
第五章 多项式和复数域

1 一元多项式

1.1 一元多项式环的构造

设 R是交换环. 令

R̃ = {(r0, r1, r2, . . . , rn, . . .) | rn ∈ R,有限多个非零}.

我们定义

+ : R̃× R̃ −→ R̃

((. . . , rn, . . .), (. . . , sn, . . .)) 7→ (. . . , rn + sn, . . .)
.

注意到两个只有有限多个非零元的无穷序列之和仍是一

个只有有限多个非零元的无穷序列. 故加法是良定义的.

可直接验证 (R̃,+, 0̃)是交换群, 其中 0̃代表由 0组成的无

穷序列.

再定义

· : R̃× R̃ −→ R̃

((. . . , rn, . . .), (. . . , sn, . . .)) 7→ (. . . ,
∑

i+j=n risj, . . .)

↑n

.

设 w ∈ N使得 rw = rw+1 = · · · = 0和 sw = sw+1 = · · · = 0.

则当 ℓ ≥ 2w时,
∑

i+j=ℓ risj = 0. 故乘法是良定义的. 下面
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我们来验证 (R̃, ·, 1̃)是交换的含幺半群, 其中

1̃ = (1, 0, 0, . . .).

交换性成立来自 R是交换环和

n∑
k=0

rksn−k =
n∑
k=0

rn−ksk.

下面我们来验证结合律. 设 ã, b̃, c̃ ∈ R̃, 其中

ã = (a0, a1, . . .), b̃ = (b0, b1, . . .), c̃ = (c0, c1, . . .).

我们要证明 (ãb̃)c̃ = ã(b̃c̃). 为此, 我们假设

p̃ = ãb̃, q̃ = (ãb̃)c̃, ũ = b̃c̃, ṽ = ã(b̃c̃).

则

qn =
∑
i+j=n

picj =
∑
i+j=n

(∑
k+ℓ=i

akbℓ

)
cj =

∑
k+ℓ+j=n

akbℓcj.

类似地,

vn =
∑
k+i=n

akui =
∑
k+i=n

ak

∑
ℓ+j=i

bℓcj

 =
∑

k+ℓ+j=n

akbℓcj.

故 qn = vn. 由此可知结合律成立.

我们再来验证乘法单位

r̃1̃ = (r0, r1, r2, . . .)(1, 0, 0, . . .) = (r0, r1, r2, . . .) = r̃.
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故 (R̃, ·, 1̃)是交换的含幺半群.

最后我们验证分配律. 设 f̃=ã(b̃ + c̃)和 g̃=ãb̃ + ãc̃. 则

fn =
∑
i+j=n

ai(bj + cj) =
∑
i+j=n

(aibj + aicj)

=

∑
i+j=n

aibj

 +

∑
i+j=n

aicj


= gn.

故分配律成立. 我们证明了下述命题.

命题 1.1 五元组 (R̃,+, 0̃, ·, 1̃)是交换环.

引理 1.2 设 (R,+, 0, ·, 1)是交换环. 则

ϕ : R −→ R̃

r 7→ (r, 0, 0, . . .)

是单的环同态.

证明. 由 R̃中运算的定义可知, 对任意 r, s ∈ R,

ϕ(r + s) = (r + s, 0, 0, . . .) = ϕ(r) + ϕ(s),

ϕ(rs) = (rs, 0, 0, . . .) = ϕ(r)ϕ(s),

和

ϕ(1) = (1, 0, 0, . . .) = 1̃.
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故 ϕ是环同态. 如果 ϕ(r) = 0̃,则 (r, 0, 0, . . .) = (0, 0, 0, . . .).

故 r = 0. 根据第四章第二讲引理 2.46, ϕ是单射. □

于是, R与 R̃的子环 {(r, 0, 0, . . .) | r ∈ R}同构. 我们

可以把 (r, 0, 0, . . .)简记为 r.

对于任意 r ∈ R, s̃ = (s0, s1, . . . , sn, . . .) ∈ R̃,

rs̃ = (r, 0, 0, . . .)(s0, s1, . . . , sn, . . .) = (rs0, rs1, rs2, . . .).

令

x = (0, 1, 0, 0, . . .).

我们用数学归纳法来证明: 对任意 n ∈ Z+

xn = (0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, 0, . . .). (1)

当 n=1时, 结论显然成立. 设 n>1且结论对 n−1成立. 则

xn = xxn−1 = x(0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, 0, . . .)

= (0, 1, 0, 0, . . .)(0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, 0, . . .)

= (0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, 0, . . .).

归纳法完成.

