第六次作业解答

习题 1. 设 $u_1, u_2, u_3, u_4 \in \mathbb{R}^4$, 其中

$$u_{1} = \begin{pmatrix} -1\\1\\2\\0 \end{pmatrix}, \quad u_{2} = \begin{pmatrix} 2\\0\\1\\-1 \end{pmatrix}, \quad u_{3} = \begin{pmatrix} 1\\1\\3\\-1 \end{pmatrix}, \quad u_{4} = \begin{pmatrix} 3\\-1\\-1\\-1 \end{pmatrix}.$$

计算 $\langle u_1, u_2, u_3, u_4 \rangle$ 的一组基和维数。

解. 将向量作为列构成矩阵 A:

$$A = \begin{pmatrix} -1 & 2 & 1 & 3 \\ 1 & 0 & 1 & -1 \\ 2 & 1 & 3 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

对 A 进行行化简至行最简形式:交换第 1 行和第 2 行:

$$\begin{pmatrix}
1 & 0 & 1 & -1 \\
-1 & 2 & 1 & 3 \\
2 & 1 & 3 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

然后, 第 2 行 = 第 2 行 + 第 1 行, 第 3 行 = 第 3 行 - 2 × 第 1 行:

$$\begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 2 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

第 2 行除以 2:

$$\begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

第3行=第3行-第2行,第4行=第4行+第2行:

$$\begin{pmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

所以行最简形式有两个主元,位于第 1 列和第 2 列。因此, $\langle u_1, u_2, u_3, u_4 \rangle$ 的一组基为 $\{u_1, u_2\}$,维数为 2。

习题 2. 设 $v_1, v_2, w_1, w_2 \in \mathbb{R}^3$, 其中

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad w_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

再设 $V = \langle v_1, v_2 \rangle$ 和 $W = \langle w_1, w_2 \rangle$ 。 计算 $\dim(V + W)$ 和 $\dim(V \cap W)$ 。

解. 首先, V 由 v_1, v_2 张成, 由于 v_1 和 v_2 线性无关, 故 dim V=2。类似地, W 由 w_1, w_2 张成, 由于 w_1 和 w_2 线性无关, 故 dim W=2。

考虑 V+W, 它由 v_1,v_2,w_1,w_2 张成。构造矩阵以这些向量为列:

$$B = \begin{pmatrix} 1 & -1 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 \end{pmatrix}$$

对 B 进行行化简: 第 3 行 = 第 3 行 - 第 1 行:

$$\begin{pmatrix}
1 & -1 & 3 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & -1 & 1
\end{pmatrix}$$

第3行=第3行-第2行:

$$\begin{pmatrix}
1 & -1 & 3 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & -2 & 0
\end{pmatrix}$$

秩为 3, 故 $\dim(V+W)=3$ 。

由维数公式:

$$\dim(V+W) = \dim V + \dim W - \dim(V \cap W)$$

代入:

$$3 = 2 + 2 - \dim(V \cap W) \implies \dim(V \cap W) = 1.$$

所以,
$$\dim(V+W)=3$$
, $\dim(V\cap W)=1$.

习题 3 (关于子空间的模律). 设 U, V, W 是 \mathbb{R}^n 的子空间。证明: 如果 $V \subset U$,则

$$U \cap (V + W) = U \cap V + U \cap W = V + U \cap W.$$

证明. 由于 $V \subset U$,有 $U \cap V = V$ 。因此只需证明 $U \cap (V+W) = V+U \cap W$. 先证 $U \cap (V+W) \subset V+U \cap W$. 任取 $x \in U \cap (V+W)$,则 $x \in U$ 且 $x \in V+W$,故存在 $v \in V$, $w \in W$ 使得 x = v+w. 由于 $x \in U$ 且 $v \in V \subset U$,所以 $w = x-v \in U$. 又 $w \in W$,故 $w \in U \cap W$. 因此 $x = v+w \in V+U \cap W$. 所以 $U \cap (V+W) \subset V+U \cap W$.

再证 $V+U\cap W\subset U\cap (V+W)$. 任取 $x\in V+U\cap W$, 则存在 $v\in V$, $w\in U\cap W$ 使得 x=v+w. 由于 $v\in V\subset U$, $w\in U$, 故 $x\in U$. 又 $v\in V$, $w\in W$, 故 $x\in V+W$. 所以 $x\in U\cap (V+W)$. 因此 $V+U\cap W\subset U\cap (V+W)$.

