第八次作业解答

习题 1. 设 e_1, e_2, e_3, e_4, e_5 是 \mathbb{R}^5 的标准基, ϵ_1, ϵ_2 是 \mathbb{R}^2 的标准基,线性映射

$$\phi: \mathbb{R}^5 \to \mathbb{R}^2$$

由 $\phi(e_1) = \epsilon_1 - \epsilon_2$, $\phi(e_2) = \epsilon_2 - \epsilon_1$, $\phi(e_3) = \epsilon_1 - 2\epsilon_2$, $\phi(e_4) = \epsilon_1$ 和 $\phi(e_5) = \epsilon_2$ 确定。

- (i) 计算 ϕ 在 $e_1, e_2, e_3, e_4, e_5; \epsilon_1, \epsilon_2$ 下的矩阵。
- (ii) 计算 $im(\phi)$ 的一组基和 $dim(ker(\phi))$ 。

解. (i) 映射 ϕ 在给定基下的矩阵为:

$$A = \begin{pmatrix} 1 & -1 & 1 & 1 & 0 \\ -1 & 1 & -2 & 0 & 1 \end{pmatrix}$$

其中每一列是相应基向量的像在目标基下的坐标表示。

(ii) 首先求 $im(\phi)$ 的基:

$$\phi(e_1) = \epsilon_1 - \epsilon_2$$

$$\phi(e_2) = -(\epsilon_1 - \epsilon_2)$$

$$\phi(e_3) = \epsilon_1 - 2\epsilon_2$$

$$\phi(e_4) = \epsilon_1$$

$$\phi(e_5) = \epsilon_2$$

观察可知 $\phi(e_4), \phi(e_5)$ 线性无关,且 $\operatorname{im}(\phi)$ 是 \mathbb{R}^2 的子空间,于是

$$\dim(\operatorname{im}(\phi)) \leqslant \dim(\mathbb{R}^2) = 2$$

因此 $\phi(e_4)$, $\phi(e_5)$ 是 im(ϕ) 的一组基。

由秩-零化度定理:

$$\dim(\mathbb{R}^5) = \dim(\ker(\phi)) + \dim(\operatorname{im}(\phi))$$

$$5 = \dim(\ker(\phi)) + 2 \Rightarrow \dim(\ker(\phi)) = 3$$

(iii) 计算 $\phi(x)$ 和 $\phi(y)$:

$$\phi(x) = \phi(e_1 + e_2 + e_3 + e_4 + e_5)$$

$$= (\epsilon_1 - \epsilon_2) + (\epsilon_2 - \epsilon_1) + (\epsilon_1 - 2\epsilon_2) + \epsilon_1 + \epsilon_2$$

$$= 2\epsilon_1 - \epsilon_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$\phi(y) = \phi(2e_1 - e_5)$$

$$= 2(\epsilon_1 - \epsilon_2) - \epsilon_2$$

$$= 2\epsilon_1 - 3\epsilon_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

习题 2. 设

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

和

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

计算 2A - BC。

解. 首先计算 BC:

$$BC = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

然后计算 2A:

$$2A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

最后计算 2A - BC:

$$2A - BC = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix}$$

习题 3. 设 $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 。计算所有满足 XJ = JX 的二阶方阵 X。

解. 设
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,则:

$$XJ = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix}$$

$$JX = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix} = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix}$$

比较对应元素:

$$0 = c$$

$$a = d$$

$$c = 0$$

因此, 所有满足条件的矩阵为:

$$X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, \quad a, b \in \mathbb{R}$$

习题 4. 设线性映射 $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ 在标准基 $e_1, e_2; e_1, e_2$ 下的矩阵是

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

证明:

$$\ker(\phi) = \operatorname{im}(\phi)$$

请回答 \mathbb{R}^2 和 $\ker(\phi) + \operatorname{im}(\phi)$ 是否相同? 并说明理由。

证. 由矩阵表示可得:

$$\phi(e_1) = 0, \quad \phi(e_2) = e_1$$

因此:

$$\ker(\phi) = \{x \in \mathbb{R}^2 \mid \phi(x) = 0\} = \operatorname{span}\{e_1\}$$

 $\operatorname{im}(\phi) = \{\phi(x) \mid x \in \mathbb{R}^2\} = \operatorname{span}\{e_1\}$

