2025年11月17日 星期一

15:07

第七次习题课

好阵的缺;与线性变换室风线数的对应,换的不等的线性变换:像近间、按空间、线数优试

$$\begin{vmatrix} 2 & 3 & 5 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 2 \\ 2 & -1 & 3 & 2 \end{vmatrix}, B = \begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{vmatrix}$$

 $\vec{R} :$ $rank(AB^T)$, $rank(A+A^T)$. 685

2. 该V=P*, 个是V上的残性变换, 它在V的一组基下的表示矩阵为

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{bmatrix}$$

龙像空间于核空间的基子维数.

解: 设V的基为 \e1, e2, e3, e4?

$$\begin{array}{c}
\text{Problem of the problem of$$

Hamk AJ=2, i-e dim (Im 9) =2, 注意到 A 前两列向量线性 33, i之 Im 9 自9 - 组基为 pcei), p(e2)

② 渡 x c per φ , x = x, e, +x, e, + x, e, +x, e, +v, e, φ , φ (e) = 0 = φ (x, e, +x, e, +x, e, +x, e, +) = x, φ (e, +x, e, +x, e, +x, e, +) = x, φ (e) + x

$$= (e_1, e_2, e_3, e_4) \begin{vmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix}$$

$$= > \begin{vmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$

$$= | (e_1, e_2, e_3, e_4) \stackrel{?}{\cancel{-}} \stackrel{?}{$$

3. 没 V, U是两个线性空间, P: V -> U为线性映射, 若 dim V > dim U, * Lery +0

元明: 由维数心出 dimV= dim(Imp)+ dim(kerp) < dim u + dim (bery)

dim(kerq) > dimv-dimu>0 to kery to

全个是 方位,那中(A)= an+ a==+--+ ann,

龙池: Y是 V到 R上的线性映射, 再求 ber Y的一组基与维数.

记明: 由维数化式, dim (per φ)= n²- dim (Zmp)= n²-1.

-组基为 [j(注j); Eli- Ell, En-Ess--- En-1,n-1- Enn.

5. (软阵 株的 Frobenius 不等式)

没AEFMIN, BEFMAP, CEFMI, 老证:

runk (AB) + rank (BC) - rank CB) = rank ABC

证明:没以=于1、V=于1、定义线性映射了=U=>V X->AX

记 UB为 B的创向量生成的子空间,即 UB={BX X ∈ FPX }, dim(UB)= [Tank CB]
同理党X UBC, dim UBC = rank CBC), 规志定 γ 在 UB 和 UBC 上旬 預制.

 $\varphi|_{\mathcal{U}_{B}}: \begin{array}{cccc} u_{B} \rightarrow V & \varphi|_{\mathcal{U}_{B}L} & u_{B}L \rightarrow V \\ \chi \rightarrow A\chi & \chi \rightarrow A\chi \end{array}$

dim(ker flus) = rank B-rank CAB). dim(kerflusc) = rank (BC)-rank (ABC)

第一方配, UBC SUB, to din (ker Yure) & dimcker YuB)

rank CBC)-rank (ABC) & rank(B) - rank (AB).

ある1里/UBC = UB/m cumcion / URC) -rank CBC)-rank (ABC) & rank (B) - rank (AB). 6. 设A为n所方阵, xile rank(An)= rank(Ant)=rank(Ant)=---河明:由铁的不等式:

N= F(In) > F(A) > F(A²) > ... > FcAn+1) > 0 由抽屉原理,存在MGCo,n], rcAm)=rcAmt). RIXTY KZM, r(AK)=r(AK-MAMA)=rcAK-MAM)-1-CAMA)-rcAM) = r c A K J C Frobenius 不等划

式者老底解空间:河池,若rcAm)=r(Am*), Ny dim ber Am*)=

7. 设个是小维线性空间V上的线性变换, 和证:必存在MEZt, S.t. $I_m \phi^m = I_m \phi^{m+l} = \cdots$, her $\phi^m = \ker \phi^{m+l} = \cdots$, $V = I_m \phi^m \oplus \ker \phi^m$. 证明:由6,3m≤n,5t Imp^{m=Imp^{mtl}=--} 由维数加式, dim per ym = chm per ym+1 =---F perp^m c perp^{m+1} c --- , to perp^m = perp^{m+1} = ---老 XEperymn Impm, 液 X= Ymp, , BEV, 由于 $\alpha \in \text{perp}^m$, the $\gamma^m = \gamma^{2m} \in \text{perp}^m = \text{perp}^m = \text{perp}^m = \gamma^m \oplus \text{perp}^m = \gamma^m \oplus$ that dim (Impm + perpm) = dim (Impm) + dim (porpm) = n the V = Impm & perpm.

简单的维护:

8.93 (9是n 维空阀 V上的线性变换, 若 rcpl=rcp²), 末证 V= Imp 1 perq 证明、全了中加一部可。

9.设U,W是n维线性空间V的子空间且chimU+dimW=dimU, 龙证: 存在V上线性变换P, S,t kerq=U, ImP=Wi

证明:取以的一组基 e,---em, 扩充为V的一组基 e,,---, em, em, em, /日本とよ、一千山、宮メヤマV -> W

で用:取以的一组基色,---em,扩充为V的一组至し、 ---en, 再取以一组基为fm+-fn, 房文 P; V→W ---en, 用取以一组基为fm+--fn, 房文 P; V→W pcx1er+--+xmen+xm+rem++--+xmen) = xm+rem+1+--+xmen perp=U, Im y=W