综上, $U\cap (V+W)=V+U\cap W.$ 又 $U\cap V+U\cap W=V+U\cap W,$ 故等式成立。

习题 4. 设 U,V 是 \mathbb{R}^n 的子空间。证明: 如果 $\dim(U) + \dim(V) > n$, 则 $U \cap V \neq \{0\}$ 。

证明. 由维数公式:

$$\dim(U+V) = \dim U + \dim V - \dim(U \cap V)$$

由于 $U+V\subset\mathbb{R}^n$,有 $\dim(U+V)\leq n$ 。所以

$$\dim U + \dim V - \dim(U \cap V) \le n$$

即

$$\dim(U \cap V) \ge \dim U + \dim V - n$$

由条件 $\dim U + \dim V > n$,故 $\dim(U \cap V) > 0$,所以 $U \cap V$ 包含非零向量,即 $U \cap V \neq \{0\}$.

习题 5. 设 $A \not\in m \times n$ 的实矩阵, $B \mapsto A$ 通过一次初等行变换得到的矩阵。证明:A 的列向量线性相关当且仅当 B 的列向量线性相关。

证明. 考虑齐次线性方程组 $A\mathbf{x} = \mathbf{0}$ 和 $B\mathbf{x} = \mathbf{0}$. 由于初等行变换不改变方程组的解集,所以 $A\mathbf{x} = \mathbf{0}$ 和 $B\mathbf{x} = \mathbf{0}$ 同解。

A 的列向量线性相关当且仅当存在非零向量 x 使得 Ax = 0,同理 B 的列向量线性相关当且仅当存在非零向量 x 使得 Bx = 0. 由于两个方程组同解,所以 Ax = 0 有非零解当且仅当 Bx = 0 有非零解,因此 A 的列线性相关当且仅当 B 的列线性相关。

1 子空间的直和、和与交

定义 1 (直和). 设 V_1, V_2 是 V 的子空间。如果 $V_1 + V_2$ 中每个向量 α 的分解式

$$\alpha = \alpha_1 + \alpha_2 \quad (\alpha_1 \in V_1, \alpha_2 \in V_2)$$

是唯一的,则称 $V_1 + V_2$ 为直和,记作 $V_1 \oplus V_2$ 。

定理 1 (直和的等价条件). 以下条件等价:

- (1) $V_1 + V_2$ 是直和
- (2) $V_1 \cap V_2 = \{0\}$
- (3) $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$
- (4) 零向量的分解式唯一
- (5) V_1 中的一组基和 V_2 中的一组基合起来构成全空间 V 的一组基证明. 我们证明这些条件的等价性:
- (1) \Rightarrow (2): 假设 $V_1 + V_2$ 是直和。任取 $\alpha \in V_1 \cap V_2$,则 α 可以表示为

$$\alpha = \alpha + 0, \quad \alpha \in V_1, 0 \in V_2$$

同时也可以表示为

$$\alpha = 0 + \alpha, \quad 0 \in V_1, \alpha \in V_2$$

由于直和中向量的分解是唯一的,所以必须有 $\alpha = 0$ 。因此 $V_1 \cap V_2 = \{0\}$ 。

(2) \Rightarrow (1): 假设 $V_1 \cap V_2 = \{0\}$ 。设 $\alpha \in V_1 + V_2$ 有两个分解:

$$\alpha = \alpha_1 + \alpha_2 = \beta_1 + \beta_2, \quad \alpha_1, \beta_1 \in V_1, \alpha_2, \beta_2 \in V_2$$

则

$$\alpha_1 - \beta_1 = \beta_2 - \alpha_2$$

左边属于 V_1 ,右边属于 V_2 ,所以 $\alpha_1 - \beta_1 = \beta_2 - \alpha_2 \in V_1 \cap V_2 = \{0\}$ 。因此 $\alpha_1 = \beta_1$, $\alpha_2 = \beta_2$,分解唯一。

(2) ⇔ (3): 由维数公式:

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$$

所以 $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$ 当且仅当 $\dim(V_1 \cap V_2) = 0$,即 $V_1 \cap V_2 = \{0\}$ 。