故 $\ker(\phi) = \operatorname{im}(\phi)$ 。

 \mathbb{R}^2 和 $\ker(\phi) + \operatorname{im}(\phi)$ 不相同,因为:

$$\ker(\phi) + \operatorname{im}(\phi) = \operatorname{span}\{e_1\} \neq \mathbb{R}^2$$

实际上, $\ker(\phi) + \operatorname{im}(\phi)$ 是 \mathbb{R}^2 的一维子空间。

习题 5. 设 $\phi: \mathbb{R}^m \to \mathbb{R}^m$ 是线性满射, V 是 \mathbb{R}^m 的子空间。证明:

$$\dim(\phi^{-1}(V)) \ge \dim(V)$$

证. 第一步: 证明 $\phi^{-1}(V)$ 是 \mathbb{R}^m 的子空间。

设 $u, w \in \phi^{-1}(V)$, 则 $\phi(u), \phi(w) \in V$ 。由于 V 是子空间,对任意 $\alpha, \beta \in \mathbb{R}$,有:

$$\alpha\phi(u) + \beta\phi(w) = \phi(\alpha u + \beta w) \in V$$

因此 $\alpha u + \beta w \in \phi^{-1}(V)$, 故 $\phi^{-1}(V)$ 是 \mathbb{R}^m 的子空间。

第二步:证明维数不等式。

考虑限制映射 $\psi = \phi|_{\phi^{-1}(V)} : \phi^{-1}(V) \to V$ 。

首先证明 ψ 是满射: 对任意 $v\in V\subset\mathbb{R}^m$, 由于 ϕ 是满射, 存在 $u\in\mathbb{R}^m$ 使得 $\phi(u)=v$ 。 但 $v\in V$, 故 $u\in\phi^{-1}(V)$, 即 $\psi(u)=v$ 。

由线性映射的维数公式:

$$\dim(\phi^{-1}(V)) = \dim(\ker(\psi)) + \dim(\operatorname{im}(\psi))$$

由于 ψ 是满射, $\dim(\operatorname{im}(\psi)) = \dim(V)$,且 $\dim(\ker(\psi)) \geq 0$,因此:

$$\dim(\phi^{-1}(V)) \ge \dim(V)$$

等号成立当且仅当 $\ker(\psi) = \{0\}$,即 ψ 是单射。

5

1 进阶练习

习题 1. 设置换
$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 1 & 6 & 5 & 7 & 8 & 4 & 10 & 2 & 9 \end{pmatrix}$$
。

- 1. 把 ρ 写成互不相交的循环之积。
- 2. 计算 ρ 的阶。
- 3. 确定 ρ 的奇偶性。

 μ . 1. $\rho = (1\ 3\ 6\ 8\ 10\ 9\ 2)(4\ 5\ 7)$

- 2. 置换的阶等于其循环分解中各循环长度的最小公倍数。 循环 $(1\ 3\ 6\ 8\ 10\ 9\ 2)$ 的长度为 7,循环 $(4\ 5\ 7)$ 的长度为 3。 lcm(7,3)=21,所以 ρ 的阶为 21。
- 3. 在我们的分解中:循环 $(1\ 3\ 6\ 8\ 10\ 9\ 2)$ 长度为 $7\ (奇数)$,而循环 $(4\ 5\ 7)$ 长度为 $3\ (奇数)$,其符号是 $(-1)^{6+2}=1$,所以 ρ 是一个偶置换。

习题 2. 设 A 为 n 阶矩阵, 其中第 i 行第 i+1 列为 1 ($i=1,2,\ldots,n-1$), 其余元素为 0, 即

 $A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}.$

对于任意 n 阶矩阵 $B = (b_{ij})$, 分别计算 AB 和 BA, 看看有什么规律?

右乘 BA

设 C = BA,则 C的元素为

$$c_{ij} = \begin{cases} 0, & j = 1, \\ b_{i,j-1}, & j = 2, 3, \dots, n. \end{cases}$$

即 BA 是将 B 的每一列向右移动一列,第一列变为零列。

左乘 AB

设 D = AB,则 D的元素为

$$d_{ij} = \begin{cases} b_{i+1,j}, & i = 1, 2, \dots, n-1, \\ 0, & i = n. \end{cases}$$

即 AB 是将 B 的每一行向下移动一行,最后一行变为零行。

习题 3. 设 p 是一个整数。对于整数 a,b,c,d,若满足:

$$ad \equiv bc \pmod{p}$$

则称有序对 (a,b) 与 (c,d) 相似,记作 $(a,b) \sim (c,d)$ 。请回答以下问题:

- 1. 若 p 为素数,问相似关系是否是等价关系?说明理由。
- 2. 若 p 为素数,且限制 b 和 d 都不是 p 的倍数,问相似关系是否是等价 关系? 说明理由。
- 3. 若 p 为一般的整数(不一定是素数),且限制 b 和 d 都不是 p 的倍数,问相似关系是否是等价关系?说明理由。
- 1. 当 p 为素数时,相似关系**不是**等价关系。
 - **自反性**: 对于任意 (a,b), 有 $ab \equiv ba \pmod{p}$, 因此 $(a,b) \sim (a,b)$, 自反性成立。
 - **对称性**: 若 $(a,b) \sim (c,d)$, 即 $ad \equiv bc \pmod{p}$, 则 $cb \equiv da \pmod{p}$, 因此 $(c,d) \sim (a,b)$, 对称性成立。
 - **传递性**: 当包括零对时,传递性可能不成立。例如,取 *p* = 2, 考虑:
 - -A = (0,0), B = (1,0), C = (0,1)
 - $-A \sim B$ 因为 $0 \times 0 \equiv 1 \times 0 \pmod{2}$ $(0 \equiv 0)$
 - $-A \sim C$ 因为 $0 \times 1 \equiv 0 \times 0 \pmod{2}$ $(0 \equiv 0)$
 - 但 $B \sim C$ 需要 $1 \times 1 \equiv 0 \times 0 \pmod{2}$ $(1 \equiv 0)$,这不成立。

因此, 传递性不成立, 相似关系不是等价关系。

- 2. 当 p 为素数且 b 和 d 都不是 p 的倍数时,相似关系**是**等价关系。
 - **自反性**: 对于任意 (a,b), 有 $ab \equiv ba \pmod{p}$, 因此 $(a,b) \sim (a,b)$, 自反性成立。
 - **对称性**: 若 $(a,b) \sim (c,d)$, 即 $ad \equiv bc \pmod{p}$, 则 $cb \equiv da \pmod{p}$, 因此 $(c,d) \sim (a,b)$, 对称性成立。
 - 传递性: 假设:
 - $-(a,b) \sim (c,d)$: $\mathbb{H} \ ad \equiv bc \pmod{p}$
 - $-(c,d) \sim (e,f)$: $\mathbb{H} \ cf \equiv de \pmod{p}$

将第一个同余式乘以 f:

$$adf \equiv bcf \pmod{p}$$

将第二个同余式乘以 b:

$$bcf \equiv bde \pmod{p}$$

因此:

$$adf \equiv bde \pmod{p}$$

即:

$$d(af - be) \equiv 0 \pmod{p}$$

由于 d 不是 p 的倍数且 p 是素数,d 与 p 互素,从而存在整数 u 使得 $ud \equiv 1 \pmod{p}$,两边同时乘以 u 得:

$$af \equiv be \pmod{p}$$

即 $(a,b) \sim (e,f)$, 传递性成立。

因此,相似关系是等价关系。

- 3. 当 p 为一般整数且 b 和 d 都不是 p 的倍数时,相似关系**不是**等价关系。
 - 自反性和对称性依然成立,证明同问题 2。
 - **传递性**: 当 *p* 是合数时,即使 *b* 和 *d* 不是 *p* 的倍数, *d* 也可能不可逆,导致传递性不成立。

例如,取p=4,考虑:

$$-A=(2,2),\ B=(4,2),\ C=(0,1)$$

$$-b=2,\ d=2,\ f=1\ \text{都不是 4 的倍数}$$

$$-A\sim B\ \text{因为 } 2\times 2=4\equiv 0\ (\text{mod 4}),\ 2\times 4=8\equiv 0\ (\text{mod 4})$$

$$-B\sim C\ \text{因为 } 4\times 1=4\equiv 0\ (\text{mod 4}),\ 2\times 0=0\equiv 0\ (\text{mod 4})$$

$$-\text{但 } A\sim C\ \text{需要 } 2\times 1=2\equiv 0\ (\text{mod 4}),\ \vec{\Pi}\ 2\not\equiv 0\ (\text{mod 4})$$

