal{L}(V)$ 和 $\mathbf{v} \in V$.

- (i) $F[A] \cdot \mathbf{v} = \{p(A)(\mathbf{v})|p(t) \in F[t]\};$
- (ii) $F[A] \cdot \mathbf{v}$ 是 A-不变的;
- (iii) 设 $d = \deg(\mu_{\mathcal{A}, \mathbf{v}})$. 则 $\mathbf{v}, \mathcal{A}(\mathbf{v}), \dots, \mathcal{A}^{d-1}(\mathbf{v})$ 是 $F[\mathcal{A}] \cdot \mathbf{v}$ 的一组基. 特别地, $d = \dim(F[\mathcal{A}] \cdot \mathbf{v})$.

证明. (i) 设 $p = p_k t^k + p_{k-1} t^{k-1} + \dots + p_0$, 其中 $p_k, p_{k-1}, \dots, p_0 \in F$. 则

$$p(\mathcal{A})(\mathbf{v}) = (p_k \mathcal{A}^k + p_{k-1} \mathcal{A}^{k-1} + \dots + p_0 \mathcal{E})(\mathbf{v})$$
$$= p_k \mathcal{A}^k(\mathbf{v}) + p_{k-1} \mathcal{A}^{k-1}(\mathbf{v}) + \dots + p_0 \mathbf{v} \in F[\mathcal{A}] \cdot \mathbf{v}.$$

反之, 设 $\mathbf{w} \in F[\mathcal{A}] \cdot \mathbf{v}$. 则存在 $\ell \in \mathbb{N}$, $\alpha_0, \alpha_1, \ldots, \alpha_\ell \in F$ 使 得 $\mathbf{w} = \sum_{i=0}^{\ell} \alpha_i \mathcal{A}^i(\mathbf{v})$. 令 $q(t) = \sum_{i=0}^{\ell} \alpha_i t^i$. 则

$$\mathbf{w} = q(\mathcal{A})(\mathbf{v}) \in \{p(\mathcal{A})(\mathbf{v}) | p(t) \in F[t]\}.$$

(ii) 设 $\mathbf{w} \in F[\mathcal{A}] \cdot \mathbf{v}$. 根据 (i), 存在 $p \in F[t]$ 使得 $\mathbf{w} = p(\mathcal{A})(\mathbf{v})$. 于是, $\mathcal{A}(\mathbf{w}) = \mathcal{A}p(\mathcal{A})(\mathbf{v})$. 令 q = tp. 则 $\mathcal{A}(\mathbf{w}) = q(\mathcal{A})(\mathbf{v}) \in F[\mathcal{A}] \cdot \mathbf{v}$.

(iii) 设 $\mathbf{w} \in F[A] \cdot \mathbf{v}$. 根据 (i), 存在 $p \in F[t]$ 使得 $\mathbf{w} = p(A)(\mathbf{v})$. 由多项式带余除法, 存在 $q, r \in F[t]$ 满足 $\deg(r) < d$ 和

 $p(t) = q(t)\mu_{\mathcal{A},\mathbf{v}}(t) + r(t) \implies p(\mathcal{A}) = q(\mathcal{A})\mu_{\mathcal{A},\mathbf{v}}(\mathcal{A}) + r(\mathcal{A}).$ 作用到 \mathbf{v} 上得

$$\mathbf{w} = p(\mathcal{A})(\mathbf{v}) = q(\mathcal{A})\mu_{\mathcal{A},\mathbf{v}}(\mathcal{A})(\mathbf{v}) + r(\mathcal{A})(\mathbf{v}) = r(\mathcal{A})(\mathbf{v}).$$

因为 deg(r) < d,所以 $\mathbf{w} \in \mathbf{v}, \mathcal{A}(\mathbf{v}), \dots, \mathcal{A}^{d-1}(\mathbf{v})$ 在 F 上的线性组合. 于是, $F[\mathcal{A}] \cdot \mathbf{v} = \langle \mathbf{v}, \mathcal{A}(\mathbf{v}), \dots, \mathcal{A}^{d-1}(\mathbf{v}) \rangle$. 再设 $\alpha_0, \alpha_1, \dots, \alpha_{d-1} \in F$ 使得 $\sum_{i=0}^{d-1} \alpha_i \mathcal{A}^i(\mathbf{v}) = \mathbf{0}$. 令

$$f = \alpha_{d-1}t^{d-1} + \dots + \alpha_1t + \alpha_0.$$

则 $f(A)(\mathbf{v}) = \mathbf{0}$. 因为 $\deg f < d$, 所以 f(t) = 0, 即

$$\alpha_{d-1} = \dots = \alpha_1 = \alpha_0 = 0.$$

于是, \mathbf{v} , $\mathcal{A}(\mathbf{v})$, . . . , $\mathcal{A}^{d-1}(\mathbf{v})$ 线性无关. \square