(1) ⇔ (4): 显然 (1) ⇒ (4)。反之,如果零向量的分解唯一,即从

$$0 = \alpha_1 + \alpha_2, \quad \alpha_1 \in V_1, \alpha_2 \in V_2$$

可推出 $\alpha_1 = \alpha_2 = 0$ 。现在设 $\alpha \in V_1 + V_2$ 有两个分解:

$$\alpha = \alpha_1 + \alpha_2 = \beta_1 + \beta_2$$

则

$$0 = (\alpha_1 - \beta_1) + (\alpha_2 - \beta_2)$$

由零向量分解的唯一性, $\alpha_1 - \beta_1 = 0$, $\alpha_2 - \beta_2 = 0$, 所以分解唯一。

(2) \Rightarrow (5): 假设 $V = V_1 \oplus V_2$ 。取 V_1 的一组基 $\alpha_1, \ldots, \alpha_m$ 和 V_2 的一组基 β_1, \ldots, β_n 。考虑向量组 $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n$ 。

首先证明这个向量组生成 V。任取 $\gamma \in V$,由于 $V = V_1 \oplus V_2$,存在唯一的 $\alpha \in V_1$, $\beta \in V_2$ 使得 $\gamma = \alpha + \beta$ 。又 α 可由 $\alpha_1, \ldots, \alpha_m$ 线性表示, β 可由 β_1, \ldots, β_n 线性表示,所以 γ 可由 $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n$ 线性表示。

再证明这个向量组线性无关。设

$$k_1\alpha_1 + \cdots + k_m\alpha_m + l_1\beta_1 + \cdots + l_n\beta_n = 0$$

令

$$\alpha = k_1 \alpha_1 + \dots + k_m \alpha_m \in V_1, \quad \beta = l_1 \beta_1 + \dots + l_n \beta_n \in V_2$$

则 $\alpha + \beta = 0$,所以 $\alpha = -\beta \in V_1 \cap V_2 = \{0\}$ 。故 $\alpha = 0$, $\beta = 0$ 。由于 $\alpha_1, \ldots, \alpha_m$ 是 V_1 的基, β_1, \ldots, β_n 是 V_2 的基,所以 $k_1 = \cdots = k_m = 0$, $l_1 = \cdots = l_n = 0$ 。

因此 $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n$ 是 V 的一组基。

(5) \Rightarrow (3): 假设 V_1 的基 $\alpha_1, \ldots, \alpha_m$ 和 V_2 的基 β_1, \ldots, β_n 合起来是 V 的一组基。则 $\dim V = m + n = \dim V_1 + \dim V_2$ 。

2 例题

例子 1. 在 ℝ3 中, 设

$$V_1 = \{(x, y, z) \mid x + 2y - z = 0\}, \quad V_2 = \{(x, y, z) \mid 2x - y + 3z = 0\}$$

求 $V_1 \cap V_2$ 的维数和一组基。

解. $V_1 \cap V_2$ 中的向量满足方程组:

$$\begin{cases} x + 2y - z = 0 \\ 2x - y + 3z = 0 \end{cases}$$

解这个齐次线性方程组:

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

所以通解为:

$$\begin{cases} x = -t \\ y = t \\ z = t \end{cases} \quad t \in \mathbb{R}$$

即 $V_1 \cap V_2 = \{(-t, t, t) \mid t \in \mathbb{R}\} = \text{span}\{(-1, 1, 1)\}$ 。维数为 1,一组基为 $\{(-1, 1, 1)\}$ 。

例子 2. 在 \mathbb{R}^4 中,设

$$V_1 = \text{span}\{(1, 2, 0, 1), (0, 1, 1, 0)\}, \quad V_2 = \text{span}\{(1, 0, 1, 1), (2, 1, 1, 2)\}$$

求 $V_1 \cap V_2$ 的维数和一组基。

解. 设 $\alpha \in V_1 \cap V_2$,则 α 可同时由 V_1 和 V_2 的基线性表示:

$$\alpha = x_1(1, 2, 0, 1) + x_2(0, 1, 1, 0) = y_1(1, 0, 1, 1) + y_2(2, 1, 1, 2)$$

其中 $x_1, x_2, y_1, y_2 \in \mathbb{R}$.

