第二次习题课

李宸

2025.10.15

第二次作业解答

第1题

(i) 求 $\operatorname{im}(f)$ 。

设映射 $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ 。

,

由于 $x^2 \ge 0$, 且对于任意 $y \ge 0$, 存在 $x = \sqrt{y}$ 使得 f(x) = y, 因此:

$$im(f) = [0, +\infty)$$

(ii) $\mathfrak{P}_{g} = f|_{[0,2]}, \ \mathbb{P}_{g} : [0,2] \to \mathbb{R}, \ x \mapsto x^{2}.$

求 $\operatorname{im}(g)$: 当 $x \in [0,2]$ 时, $x^2 \in [0,4]$, 因此:

$$im(g) = [0, 4]$$

证明 g 是单射: 设 $x_1, x_2 \in [0, 2]$, 且 $g(x_1) = g(x_2)$, 即 $x_1^2 = x_2^2$ 。也即

$$(x_1 - x_2)(x_1 + x_2) = 0$$

可得 $x_1 - x_2 = 0$ 或 $x_1 + x_2 = 0$,若 $x_1 - x_2 = 0$,则 $x_1 = x_2$;

若 $x_1 + x_2 = 0$, 由于 $x_1, x_2 \ge 0$, 我们有 $0 \le x_1 + x_2 = 0$, 从而 $x_1 = x_2 = 0$, 所以总是有 $x_1 = x_2$ 。故 g 是单射。

第2题

设 $f: \mathbb{Z}^+ \to \mathbb{Z}^+$, f(n) = n+1; $g: \mathbb{Z}^+ \to \mathbb{Z}^+$ 定义为:

$$g(n) = \begin{cases} n-1 & \text{ in } > 1 \\ 1 & \text{ in } = 1 \end{cases}$$

- (i) 证明 f 是单射: 设 $f(n_1) = f(n_2)$, 则 $n_1 + 1 = n_2 + 1$, 故 $n_1 = n_2$, 因此 f 是单射。
 - 证明 g 是满射: 对任意 $m \in \mathbb{Z}^+$,我们有 m+1>1,则 g(m+1)=m,因此 g 是满射。
- (ii) 计算 $f \circ g(n)$ 和 $g \circ f(n)$:

$$f \circ g(n) = f(g(n)) = \begin{cases} f(n-1) = n & 若n > 1 \\ f(1) = 2 & 若n = 1 \end{cases}$$
$$g \circ f(n) = g(f(n)) = g(n+1) = n \quad (因为n+1 > 1)$$

第3题

设映射 $f: X \to Y$, $S, T \subseteq Y$.

(i) 证明 $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$:

(ii) 证明 $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$:

$$x \in f^{-1}(S \cap T) \Leftrightarrow f(x) \in S \cap T$$

 $\Leftrightarrow f(x) \in S \ \coprod f(x) \in T$
 $\Leftrightarrow x \in f^{-1}(S) \ \coprod x \in f^{-1}(T)$
 $\Leftrightarrow x \in f^{-1}(S) \cap f^{-1}(T)$

第4题

设映射 $f: X \to Y$, $A, B \subseteq X$ 。

(i) 证明 $f(A \cup B) = f(A) \cup f(B)$:

(ii) 证明 $f(A \cap B) \subseteq f(A) \cap f(B)$:

$$y \in f(A \cap B) \Rightarrow \exists x \in A \cap B, \ f(x) = y$$

 $\Rightarrow \exists x \in X, \ 满足 \ x \in A, x \in B, \ 且 \ f(x) = y$
 $\Rightarrow y \in f(A) \ 且 \ y \in f(B)$
 $\Rightarrow y \in f(A) \cap f(B)$

(iii) 若 f 是单射,则 $f(A \cap B) = f(A) \cap f(B)$: 由 (ii) 知 $f(A \cap B) \subseteq f(A) \cap f(B)$, 现证反向包含:

$$y \in f(A) \cap f(B) \Rightarrow y \in f(A) \perp y \in f(B)$$

 $\Rightarrow \exists x_1 \in A, \ f(x_1) = y \perp \exists x_2 \in B, \ f(x_2) = y$
 $\Rightarrow f(x_1) = f(x_2) = y$

由于 f 是单射, $x_1 = x_2 \in A \cap B$, 故 $y \in f(A \cap B)$ 。

拓展内容

1. 映射的良定性

定义 1 (映射的良定性). 设 $f: X \to Y$ 是一个映射。我们称 f 是良定的,如果它满足:

- 1. **存在性**: 对于每个 $x \in X$, 都存在 $y \in Y$ 使得 y = f(x)
- 2. 唯一性: 对于每个 $x \in X$, 如果 $y_1 = f(x)$ 且 $y_2 = f(x)$, 则 $y_1 = y_2$