注解 9.3 根据上述命题 *(iii)*, $\deg(\mu_{A,\mathbf{v}}) \leq n$ 对任意 $\mathbf{v} \in V$ 都成立. 再利用命题 *6.8*, $\deg(\mu_A) \leq n$.

例 9.4 设 $A \in \mathcal{L}(V)$. 如果 \mathbf{v} 是 A 的特征向量. 则

$$F[\mathcal{A}] \cdot \mathbf{v} = \langle \mathbf{v} \rangle.$$

证明. 设 $\mathcal{A}(\mathbf{v}) = \lambda \mathbf{v}$, 其中 $\lambda \in F$. 则 $\mu_{\mathcal{A},\mathbf{v}} = t - \lambda$. 由上述命题 (iii), $F[\mathcal{A}] \cdot \mathbf{v} = \langle \mathbf{v} \rangle$. \square

例 9.5 设 $A \in \mathcal{L}(V)$ 和 $d = \deg \mu_A$. 则存在 $\mathbf{v} \in V$ 使得 $\dim (F[A] \cdot \mathbf{v}) = d$, 且不存在维数大于 d 的 A-循环子空间. 证明. 根据命题 6.5 (科斯特利金第二卷第 56 页习 题 8), 存在 $\mathbf{v} \in V$ 使得 $\mu_{A,\mathbf{v}} = \mu_A$. 由命题 9.2 (iii), $\dim (F[A] \cdot \mathbf{v}) = d$. 又因为不存在向量 \mathbf{w} 使得 $\mu_{A,\mathbf{w}}$ 的次数大于 d, 所以不存在维数大于 d 的 A-循环子空间. \square

定理 9.6 (循环子空间分解) 设 $A \in \mathcal{L}(V)$. 则存在

$$\mathbf{v}_1, \dots, \mathbf{v}_\ell \in V \setminus \{\mathbf{0}\}$$

使得 $V = (F[A] \cdot \mathbf{v}_1) \oplus \cdots \oplus (F[A] \cdot \mathbf{v}_{\ell}).$

证明. 设 $n = \dim(V)$. 我们对 n 归纳. 当 n = 1 时, V 是 A-循环的. 结论成立. 设 n > 1 且结论对维数小于 n 的任何线性空间成立.

考虑 n 维情形. 如果 V 是 A-循环的, 取 $\ell = 1$ 即可. 否则, 存在 $\mathbf{w} \in V$ 使得 $F[A] \cdot \mathbf{w}$ 在所有 A 循环子空间中维数最大. 设该维数等于 m. 则 0 < m < n. 我们将构造一个 A-子空间 W 使得 $V = (F[A] \cdot \mathbf{w}) \oplus W$. 然后把归纳假设用到 W 上即可.

把 $F[\mathcal{A}]$ ·w 的基底 $\mathbf{w}, \mathcal{A}(\mathbf{w}), \dots, \mathcal{A}^{m-1}(\mathbf{w})$ 扩充为 V 的一组基 $\mathbf{w}, \mathcal{A}(\mathbf{w}), \dots, \mathcal{A}^{m-2}(\mathbf{w}), \mathcal{A}^{m-1}(\mathbf{w}), \epsilon_{m+1}, \dots, \epsilon_n$. 由线性映射基本定理 II, 存在唯一的线性函数 $f \in V^*$ 满足

$$f(A^{i}(\mathbf{w})) = 0, \quad i = 0, 1, \dots, m - 2,$$

和
$$f(\mathcal{A}^{m-1}(\mathbf{w})) = 1$$
, $f(\epsilon_j) = 0$, $j = m+1, \dots, n$. 令
$$W = \bigcap_{k=0}^{m-1} \ker(f \circ \mathcal{A}^k).$$

我们来验证以下三个断言:

- (i) $(F[A] \cdot \mathbf{w}) \cap W = \{\mathbf{0}\};$
- (ii) $\dim(W) = n m$;
- (iii) W 是 A-不变的.