将等式两边展开并整理得:

$$(x_1, 2x_1 + x_2, x_2, x_1) = (y_1 + 2y_2, y_2, y_1 + y_2, y_1 + 2y_2)$$

比较各分量得线性方程组:

$$\begin{cases} x_1 = y_1 + 2y_2 \\ 2x_1 + x_2 = y_2 \\ x_2 = y_1 + y_2 \\ x_1 = y_1 + 2y_2 \end{cases}$$

注意到第一个和第四个方程相同,所以实际上是三个独立方程。整理 得:

$$\begin{cases} x_1 - y_1 - 2y_2 = 0 \\ 2x_1 + x_2 - y_2 = 0 \\ x_2 - y_1 - y_2 = 0 \end{cases}$$

将 x₁, x₂, y₁, y₂ 视为未知数,写出系数矩阵并化为行最简形:

$$\begin{bmatrix} 1 & 0 & -1 & -2 \\ 2 & 1 & 0 & -1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -3 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & \frac{4}{3} \end{bmatrix}$$

回代得:

$$\begin{cases} y_1 = -\frac{4}{3}y_2 \\ x_2 = y_1 + y_2 = -\frac{1}{3}y_2 \\ x_1 = y_1 + 2y_2 = \frac{2}{3}y_2 \end{cases}$$

 $\Rightarrow y_2 = 3t \ (t \in \mathbb{R}), \ \mathbb{M}$:

$$\begin{cases} x_1 = 2t \\ x_2 = -t \\ y_1 = -4t \\ y_2 = 3t \end{cases}$$

代入 α 的表达式:

$$\alpha = x_1(1,2,0,1) + x_2(0,1,1,0) = 2t(1,2,0,1) - t(0,1,1,0) = (2t,3t,-t,2t)$$

所以 $V_1 \cap V_2 = \text{span}\{(2,3,-1,2)\}$,维数为 1。

例子 3. 在 ℝ⁴ 中, 设

$$V_1 = \operatorname{span}\{(1,0,0,0), (0,1,0,0), (0,0,1,1)\}$$

$$V_2 = \operatorname{span}\{(2,1,0,0), (0,1,0,1), (1,0,-1,0)\}$$

求 $V_1 \cap V_2$ 的维数和一组基。

解. 设 $\alpha \in V_1 \cap V_2$, 则 α 可同时由 V_1 和 V_2 的基线性表示:

$$\alpha = x_1(1,0,0,0) + x_2(0,1,0,0) + x_3(0,0,1,1) = y_1(2,1,0,0) + y_2(0,1,0,1) + y_3(1,0,-1,0)$$

其中 $x_1, x_2, x_3, y_1, y_2, y_3 \in \mathbb{R}$.

将等式两边展开并整理得:

$$(x_1, x_2, x_3, x_3) = (2y_1 + y_3, y_1 + y_2, -y_3, y_2)$$

比较各分量得线性方程组:

$$\begin{cases} x_1 = 2y_1 + y_3 \\ x_2 = y_1 + y_2 \\ x_3 = -y_3 \\ x_3 = y_2 \end{cases}$$

整理得:

$$\begin{cases} x_1 - 2y_1 - y_3 = 0 \\ x_2 - y_1 - y_2 = 0 \\ x_3 + y_3 = 0 \\ x_3 - y_2 = 0 \end{cases}$$

将 $x_1, x_2, x_3, y_1, y_2, y_3$ 视为未知数,写出系数矩阵并化为行最简形:

$$\begin{bmatrix} 1 & 0 & 0 & -2 & 0 & -1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 & 0 & -1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 & 0 & -1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

得到简化后的方程组:

$$\begin{cases} x_1 = 2y_1 + y_3 \\ x_2 = y_1 - y_3 \\ x_3 = -y_3 \\ y_2 = -y_3 \end{cases}$$

 \diamondsuit $y_1 = s, y_3 = t \ (s, t \in \mathbb{R}), \$ 则:

$$\begin{cases} x_1 = 2s + t \\ x_2 = s - t \\ x_3 = -t \\ y_1 = s \\ y_2 = -t \\ y_3 = t \end{cases}$$