由此得出对任意 r̃ = (r0, r1, r2, . . . , rn, 0, 0, . . .) ∈ R̃,

r̃ = r0 + r1x + r2x
2 + · · · + rnx

n.
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故

R̃ =

{
n∑
k=0

rkx
k |n ∈ N, rk ∈ R

}
:= R[x].

我们称 (R[x],+, 0, ·, 1)是R上关于未定元 x的一元多项式

环. 命题 1.1说明 (R[x],+, 0, ·, 1)是良定义的交换环. 根据

引理 1.2, 我们可以认为 R ⊂ R[x].

注解 1.3 由 x的定义和 (1)可知, 对任意 r0, r1, . . . , rn∈R,

r0 + r1x + · · · + rnx
n = 0 ⇐⇒ r0 = r1 = · · · = rn = 0.

1.2 加法与乘法的性质

定义 1.4 设 p = pnx
n + pn−1x

n−1 + · · · + p0 ∈ R[x], 其

中 pn, pn−1, . . . , p0 ∈ R. 如果 pn ̸= 0, 则称 n 是 p 的

次数 (degree), 记为 deg(p); pn 是 p 的首项系数 (leading

coefficient), 记为 lc(p). 当 p = 0时, 它的次数定义为 −∞
而其首项系数定义为 0.

命题 1.5 设 p, q ∈ R[x]. 则 deg(p+q) ≤ max(deg(p), deg(q)).

当 p, q次数不同时, 等号成立.

证明. 设 p =
∑k

i=0 pix
i和 q =

∑ℓ
j=0 qjx

j, 其中 pi, qj ∈ R

且 pk ̸= 0和 qℓ ̸= 0. 不妨设 k ≥ ℓ. 于是

p + q = pkx
k + · · · + pℓ+1x

ℓ+1 +

ℓ∑
i=0

(pi + qi)x
i.
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故 deg(p + q) ≤ k且 k > ℓ时等号成立. 当 p = 0或 q = 0

时结论自然成立. □

命题 1.6 设 p, q ∈ R[x]. 则 deg(pq) ≤ deg(p) + deg(q). 当

lc(p)lc(q) ̸= 0时, 等号成立且 lc(pq) = lc(p)lc(q).

证明. 设 p =
∑k

i=0 pix
i和 q =

∑ℓ
j=0 qjx

j, 其中 pi, qj ∈ R

且 pk ̸= 0和 qℓ ̸= 0. 于是

pq = (pkqℓ)x
k+ℓ + (pkqℓ−1 + pk−1qℓ)x

k+ℓ−1 + 低次项.

故 deg(pq) ≤ k + ℓ且 pkqℓ ̸= 0时等号成立且 lc(pq) = pkqℓ.

当 p = 0或 q = 0时结论自然成立. □

例 1.7 设 f = 2̄x2 + 3̄x + 1̄和 g = 3̄x + 4̄是 Z6[x]中的多

项式. 计算 f + g和 fg.

解. 直接计算得 f + g = 2̄x2 + 6̄x + 5̄ = 2̄x2 + 5̄. 利用分配

律计算得

fg = f 3̄x+f 4̄ = (6̄x3+9̄x2+3̄x)+(8̄x2+12x+4̄) = 5̄x2+3̄x+4̄.

定理 1.8 设 D 是整环. 则 D[x]是整环. 特别地, 当 F 是

域时, F [x]是整环.

证明. 设 p, q ∈ D[x] \ {0}. 则 lc(p)和 lc(q)都不等于 0. 因

为D是整环, 所以 lc(p)lc(q) ̸= 0. 根据命题 1.6, lc(pq) ̸= 0.

故 pq ̸= 0. □
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1.3 赋值定理

本节说明如何把多项式看成“函数”.

定理 1.9 设 S是交换环, ϕ : R −→ S是环同态, 且 s ∈ S.

则存在唯一的环同态 ϕs : R[x] −→ S 满足

ϕs|R = ϕ 和 ϕs(x) = s.

证明. 定义:

ϕs : R[x] −→ S∑n
i=0 rix

i 7→
∑n

i=0 ϕ(ri)s
i.

下面验证 ϕs是环同态. 设 p =
∑k

i=0 pix
i和 q =

∑ℓ
j=0 qjxj,

其中 pi, qj ∈ R. 不妨设 k ≥ ℓ. 于是

p + q = pkx
k + · · · + pℓ+1x

ℓ+1 +

ℓ∑
i=0

(pi + qi)x
i.

