第六次作业

1. 设 $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4 \in \mathbb{R}^4$, 其中

$$\mathbf{u}_{1} = \begin{pmatrix} -1\\1\\2\\0 \end{pmatrix}, \quad \mathbf{u}_{2} = \begin{pmatrix} 2\\0\\1\\-1 \end{pmatrix}, \quad \mathbf{u}_{3} = \begin{pmatrix} 1\\1\\3\\-1 \end{pmatrix}, \quad \mathbf{u}_{4} = \begin{pmatrix} 3\\-1\\-1\\-1 \end{pmatrix}.$$

计算 $\langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4 \rangle$ 的一组基和维数.

2. 设 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^3$, 其中

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{w}_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

再设 $V = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$ 和 $W = \langle \mathbf{w}_1, \mathbf{w}_2 \rangle$. 计算 $\dim(V + W)$ 和 $\dim(V \cap W)$.

3. (关于子空间的模律) 设 U, V, W 是 \mathbb{R}^n 的子空间. 证明: 如果 $V \subset U$, 则

$$U \cap (V + W) = U \cap V + U \cap W = V + U \cap W.$$

- 4. 设 U, V 是 \mathbb{R}^n 的子空间. 证明: 如果 $\dim(U) + \dim(V) > n$, 则 $U \cap V \neq \{0\}$.
- 5. 设 $A \not\in m \times n$ 的实矩阵, $B \mapsto A$ 通过一次初等行变换得到得矩阵. 证明: A 的列向量线性相关当且仅当 B 的列向量线性相关. (提示: 利用以 $A \mapsto B$ 为系数矩阵的两个齐次线性方程组 $H_A \mapsto H_B$ 等价).