代入 α 的表达式 (使用 V_1 的基表示):

$$\alpha = (2s+t)(1,0,0,0) + (s-t)(0,1,0,0) + (-t)(0,0,1,1) = (2s+t,s-t,-t,-t)$$
 我们可以重写为:

$$\alpha = s(2,1,0,0) + t(1,-1,-1,-1)$$

所以 $V_1 \cap V_2 = \text{span}\{(2,1,0,0),(1,-1,-1,-1)\},$ 维数为 2。

例子 4. 设 $V = \mathbb{R}^3$, $V_1 = \{(x, y, z) \mid x = y\}$, $V_2 = \{(x, y, z) \mid y = z\}$ 。证明: $V = V_1 + V_2$, 并判断这是否为直和。

证明. 首先证明 $V = V_1 + V_2$ 。任意 $(x, y, z) \in \mathbb{R}^3$,可以分解为:

$$(x, y, z) = (x, x, z) + (0, y - x, 0)$$

其中 $(x,x,z) \in V_1$, $(0,y-x,0) = (y,y,0) - (0,x,x) \in V_1 + V_2$ 。所以 $V = V_1 + V_2$ 。

判断是否为直和: 求 $V_1 \cap V_2$ 。设 $(x,y,z) \in V_1 \cap V_2$,则

$$\begin{cases} x = y \\ y = z \end{cases} \Rightarrow x = y = z$$

所以 $V_1 \cap V_2 = \{(t, t, t) \mid t \in \mathbb{R}\} \neq \{0\}$ 。因此 $V_1 + V_2$ 不是直和。

例子 5. 设 V 是数域 $\mathbb F$ 上的线性空间, V_1,V_2,V_3 是 V 的子空间。证明:如 果 $V_1\cap (V_2+V_3)=\{0\}$ 且 $V_2\cap V_3=\{0\}$,则 $V_1+V_2+V_3=V_1\oplus V_2\oplus V_3$ (若 $\alpha\in V_1+V_2+V_3$ 有唯一分解 $\alpha=\alpha_1+\alpha_2+\alpha_3$,其中 $\alpha_i\in V_i(i=1,2,3)$)。证明.设

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
, $\alpha_1 \in V_1, \alpha_2 \in V_2, \alpha_3 \in V_3$

则 $\alpha_1 = -(\alpha_2 + \alpha_3) \in V_1 \cap (V_2 + V_3) = \{0\}$,所以 $\alpha_1 = 0$ 。于是 $\alpha_2 + \alpha_3 = 0$,由 $V_2 \cap V_3 = \{0\}$ 得 $\alpha_2 = \alpha_3 = 0$ 。所以零向量的表示唯一,从而是直和。 \square

例子 6. 设 $V = \mathbb{R}^3$, $V_1 = \{(x, y, z) \mid x + y + z = 0\}$, $V_2 = \{(x, y, z) \mid x = y = z\}$, $V_3 = \{(x, y, z) \mid x = 0\}$ 。判断 $V_1 + V_2 + V_3$ 是否为直和。

解. $V_1 = \{(x, y, z) \mid x + y + z = 0\}$ (平面), $\dim V_1 = 2 \circ V_2 = \{(t, t, t) \mid t \in \mathbb{R}\}$ (直线), $\dim V_2 = 1 \circ V_3 = \{(0, y, z) \mid y, z \in \mathbb{R}\}$ (平面), $\dim V_3 = 2 \circ$

若 $V_1 + V_2 + V_3$ 是直和,则例 5 可以反过来得到 $V_1 \cap (V_2 + V_3) = \{0\}$ 且 $V_2 \cap V_3 = \{0\}$,由维数公式:

$$\dim(V_1 + V_2 + V_3) = \dim(V_3 + V_2) + \dim V_1 - \dim(V_1 \cap (V_2 + V_3))$$

$$= \dim V_2 + \dim V_3 + \dim V_1 - \dim(V_1 \cap (V_2 + V_3))$$

$$- \dim(V_2 \cap V_3)$$

$$= \dim V_1 + \dim V_2 + \dim V_3 = 2 + 1 + 2 = 5 > 3$$

但 $\dim(V_1 + V_2 + V_3) \le \dim \mathbb{R}^3 = 3$,矛盾。所以不能是直和(直和要求维数之和等于和空间的维数)。