断言的验证. (i) 假设 $\mathbf{x} \in (F[\mathcal{A}] \cdot \mathbf{w}) \cap W = \{\mathbf{0}\}$ 且 $\mathbf{x} \neq \mathbf{0}$. 则存在 $p \in \{0, 1, \dots, m-1\}, \alpha_0, \alpha_1, \dots, \alpha_p \in F, \alpha_p \neq 0$, 使得 $\mathbf{x} = \alpha_0 \mathbf{w} + \alpha_1 \mathcal{A}(\mathbf{w}) + \dots + \alpha_p \mathcal{A}^p(\mathbf{w})$. 则

矛盾. 断言(i)成立.

(ii) 由 (i) 可知 $\dim(W) \le n - m$. 因为每个 V 上线性函数的核的维数都大于等于 n - 1, 所以 $\dim(W) \ge n - m$. 故断言 (ii) 成立.

(iii) 设 $\mathbf{x} \in W$. 则对任意 $k \in \{0, 1, \dots, m-1\}$,

$$f \circ \mathcal{A}^k(\mathbf{x}) = f(\mathcal{A}^k(\mathbf{x})) = 0.$$

设 $\mathbf{y} = \mathcal{A}(\mathbf{x})$. 则对任意 $k \in \{0, 1, \dots, m-2\}$,

$$f \circ \mathcal{A}^k(\mathbf{y}) = f \circ \mathcal{A}^k(\mathcal{A}(\mathbf{x})) = f \circ \mathcal{A}^{k+1}(\mathbf{x}) = 0.$$

还需要验证 $f_{m-1}(\mathbf{y}) = 0$. 由 m 的极大性可知,

$$\dim(F[\mathcal{A}] \cdot \mathbf{x}) \le m.$$

根据命题 9.2 (iii), 存在 $\beta_0, \beta_1, \ldots, \beta_{m-1} \in F$, 使得

$$\mathcal{A}^m(\mathbf{x}) = \beta_0 \mathbf{x} + \beta_1 \mathcal{A}(\mathbf{x}) + \dots + \beta_{m-1} \mathcal{A}^{m-1}(\mathbf{x}).$$

于是

于是 $\mathbf{y} \in W$. 断言 (iii) 成立. \square

由三个断言可知 $V = (F[A] \cdot \mathbf{w}) \oplus W$ 且 A_W 是线性算子. 把归纳假设用于 W 和 A_W 就证明了结论. \square

10 循环子空间的应用

10.1 循环空间和循环算子

定义 10.1 设 $A \in \mathcal{L}(V)$. 如果存在 $\mathbf{v} \in V$ 使得 $V = F[A] \cdot \mathbf{v}$, 则称 $V \in A$ -循环的 且 $A \in V$ 上的循环算子.

命题 **10.2** 设 $\dim(V) = n$, $A \in \mathcal{L}(V)$. 则 $V \not\in A$ -循环的 当且仅当 $\deg(\mu_A) = n$.

证明. 设 $\deg(\mu_{\mathcal{A}}) = n$. 根据命题 6.8, 存在 $\mathbf{v} \in V$ 使得 $\deg(\mu_{\mathcal{A},\mathbf{v}}) = n$. 由命题 9.2 (iii), $\dim(F[\mathcal{A}] \cdot \mathbf{v}) = n$. 故 $F[\mathcal{A}] \cdot \mathbf{v} = V$. 反之, 设 $V = F[\mathcal{A}] \cdot \mathbf{w}$. 则 $\deg(\mu_{\mathcal{A},\mathbf{w}}) = n$ (9.2 (iii)). 因为再利用事实 $\mu_{\mathcal{A},\mathbf{w}}|\mu_{\mathcal{A}}$, 命题 6.8 和注释 9.3 可知, $\deg(\mu_{\mathcal{A}}) = n$. □

例 10.3 设 A 是数乘算子. 则 $\deg(\mu_A) = 1$. 故 A 是循环算子当且仅当 $\dim(V) = 1$.

例 10.4 设 A 不是是数乘算子但是幂等算子. 则

$$\deg(\mu_{\mathcal{A}}) = 2.$$

故 A 是循环算子当且仅当 $\dim(V) = 2$.

例 10.5 设 \mathcal{D} 是 $\mathbb{R}[t]$ < n 上的导数算子. 则 $\mu_{\mathcal{D}} = t^n$. 故 \mathcal{D} 是循环算子.