当通过等价类定义映射时,良定性尤为重要。我们不加证明地陈述以下 事实: **命题 1.** 设 ~ 是 X 上的等价关系, X/\sim 是商集。如果定义 $f: X/\sim \to Y$ 为 f([x]) = g(x),其中 $g: X \to Y$ 是某个映射,则 f 是良定的当且仅当对于任意 $x_1, x_2 \in X$,如果 $x_1 \sim x_2$,则 $g(x_1) = g(x_2)$ 。

进阶习题 1 (良定性的验证). 设 \mathbb{Z} 是整数集,定义关系 \sim 为: $a \sim b$ 当且 仅当 a - b 是偶数。考虑映射:

$$f: \mathbb{Z}/\sim \to \{0,1\}, \quad f([n]) = n \bmod 2$$

- (a) 验证 f 是良定的
- (b) 证明 f 是双射
- (c) 如果将 f 改为 $f([n]) = n \mod 3$,它还是良定的吗?为什么?

注. 良定性是映射的必备条件,在未来当我们构造映射时都应注意并验证其是否是良定的,特别是对等价类上定义的映射。

2. 映射分解定理

定理 1 (映射的标准分解). 任意映射 $f: X \to Y$ 都可以唯一地(在同构意义下)分解为:

$$f = i \circ \bar{f} \circ p$$

其中:

- $p: X \to X/\sim$ 是商映射(自然投影),将每个元素映到其等价类,这里等价关系定义为 $x_1 \sim x_2 \Leftrightarrow f(x_1) = f(x_2)$
- $\bar{f}: X/\sim \to \operatorname{im}(f)$ 是双射, 定义为 $\bar{f}([x]) = f(x)$
- $i: im(f) \to Y$ 是包含映射, 即 i(y) = y 对于所有 $y \in im(f)$

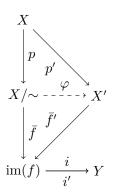
并且有 p 是满射, \bar{f} 是双射, i 是单射。

证明. 分解已由上述构造给出,我们只证明唯一性: 假设有另一个分解 $f = i' \circ \bar{f}' \circ p'$, 其中:

- p': X → X' 是满射
- $\bar{f}': X' \to \operatorname{im}(f)$ 是双射

• $i': im(f) \to Y$ 是单射

我们需要证明存在双射 $\varphi: X/\sim \to X'$ 使得下图交换:



定义 $\varphi: X/\sim \to X'$ 为 $\varphi([x]) = p'(x)$ 。 我们需要验证 φ 是良定的: 如果 [x] = [y],则 $x \sim y$,所以 f(x) = f(y)。由分解 $f = i' \circ \bar{f}' \circ p'$ 可得:

$$i'(\bar{f}'(p'(x))) = f(x) = f(y) = i'(\bar{f}'(p'(y)))$$

由于 i' 是单射, $\bar{f}'(p'(x))=\bar{f}'(p'(y))$,又因为 \bar{f}' 是单射,所以 p'(x)=p'(y)。 因此 φ 是良定的。

现在验证 φ 是双射:

单射性: 如果 $\varphi([x]) = \varphi([y])$, 则 p'(x) = p'(y), 所以 $\bar{f}'(p'(x)) = \bar{f}'(p'(y))$, 即 f(x) = f(y), 所以 $x \sim y$, 即 [x] = [y]。

满射性: 对于任意 $x' \in X'$, 由于 p' 是满射, 存在 $x \in X$ 使得 p'(x) = x', 那么 $\varphi([x]) = p'(x) = x'$ 。

最后验证交换性:

- $p' = \varphi \circ p$: 对于任意 $x \in X$, $(\varphi \circ p)(x) = \varphi([x]) = p'(x)$
- $\bar{f}=\bar{f}'\circ \varphi$: 对于任意 $[x]\in X/\sim$, $(\bar{f}'\circ \varphi)([x])=\bar{f}'(p'(x))=f(x)=\bar{f}([x])$
- i=i': 由于两者都是 $\operatorname{im}(f)$ 到 Y 的包含映射,它们相等 因此分解在同构意义下是唯一的。

定理 2 (满射-单射分解). 任意映射 $f: X \to Y$ 都可以分解为 $f = i \circ s$, 其中:

- $s: X \to \text{im}(f)$ 是满射,定义为 s(x) = f(x)
- $i: im(f) \rightarrow Y$ 是单射, 定义为 i(y) = y

这是上述标准分解的特例。

进阶习题 2 (映射分解的应用). 设 $f: \mathbb{R} \to \mathbb{R}$ 定义为 $f(x) = x^2$.

