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第十五次作业解答

习题 1. 设 f = 2x3 − x+ 2 和 g = 2x2 + 2x 是 Z4[x] 中的多项式。计算 fg

, deg(fg) 和 g(̄i) , i = 0, 1, 2, 3 。

解. 计算乘积 fg：

fg =(2x3 − x+ 2)(2x2 + 2x)

=2x3 · 2x2 + 2x3 · 2x+ (−x) · 2x2 + (−x) · 2x+ 2 · 2x2 + 2 · 2x.

=2x3 + 2x2

最高次项为 2x3，系数非零，故 deg(fg) = 3。
计算 g(̄i)：

g(0) = 2 · 02 + 2 · 0 = 0,

g(1) = 2 · 12 + 2 · 1 = 2 + 2 = 0,

g(2) = 2 · 22 + 2 · 2 = 2 · 0 + 0 = 0,

g(3) = 2 · 32 + 2 · 3 = 2 · 1 + 2 · 3 = 2 + 6 = 2 + 2 = 0.

所以 g(̄i) = 0 对所有 i = 0, 1, 2, 3。

习题 2. 设 f = x3 − x+ 2̄ 和 g = 2̄x2 + x 在 Z5[x] 中。计算 quo(f, g, x) 和
rem(f, g, x)。

解. 在 Z5 上进行多项式除法。设商为 q = ax + b，余数为 r = cx + d，满
足 f = qg + r。展开得

x3 −x+2 = (ax+ b)(2x2 +x)+ (cx+ d) = 2ax3 +(a+2b)x2 +(b+ c)x+ d.

比较系数：

2a = 1,

a+ 2b = 0,

b+ c = −1 = 4,

d = 2.

由 2a = 1得 a = 3（因为 2·3 = 1）。代入第二式：3+2b = 0 ⇒ 2b = 2 ⇒ b = 1。
由第三式：1 + c = 4 ⇒ c = 3。第四式：d = 2。故

quo(f, g, x) = 3x+ 1, rem(f, g, x) = 3x+ 2.



2

习题 3. 设 f(x) = x2 + 2x − 3 ∈ Z7[x]。计算 f(5) 和 f(A)，其中 A =
1 0 0

1 1 0

0 1 1

 ∈ M3(Z7)。

解. 计算 f(5)：

f(5) = 5
2
+ 2 · 5− 3 = 25 + 10− 3 = 4 + 3− 3 = 4.

计算 f(A) = A2 + 2A− 3I（系数在 Z7 中运算）：先计算

A2 =


1 0 0

1 1 0

0 1 1


2

=


1 0 0

2 1 0

1 2 1

 , 2A =


2 0 0

2 2 0

0 2 2

 ,

−3I =4I =


4 0 0

0 4 0

0 0 4

 .

相加得

f(A) =


1 + 2 + 4 0 + 0 + 0 0 + 0 + 0

2 + 2 + 0 1 + 2 + 4 0 + 0 + 0

1 + 0 + 0 2 + 2 + 0 1 + 2 + 4

 =


7 0 0

4 7 0

1 4 7

 =


0 0 0

4 0 0

1 4 0

 .

习题 4. 设 f = 236x3 − 125x+ 54 和 g = 5000x7 − 21x+ 3367 是整系数多
项式，h = fg。计算 h(3)，其中 3 ∈ Z5。

解. 利用多项式求值同态：h(3) = f(3)g(3)。分别计算：

f(3) = 236 · 33 − 125 · 3 + 54

= 1 · 2− 0 · 3 + 4 = 2 + 4 = 1,

g(3) = 5000 · 37 − 21 · 3 + 3367

= 0 · 2− 1 · 3 + 2 = −3 + 2 = 2 + 2 = 4.

所以 h(3) = 1 · 4 = 4。
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习题 5. 设 A = (ai,j) ∈ Mn(R)，其中 ai,j ∈ Z，i, j ∈ {1, 2, . . . , n}。再设 p是
素数，āi,j 是 ai,j 在 Zp 中关于同余关系的等价类。令 Ā = (āi,j) ∈ Mn(Zp)。
证明：如果 det(Ā) ̸= 0，则 det(A) ̸= 0。

证明. 考虑行列式函数 det : Mn(Z) → Z。对于矩阵 A = (aij)，其行列式
det(A) 是矩阵元素的整系数多项式：

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

ai,σ(i).

