第三次作业

1. 设 $f: \mathbb{R} \to \mathbb{R}$ 和 $g: \mathbb{R} \to \mathbb{R}$. 定义:

$$f+g: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) + g(x)$.

再设 $h: \mathbb{R} \to \mathbb{R}$.

- (i) 证明: $(f+g) \circ h = f \circ h + g \circ h$.
- (ii) $h \circ (f+g) = h \circ f + h \circ g$ 是否总成立? 请说明理由.
- 2. 设 $f:X\to X$ 和 $g:X\to X$ 是映射, 且 g 可逆. 令 $h=g^{-1}\circ f\circ g$. 证明:
 - (i) 证明: 如果 f 可逆, 则 h 可逆且 $h^{-1}=g^{-1}\circ f^{-1}\circ g$.
 - (ii) $f^2 = f$ 当且仅当 $h^2 = h$.
- 3. 设映射 $f:S\to T$. 设 $x,y\in S$. 如果 f(x)=f(y), 则称 x,y 关于 f 等价, 并记为 $x\sim_f y$. 验证: \sim_f 是 S 上的等价关系.
- 4. 设 n 是大于 1 的正整数, \equiv_n 是 \mathbb{Z} 上的同余关系. 设 $a,b,c,d\in\mathbb{Z}$ 满足 $a\equiv_n b$ 和 $c\equiv_n d$. 证明: $a+c\equiv_n b+d$ 和 $ac\equiv_n bd$.