- (a) 写出 f 的标准分解 $f = i \circ \bar{f} \circ p$
- (b) 明确描述分解中的每个映射: p, \bar{f}, i
- (c) 验证 \bar{f} 是双射
- (d) 写出 f 的满射-单射分解

进阶习题 3 (复合映射的分解). 设 $f: X \to Y$ 和 $g: Y \to Z$ 是映射:

- (a) 如果 $g \circ f$ 是单射, 证明 f 是单射
- (b) 如果 $g \circ f$ 是满射, 证明 g 是满射
- (c) 举例说明 $g \circ f$ 是单射时 g 不一定是单射
- (d) 举例说明 $g \circ f$ 是满射时 f 不一定是满射
- (e) 若 g 是单射, f 是满射, 由 f,g 的标准分解写出 $g \circ f$ 的标准分解。
- 证明. (a) 若 $x_1, x_2 \in X$ 满足 $f(x_1) = f(x_2)$, 那么 $g(f(x_1)) = g(f(x_2))$, 由 $g \circ f$ 是单射,我们有 $x_1 = x_2$ 。
- (b) 对任意 $z \in Z$, 由 $g \circ f$ 是满射, 我们知道存在 $x \in X$, 使得 g(f(x)) = z, 从而存在 $y = f(x) \in Y$, 使得 g(y) = z, 故 g 是满射。
- (c) $g: \mathbb{R} \to \mathbb{R}$ 定义为 $g(x) = x^2$,而 $f: \mathbb{R}^+ \to \mathbb{R}$ 定义为 f(x) = x。
- (d) 同上。
- (e) 设 $f = i_f \circ \bar{f} \circ p_f$ 和 $g = i_g \circ \bar{g} \circ p_g$ 分别是 f 和 g 的标准分解。则 $g \circ f = i_g \circ \bar{g} \circ p_g \circ i_f \circ \bar{f} \circ p_f$ 。由前面的结论,我们知道 p_g 是单射, i_f 是满射,又由标准分解知道 p_g 是满射, i_f 是单射,从而均是双射,于 是 $h = \bar{g} \circ p_g \circ i_f \circ \bar{f}$ 是双射, $i_g \circ h \circ p_f$ 即为 $g \circ f$ 的标准分解。

进阶习题 4 (幂集的映射分解). 设 A 是任意集合, $\mathcal{P}(A)$ 是其幂集(即 A 的所有子集构成的集合)。考虑特征函数:

$$\chi: \mathcal{P}(A) \to \{0,1\}^A, \ B \mapsto \chi(B), \ \chi(B)(a) = \begin{cases} 1 & \text{如果} a \in B \\ 0 & \text{如果} a \notin B \end{cases}$$

- (a) 证明 χ 是双射
- (b) 写出 χ 的标准分解
- (c) 设 A 是有限集,利用这个结果证明 $|\mathcal{P}(A)| = 2^{|A|}$

证明. (a) 证明 χ 是双射

我们需要证明 χ 既是单射又是满射。

单射性: 假设 $\chi(B) = \chi(C)$, 其中 $B, C \subseteq A$ 。那么对于任意 $a \in A$,有 $\chi(B)(a) = \chi(C)(a)$ 。根据 χ 的定义,这等价于:

$$a \in B \Leftrightarrow a \in C$$

因此 B = C, 所以 χ 是单射。

满射性: 设 $f \in \{0,1\}^A$ 是任意函数(即 $f: A \to \{0,1\}$)。定义集合 $B = \{a \in A \mid f(a) = 1\}$ 。那么对于任意 $a \in A$,有:

$$\chi(B)(a) = \begin{cases} 1 & \text{m} \exists a \in B \\ 0 & \text{m} \exists a \notin B \end{cases} = \begin{cases} 1 & \text{m} \exists f(a) = 1 \\ 0 & \text{m} \exists f(a) = 0 \end{cases} = f(a)$$

因此 $\chi(B) = f$, 所以 χ 是满射。

由于 χ 既是单射又是满射,它是双射。

(b) 写出 χ 的标准分解

根据映射的标准分解定理,任意映射 $f: X \to Y$ 可以分解为:

$$f=i\circ \bar{f}\circ p$$

其中:

• $p: X \to X/\sim$ 是商映射, 其中等价关系 ~ 定义为 $x_1 \sim x_2 \Leftrightarrow f(x_1) = f(x_2)$

- $\bar{f}: X/\sim \to \operatorname{im}(f)$ 是双射, 定义为 $\bar{f}([x]) = f(x)$
- $i: \operatorname{im}(f) \to Y$ 是包含映射, 即 i(y) = y 对所有 $y \in \operatorname{im}(f)$