则

ϕs(p+ q) = ϕ(pk)s
k + · · ·+ ϕ(pℓ+1)s

ℓ+1 +
ℓ∑

i=0

ϕ(pi + qi)s
i (ϕs的定义)

= ϕ(pk)s
k + · · ·+ ϕ(pℓ+1)s

ℓ+1 +
ℓ∑

i=0

(ϕ(pi) + ϕ(qi))s
i (ϕ保持加法)

=

(
k∑

i=0

ϕ(pi)s
i

)
+

(
ℓ∑

j=0

ϕ(qj)s
j

)
(加法交换律)

= ϕs(p) + ϕs(q) (ϕs的定义)
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再计算:

ϕs((pix
i)(qjx

j)) = ϕs((piqj)x
i+j) = ϕ(piqj)s

i+j (ϕs的定义)

= ϕ(pi)ϕ(qj)s
i+j (ϕ保持乘法)

=
(
ϕ(pi)s

i
) (
ϕ(qj)s

j
)

(S 中乘法交换).

于是,

ϕs(pq) = ϕs

((
k∑

i=0

pix
i

)(
ℓ∑

j=0

qjx
j

))

= ϕs

(
k∑

i=0

ℓ∑
j=0

(pix
i)(qjx

j)

)
(广义分配律)

=
k∑

i=0

ℓ∑
j=0

ϕs
(
(pix

i)(qjx
j)
)

( ϕs保持加法)

=
k∑

i=0

ℓ∑
j=0

(
ϕ(pi)s

i
) (
ϕ(qj)s

j
)

(上述计算)

=

(
k∑

i=0

ϕ(pi)s
i

)(
ℓ∑

j=0

ϕ(qj)s
j

)
(广义分配律)

= ϕs(p)ϕs(q) (ϕs的定义).

最后, ϕs(1R) = ϕs(1Rx
0) = ϕ(1R)s

0 = 1Ss
0 = 1S. 故 ϕs是

环同态. 对任意 r ∈ R,

ϕs(r) = ϕs(rx
0) = ϕ(r)s0 = ϕ(r) =⇒ ϕs|R = ϕ.

存在性成立.

设 ψ : R[x] −→ S是环同态满足 ψ|R = ϕ和 ψ(x) = s.
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则

ψ(p) =

k∑
i=0

ψ(pi)ψ(x)
i (ψ是环同态)

=

k∑
i=0

ϕ(pi)s
i (ψ的性质)

= ϕs(p) (ϕs的定义).

唯一性成立. □

我们称上述定理中的环同态 ϕs称为关于 ϕ在 s处的

赋值同态. 当 S = R且 ϕ = idR时, ϕs就是通常的从 R[x]

到 R的在 s处的赋值映射: f (x) 7→ f (s)

例 1.10 设 f = x2 − 4 ∈ Q[x]. 计算 f (15).

解. 设 ϕ = idZ. 则 f (15) = 152 − 4 = 221. 或

f (15) = ϕ15(f ) = ϕ15((x− 2)(x + 2))

= ϕ15(x− 2)ϕ15(x + 2) (ϕ15是环同态)

= 13× 17 = 221.

设 ϕ = πn : Z −→ Zn是商映射(环同态). 令 k̄ ∈ Zn.
由定理 1.9可知, 我们有赋值同态 ϕk̄ : Z[x] → Zn.

例 1.11 设 g = (179x− 286)(413x− 587). 计算 g(3̄), 其中

3̄ ∈ Z5. 由定理 1.9可知, ϕ3̄ : Z[x] −→ Z5是环同态, 其中
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ϕ3̄|Z是从 Z到 Z5的商映射, 且 ϕ3̄(x) = 3̄. 则

g(3̄) = ϕ3̄(g) (符号的定义)

= ϕ3̄((179x− 286)(413x− 587))

= ϕ3̄(179x− 286)ϕ3̄(413x− 587) (ϕ3̄是环同态)

= (179 3̄− 286)(413 3̄− 587) (ϕ3̄的定义)

= (4̄ 3̄− 1̄)(3̄ 3̄− 2̄) = 2̄.

推论 1.12 设 F 是域, A ∈ Mn(F )且 A ̸= O. 则

ρA : F [x] −→ F [A]∑k
i=0 pix

i 7→
∑k

i=0 piA
i

是环同态, 其中 k ∈ N, p0, p1, . . . , pk ∈ F .

证明. 根据第四章第三讲 § 3.5节, F [A]是交换环. 注意到

ρ : F −→ F [A]

λ 7→ λEn

是环同态. 根据定理 1.9, ρA是由 ρA|F = ρ和 ρA(x) = A确

定的环同态. □

例 1.13 设 f = x2 − 4 ∈ R[x], A =

2 1

0 2

. 计算 f (A).

