第八次作业

1. 设 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4, \mathbf{e}_5$ 是 \mathbb{R}^5 的标准基, ϵ_1, ϵ_2 , 是 \mathbb{R}^2 的标准基, 线性映射

$$\phi: \mathbb{R}^5 \to \mathbb{R}^2$$

曲 $\phi(\mathbf{e}_1) = \epsilon_1 - \epsilon_2$, $\phi(\mathbf{e}_2) = \epsilon_2 - \epsilon_1$, $\phi(\mathbf{e}_3) = \epsilon_1 - 2\epsilon_2$, $\phi(\mathbf{e}_4) = \epsilon_1$ 和 $\phi_{\mathbf{e}_5} = \epsilon_2$ 确定.

- (i) 计算 ϕ 在 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4, \mathbf{e}_5; \epsilon_1, \epsilon_2$ 下的矩阵.
- (ii) 计算 $\operatorname{im}(\phi)$ 的一组基和 $\operatorname{dim}(\ker(\phi))$.
- (iii) $\mbox{iii} \mbox{ } \mbox{y} = (1, 1, 1, 1, 1)^t \mbox{ } \mbox{m} \mbox{ } \mbox{y} = 2\mbox{e}_1 \mbox{e}_5. \mbox{ } \mbox{\vec{x}} \mbox{ } \mbox{$\phi(\mathbf{x})$} \mbox{ } \mbox{η} \mbox{$\phi(\mathbf{y})$}.$
- 2. 设

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{fif} \quad C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

计算 2A - BC.

- 3. 设 $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. 计算所有满足 XJ = JX 的二阶方阵 X.
- 4. 设线性映射 $\phi:\mathbb{R}^2 \to \mathbb{R}^2$ 在标准基 $\mathbf{e}_1,\mathbf{e}_2;\mathbf{e}_1,\mathbf{e}_2$ 下的矩阵是 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. 证明:

$$\ker(\phi) = \operatorname{im}(\phi).$$

请回答 \mathbb{R}^2 和 $\ker(\phi) + \operatorname{im}(\phi)$ 是否相同? 并说明理由.

5. 设 $\phi: \mathbb{R}^n \to \mathbb{R}^m$ 是线性满射, V 是 \mathbb{R}^m 的子空间. 证明:

$$\dim \left(\phi^{-1}(V)\right) \ge \dim(V).$$