对于 $\chi: \mathcal{P}(A) \to \{0,1\}^A$,我们有:

- 等价关系: $B \sim C \Leftrightarrow \chi(B) = \chi(C)$ 。由于 χ 是单射,这个等价关系是平凡的,即 $B \sim C$ 当且仅当 B = C。因此,商集 $\mathcal{P}(A)/\sim$ 与 $\mathcal{P}(A)$ 可以自然识别。
- 商映射 p: P(A) → P(A)/~ 实际上是恒等映射的商集版本,将每个子集 B 映射到其等价类 [B] = {B}。
- 由于 χ 是双射, $im(\chi) = \{0,1\}^A$.
- 双射 $\bar{\chi}: \mathcal{P}(A)/\sim \to \{0,1\}^A$ 定义为 $\bar{\chi}([B]) = \chi(B)$ 。由于 $[B] = \{B\}$,这实际上就是 χ 本身。
- 包含映射 $i: \{0,1\}^A \to \{0,1\}^A$ 是恒等映射。

因此, χ 的标准分解为:

$$\chi = i \circ \bar{\chi} \circ p$$

其中:

- $p: \mathcal{P}(A) \to \mathcal{P}(A)/\sim$ 是"几乎恒等"的映射
- $\bar{\chi}: \mathcal{P}(A)/\sim \to \{0,1\}^A$ 是双射(实际上是 χ 本身)
- $i: \{0,1\}^A \to \{0,1\}^A$ 是恒等映射

由于 χ 已经是双射, 其标准分解是"平凡"的, 即分解中的每个映射都是双射。

(c) **利用这个结果证明** $|\mathcal{P}(A)| = 2^{|A|}$

由于 $\chi: \mathcal{P}(A) \to \{0,1\}^A$ 是双射,我们有:

$$|\mathcal{P}(A)| = |\{0, 1\}^A|$$

而 $\{0,1\}^A$ 是从 A 到 $\{0,1\}$ 的所有函数的集合。由 A 是有限集且记 |A|=n,那么:

$$|\{0,1\}^A| = 2^n$$

因为对于 A 中的每个元素,函数值可以是 0 或 1,所以有 2^n 种可能。

因此:

$$|\mathcal{P}(A)| = 2^{|A|}$$

注. 即使 A 是无限集,这个等式仍然成立,并且可以作为无限集幂集势的 定义。特别地,对于任意集合 A,无论有限还是无限,我们都有:

$$|\mathcal{P}(A)| = 2^{|A|}$$

进阶习题 5 (商映射的泛性质). 设 $f: X \to Y$ 是映射, \sim 是 X 上的等价关系。证明以下命题等价:

- (a) 存在映射 $\bar{f}:X/\sim \to Y$ 使得 $f=\bar{f}\circ\pi$,其中 $\pi:X\to X/\sim$ 是自然 投影
- (b) 对于任意 $x_1, x_2 \in X$, 如果 $x_1 \sim x_2$, 则 $f(x_1) = f(x_2)$

并且当这些条件满足时, \bar{f} 是唯一确定的。

证明. 我们证明 (a) 和 (b) 等价。

首先假设 (a) 成立,即存在 $\bar{f}: X/\sim \to Y$ 使得 $f=\bar{f}\circ\pi$ 。设 $x_1,x_2\in X$ 且 $x_1\sim x_2$,则 $\pi(x_1)=\pi(x_2)$ 。于是 $f(x_1)=\bar{f}(\pi(x_1))=\bar{f}(\pi(x_2))=f(x_2)$ 。因此 (b) 成立。

反之,假设 (b) 成立。我们定义 $\bar{f}: X/\sim \to Y$ 如下: 对于任意等价类 $[x] \in X/\sim$,定义 $\bar{f}([x]) = f(x)$ 。由于 (b) 成立,如果 [x] = [y],则 $x \sim y$,所以 f(x) = f(y),因此 \bar{f} 是良定的。显然,对于任意 $x \in X$,有 $\bar{f}(\pi(x)) = \bar{f}([x]) = f(x)$,所以 $f = \bar{f} \circ \pi$ 。因此 (a) 成立。

现在证明唯一性。假设有两个映射 $\bar{f}_1, \bar{f}_2: X/\sim Y$ 都满足 $f = \bar{f}_1 \circ \pi = \bar{f}_2 \circ \pi$ 。则对于任意 $[x] \in X/\sim$,取代表元 $x \in [x]$,有 $\bar{f}_1([x]) = f(x) = \bar{f}_2([x])$ 。所以 $\bar{f}_1 = \bar{f}_2$ 。因此 \bar{f} 是唯一确定的。