设 φ : Z → Zp 是模 p 同态，φ(a) = ā = a+ pZ。由于 φ 是环同态，它诱导
出矩阵环的同态 Φ : Mn(Z) → Mn(Zp)，其中 Φ(A) = (φ(aij)) = Ā。

对于行列式这个多项式函数，环同态与行列式计算可交换，即：

φ(det(A)) = det(Φ(A)).

这是因为行列式的计算只涉及加法、减法和乘法运算，而环同态保持这些运
算。
已知 det(Ā) = det(Φ(A)) ̸= 0 在 Zp 中，即 φ(det(A)) ̸= 0。这意味着

det(A)模 p不为零，特别地，det(A) ̸= 0（若 det(A) = 0，则 φ(det(A)) = 0，
矛盾）。因此，det(A) ̸= 0。

习题 6. (矩阵求逆的多项式) 设 F 是域，A ∈ Mn(F ) 且 A ≠ O。设

f(x) = fnx
n + fn−1x

n−1 + · · ·+ f1x+ f0 ∈ F [x], fi ∈ F,

fn ̸= 0 且 f(A) = O。
(i) 证明：如果 f0 ̸= 0，则 A 可逆且

A−1 = −f−1
0 (fnA

n−1 + fn−1A
n−2 + · · ·+ f2A+ f1I).

(ii) 证明：如果 f0 = 0，且对于任意 F [x] 中次数小于 n 的非零多项式
g(x)，都有 g(A) ̸= O，则 A 不可逆。

(iii) 设 A3 − 2A + 12I = O。证明：当 F 的特征不等于 2 和 3 时，A

可逆并求 A−1。

证明. (i) 由 f(A) = O 得

fnA
n + fn−1A

n−1 + · · ·+ f1A+ f0I = O.
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因为 f0 ̸= 0，可改写为

A(fnA
n−1 + fn−1A

n−2 + · · ·+ f1I) = −f0I.

记 B = fnA
n−1 + fn−1A

n−2 + · · ·+ f1I，则 AB = −f0I。由于 −f0I 可逆，
且 A 与 B 可交换（均为 A 的多项式），故 A 可逆，且 A−1 = −f−1

0 B，即

A−1 = −f−1
0 (fnA

n−1 + fn−1A
n−2 + · · ·+ f2A+ f1I).

(ii) 反证法。假设 A 可逆。由 f(A) = O 且 f0 = 0 得

fnA
n + fn−1A

n−1 + · · ·+ f1A = O.

左乘 A−1 得
fnA

n−1 + fn−1A
n−2 + · · ·+ f1I = O.

令 g(x) = fnx
n−1+fn−1x

n−2+ · · ·+f1，则 g(A) = O。若 g(x)非零，则与条
件矛盾（因为 deg g < n）。故 g(x)必为零多项式，即所有系数 fn, fn−1, . . . , f1

均为零。但 fn ̸= 0，矛盾。因此 A 不可逆。
(iii)给定 A3−2A+12I = O，即 f(A) = O，其中 f(x) = x3−2x+12。

常数项 f0 = 12。当 F 的特征不等于 2 和 3 时，12 ̸= 0 且可逆。由 (i) 知
A 可逆，且

A−1 = −12−1(1 ·A2 + 0 ·A+ (−2)I) = −12−1(A2 − 2I) =
1

12
(2I −A2).

进阶练习

进阶习题 1. 证明：域 K 上的 n 阶矩阵 A 是幂等矩阵当且仅当

rank(A) + rank(I −A) = n

分块矩阵方法. 我们对分块矩阵
(
A 0

0 I −A

)
依次做如下变换（表现为左

乘或右乘可逆矩阵）：(
I 0

I I

)(
A 0

0 I −A

)
=

(
A 0

A I −A

)
(
A 0

A I −A

)(
I I

0 I

)
=

(
A A

A I

)
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(
I −A

0 I

)(
A A

A I

)
=

(
A−A2 0

A I

)
(
A−A2 0

A I

)(
I 0

−A I

)
=

(
A−A2 0

0 I

)