因此, 传递性不成立, 相似关系不是等价关系。

习题 4. 设 f_1, f_2, \ldots, f_k 是 \mathbb{R}^n 上的线性函数 (即从 \mathbb{R}^n 到 \mathbb{R} 的线性映射)。证明: 如果这些线性函数的核的交集只包含零向量,即

$$\bigcap_{i=1}^k \ker(f_i) = \{0\},\,$$

则必有 $k \ge n$ 。

证明. 定义线性映射 $T: \mathbb{R}^n \to \mathbb{R}^k$ 为

$$T(x) = (f_1(x), f_2(x), \dots, f_k(x)), \quad \forall x \in \mathbb{R}^n.$$

那么,对于任意 $x \in \mathbb{R}^n$,有

$$T(x) = 0 \iff f_i(x) = 0 \quad \forall f \in A, \dots, k \iff x \in \bigcap_{i=1}^k \ker(f_i).$$

由已知条件, $\bigcap_{i=1}^k \ker(f_i) = \{0\}$,所以 $\ker(T) = \{0\}$ 。因此 T 是单射。于是

$$n = \dim(\mathbb{R}^n) \le \dim(\mathbb{R}^k) = k,$$

即
$$k \ge n$$
。证毕。

另解. 由于每个 f_i 是线性映射,存在 $a_i = (f_i(e_1), \ldots, f_i(e_n)) \in \mathbb{R}^n$,其中 $e_i(1 \le i \le n)$ 是 \mathbb{R}^n 的标准基,使得 $f_i(x) = a_i \cdot x$ 对于所有 $x \in \mathbb{R}^n$ 。考虑 齐次线性方程组:

$$\begin{cases} a_1 \cdot x = 0 \\ a_2 \cdot x = 0 \\ \vdots \\ a_k \cdot x = 0 \end{cases}$$

该方程组的解空间就是 $\bigcap_{i=1}^k \ker(f_i)$ 。已知解空间只有零向量,因此方程组的唯一解是 x=0。这意味着系数矩阵 A 的行秩为 n,其中 A 是 $k\times n$ 矩阵,行向量为 a_1,a_2,\ldots,a_k 。由于行秩不超过矩阵的行数 k,我们有

$$n = \operatorname{rank}(A) \le k$$
,

所以 $k \ge n$ 。证毕。

习题 5. 设 $A \in n \times m$ 矩阵, $B \in k \times n$ 矩阵, 将它们视为线性映射:

$$A: \mathbb{R}^m \to \mathbb{R}^n$$

$$B: \mathbb{R}^n \to \mathbb{R}^k$$

$$BA: \mathbb{R}^m \to \mathbb{R}^k$$

- 1. 证明: $\dim(\ker(BA)) \leq \dim(\ker(A)) + \dim(\ker(B))$
- 2. 由上述不等式证明: $rank(BA) \ge rank(A) + rank(B) n$

证明. 1. 设 $x \in \ker(BA)$, 则 (BA)x = 0, 即 B(Ax) = 0, 所以 $Ax \in \ker(B)$ 。

考虑限制映射:

$$A|_{\ker(BA)} : \ker(BA) \to \ker(B)$$

由秩-零化度定理:

$$\dim(\ker(BA)) = \dim(\operatorname{im}(A|_{\ker(BA)})) + \dim(\ker(A|_{\ker(BA)}))$$

其中:

- $\operatorname{im}(A|_{\ker(BA)}) \subseteq \ker(B)$, $\operatorname{\sharp} \operatorname{dim}(\operatorname{im}(A|_{\ker(BA)})) \le \operatorname{dim}(\ker(B))$
- $\ker(A|_{\ker(BA)}) = \ker(BA) \cap \ker(A) \subseteq \ker(A),$ $\mathop{\not{\text{tim}}} (\ker(A|_{\ker(BA)})) \le \dim(\ker(A))$

因此:

$$\dim(\ker(BA)) \le \dim(\ker(B)) + \dim(\ker(A))$$

2. 由秩-零化度定理:

$$\dim(\ker(BA)) = m - \operatorname{rank}(BA)$$
$$\dim(\ker(A)) = m - \operatorname{rank}(A)$$
$$\dim(\ker(B)) = n - \operatorname{rank}(B)$$

代入第一问的不等式:

$$m - \operatorname{rank}(BA) \le (m - \operatorname{rank}(A)) + (n - \operatorname{rank}(B))$$

整理得:

$$rank(BA) \ge rank(A) + rank(B) - n$$