第四次作业

- 1. 设 $a,b \in \mathbb{Z}^+$ 且 $b \neq 0$. 如果存在 $c \in \mathbb{Z}$ 使得 a = bc. 则称 b 整除 a, 并记为 $b \mid a$.
 - (i) 证明: 整除关系 | 是 Z+ 上的序关系.
 - (ii) 求 [10] 中关于 | 的极大元和极小元.
- 2. 设置换 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 7 & 2 & 6 & 5 & 3 \end{pmatrix}$.
 - (i) 把 σ 写成互不相交的循环之积.
 - (ii) 计算 σ 的阶.
- 3. 设置换 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 1 & 7 & 2 & 8 & 5 & 6 & 3 & 10 & 9 \end{pmatrix}$. 确定 σ 的奇偶性.
- 4. 设 $\sigma \in S_n$. 我们称 $a, b \in [n]$ 关于 σ 等价, 如果存在 $k \in \mathbb{Z}$ 使得 $\sigma^k(a) = b$, 并记为 \sim_{σ} .
 - (i) 验证 \sim_{σ} 是等价关系.
 - (ii) 设 $a \in [n]$. 证明: \bar{a} 中的元素个数整除 $\operatorname{ord}(\sigma)$.
- 5. (选做) 设 σ 和 $(i_1, ..., i_k)$ 在 S_n 中. 证明: $\sigma(i_1, ..., i_k)\sigma^{-1} = (\sigma(i_1), ..., \sigma(i_k))$.