故

rank
(
A 0

0 I −A

)
= rank

(
A−A2 0

0 I

)

即 rank(A) + rank(I − A) = rank(A− A2) + n。故 A 幂等等价于 A = A2，
等价于 rank(A−A2) = 0，等价于 rank(A) + rank(I −A) = n。

解空间直和方法. 首先注意到 ker(A) ∩ ker(I − A) = {0}，这是因为若 x ∈
ker(A) ∩ ker(I −A)，则 x = Ax = 0。
其次，对任意 x ∈ ker(A(I − A))，x = (I − A)x + Ax，其中 x1 =

(I −A)x ∈ ker(A)，x2 = Ax ∈ ker(I −A)。故

ker(A(I −A)) = ker(A)⊕ ker(I −A)

这意味着 rank(A) + rank(I − A) = n 当且仅当 ker(A(I − A)) = Kn，
当且仅当 A(I −A) = 0，也即 A 是幂等矩阵。

进阶习题 2. 设 A 是域 K 上 s × n 矩阵，证明：rank(A) = r 当且仅当存
在 s× r 列满秩矩阵 B 和 r × n 行满秩矩阵 C，使得 A = BC。

证明. 必要性：若 rank(A) = r，由打洞引理，存在可逆矩阵 P ∈ Ks×s 和
Q ∈ Kn×n，使得

A = P

(
Ir 0

0 0

)
Q,

其中 Ir 为 r 阶单位矩阵。令 B 为 P 的前 r 列构成的 s× r 矩阵，C 为 Q

的前 r 行构成的 r × n 矩阵，则 A = BC。由于 P 可逆，B 列满秩；由于
Q 可逆，C 行满秩。
充分性：若 A = BC，其中 B 列满秩，C 行满秩，则 rank(A) ⩽

rank(B) = r。再由 Sylvester不等式，rank(A) ⩾ rank(B)+rank(C)−r = r，
故 rank(A) = r。
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进阶习题 3. 计算下述 n 阶行列式：∣∣∣∣∣∣∣∣∣∣∣

0 2 3 · · · n

1 0 3 · · · n
...

...
... . . . ...

1 2 3 · · · 0

∣∣∣∣∣∣∣∣∣∣∣
解. 将行列式的第 j 列（j = 1, 2, . . . , n）提取公因子 j，得

Dn = n! ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1
...

...
... . . . ...

1 1 1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

记上述行列式为 ∆n。将 ∆n 的所有行加到第一行，得

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

n− 1 n− 1 n− 1 · · · n− 1

1 0 1 · · · 1

1 1 0 · · · 1
...

...
... . . . ...

1 1 1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1
...

...
... . . . ...

1 1 1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

再将第一行的 −1 倍分别加到第 2, 3, . . . , n 行，得

∆n = (n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 −1 0 · · · 0

0 0 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (n−1)·1·(−1)n−1 = (n−1)(−1)n−1.

因此，
Dn = n! ·∆n = (−1)n−1(n− 1)n!.

加边法. 首先，从各列提取公因子：第 j 列可提取因子 j（j = 1, 2, . . . , n），
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得

Dn = n! ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1
...

...
... . . . ...

1 1 1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

记右边行列式为 ∆n。构造 n+ 1 阶行列式（加边法）

∆n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 0 1 · · · 1

0 1 0 · · · 1
...

...
... . . . ...

0 1 1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

按第一列展开知 ∆n+1 = ∆n。对 ∆n+1 作行变换：将第一行乘以 −1 加到
第 2 至第 n+ 1 行，得

∆n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

−1 −1 0 · · · 0

−1 0 −1 · · · 0
...

...
... . . . ...

−1 0 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

再作列变换：将第 2 列至第 n+ 1 列都乘以 −1 加到第一列，得

∆n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− n 1 1 · · · 1

0 −1 0 · · · 0

0 0 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

这是一个上三角矩阵，其行列式为对角元的乘积：

∆n+1 = (1− n) · (−1)n = (−1)n−1(n− 1).

因此，
Dn = n! ·∆n = n! ·∆n+1 = (−1)n−1(n− 1)n!.