例 10.6 设 $A \in \mathcal{L}(V)$ 可对角化. 证明: A 是循环算子当且仅当 A 有 n 个互不相同的特征根, 其中 $n = \dim(V)$. 证明. 设 A 在 V 的某组基下的矩阵是 $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. 则 $\mu_A = \operatorname{lcm}(t - \lambda_1, \ldots, t - \lambda_n)$ and $\chi_A = (t - \lambda_1) \cdot \cdots (t - \lambda_n)$. 于是, $\mu_A = \chi_A$ 当且仅当 $\lambda_1, \ldots, \lambda_n$ 两两不同. 由上述定理可知, A 是循环算子当且仅当 $\lambda_1, \ldots, \lambda_n$ 两两不同.

定理 10.7 设 $\dim(V) = n$, $A \in \mathcal{L}(V)$. 则 $V \neq A$ -循环的 当且仅当 $\mu_A = \chi_A$.

证明. 设 $\mu_A = \chi_A$. 则 $\deg(\mu_A) = n$. 由上述命题可知, V 是 A-循环的.

反之,设 $V = F[A] \cdot \mathbf{v}$.则 $\mathbf{v}, A(\mathbf{v}), \dots, A^{n-1}(\mathbf{v})$ 是V的一组基.则存在 $f_0, f_1, \dots, f_{n-1} \in F$ 使得

$$\mathcal{A}^{n}(\mathbf{v}) = -f_{n-1}\mathcal{A}^{n-1}(\mathbf{v}) - \cdots - f_{1}\mathcal{A}(\mathbf{v}) - f_{0}\mathbf{v}.$$

则 $\mu_{A,\mathbf{v}}(t) = t^n + f_{n-1}t^{n-1} + \dots + f_1t + f_0 \in F[t]$. 根据命题 6.8, $\mu_{A,\mathbf{v}}(t) = \mu_A(t)$. 这是因为 $\mu_{A,\mathbf{v}}$ 的次数至多等于 n.

我们来计算 \mathcal{A} 在基底 $\mathbf{v}, \mathcal{A}(\mathbf{v}), \dots, \mathcal{A}^{n-1}(\mathbf{v})$ 下的矩阵 $(\mathcal{A}(\mathbf{v}), \mathcal{A}^2(\mathbf{v}), \dots, \mathcal{A}^n(\mathbf{v}))$

$$= (\mathbf{v}, \mathcal{A}(\mathbf{v}), \dots, \mathcal{A}^{n-1}(\mathbf{v})) \underbrace{\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -f_0 \\ 1 & 0 & 0 & \cdots & 0 & -f_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -f_{n-2} \\ 0 & 0 & 0 & \cdots & 1 & -f_{n-1} \end{pmatrix}}_{A}.$$

直接计算得 $\chi_A(t) = \mu_A(t)$. (见注记 10.4). 故 $\mu_A = \chi_A$. □ **注解 10.8** 以下是计算 $\chi_A(t)$ 的过程:

$$\chi_A(t) = \det \begin{pmatrix} t & 0 & 0 & \cdots & 0 & f_0 \\ -1 & t & 0 & \cdots & 0 & f_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & t & f_{n-2} \\ 0 & 0 & 0 & \cdots & -1 & t + f_{n-1} \end{pmatrix}.$$

我们用数学归纳法来证明 $\chi_{\mathcal{A}}(t) = \mu_{\mathcal{A}}(t)$, 即

$$\chi_{\mathcal{A}}(t) = t^n + \sum_{i=0}^{n-1} f_i t^i.$$

当 n=1 时, $\chi_A(t)=t+f_0$. 结论成立. 设 n>1 且结论对

n-1 成立. 把上述行列式按第一行展开得

$$\chi_{A}(t) = t \det \begin{pmatrix} t & 0 & \cdots & 0 & f_{1} \\ -1 & t & \cdots & 0 & f_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & t & f_{n-2} \\ 0 & 0 & \cdots & -1 & t + f_{n-1} \end{pmatrix} \\
+ (-1)^{n-1} f_{0} \det \begin{pmatrix} -1 & t & 0 & \cdots & 0 \\ 0 & -1 & t & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & t \\ 0 & 0 & 0 & \cdots & -1 \end{pmatrix}.$$

由归纳假设可知

$$\chi_A(t) = t(t^{n-1} + f_{n-1}t^{n-2} + \dots + f_1) + f_0 = f(t).$$

由上述计算可知,任何一个首一且次数为正的多项式都是某个矩阵的特征多项式.