解. (法 1) f (A) = A2 − 4E =

4 4

0 4

− 4E =

0 4

0 0

 .
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(法 2) 因为 f = (x− 2)(x + 2), 所以

f (A) = (A− 2E)(A + 2E) =

0 1

0 0

4 1

0 4

 =

0 4

0 0

 .

例 1.14 设 F 是域, A,B ∈ Mn(F ). 证明 (AB)∨ = B∨A∨.

证明. 设 A 和 B 都可逆. 则 AB 可逆. 我们有

(AB)∨ = det(AB)(AB)−1 = det(B)B−1 det(A)A−1 = B∨A∨.

设 t 是 F 上的未定元. 则

M := tE + A 和 N := tE +B

是域 F (t) 上的矩阵. det(M) 和 det(N) 都是 F [t] 中的 n

次多项式. 故它们都不等于零. 于是, M 和 N 都可逆. 由

上述结论可知

(MN)∨ = N∨M∨.

注意到 M∨, N∨, (MN)∨ 中的每个元素在 F [t] 中. 故对应

元素相等是两个多项式相等. 于是

(MN)∨|t=0 =MN∨|t=0.

而从 M 通过定义计算 M∨ 的过程只需要加法和乘法.

又因为把 t 赋值为零是同态, 所以 M∨|t=0 = (M |t=0)
∨.

换言之, A∨ = M∨|t=0. 同理 B∨ = (N∨)t=0. 类似可证

(AB)∨ = (MN)∨|t=0. 综上可知, (AB)∨ = B∨A∨. □
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1.4 多项式的除法

在本节中 F 是域.

定理 1.15 设 f, g ∈ F [x]且 g ̸= 0. 则存在唯一的多项式

q, r ∈ F [x]满足

f = qg + r 和 deg(r) < deg(g).

证明. (存在性)当 deg(f ) < deg(g)时,令 q = 0和 r = f 即

可. 否则, 设

f = fn+kx
n+k+fn+k−1x

n+k−1+· · ·+f0, g = gnx
n+gn−1x

n−1+· · ·+g0,

其中 k ≥ 0, fi, gj ∈ F 且 gn可逆.

我们对 k归纳. 当 k = 0时, 计算

f − fng
−1
n g = (fn − fng

−1
n gn)x

n + (fn−1 − fng
−1
n gn−1)x

n−1 + · · ·+ f0 − fng
−1
n g0

= (fn−1 − fng
−1
n gn−1)x

n−1 + · · ·+ f0 − fng
−1
n g0︸ ︷︷ ︸

r

再令 q = fng
−1
n . 则 f = qg + r且 deg(r) < n即可.

设 k > 0且存在性对小于 k的值都成立. 计算

f − fn+kg
−1
n xkg

= (fn+k − fn+kg
−1
n gn)x

n+k + (fn+k−1 − fn+kg
−1
n gn−1)x

n+k−1+

· · ·+ (fk − fn+kg
−1
n g0)x

k + fk−1x
k−1 + · · ·+ f0

= (fn+k−1 − fn+kg
−1
n gn−1)x

n+k−1 + · · ·+ (fk − fn+kg
−1
n g0)x

k + fk−1x
k−1 + · · ·+ f0︸ ︷︷ ︸

h

.

则 deg(h) < n + k. 由归纳假设或证明中第一段的结论可

得, 存在 q̃, r ∈ R[x]满足

h = q̃g + r 和 deg(r) < n.
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则

f = (fng
−1
n xn−k + q̃)︸ ︷︷ ︸

q

g + r.

存在性成立.

(唯一性) 再设 q′, r′ ∈ F [x]满足

f = q′g + r′ 和 deg(r′) < deg(g).

则

(q − q′)g = r′ − r. (2)

因为 deg(r) < deg(g)且 deg(r′) < deg(g), 所以

deg(r′ − r) < deg(g).

因为 lc(g)可逆, 所以

deg((q − q′)g) = deg(q − q′) + deg(g).

由此可知, (2)蕴含 q = q′. 进而, r = r′. 唯一性成立. □

沿用定理 1.15的符号, 我们称 q是被除式 f 关于除式

g的商, r是余式. 记为 quo(f, g, x)和 rem(f, g, x). 有时也

可以省略未定元 x.

例 1.16 设 f = x3 + 3x + 1和 g = 2x2 + 1是 Q[x]中的多

项式. 计算 rem(f, g, x).

解. 直接计算得

h := f − 1

2
xg =

5

2
x + 1.
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因为 deg(h) < deg(g), 所以

rem(f, g, x) =
5

2
x + 1 和 quo(f, g, x) =

1

2
x.

例 1.17 设 f = 3̄x3 + 2̄x2 + 1̄和 g = 2̄x2 + 4̄是 Z5[x]中的

多项式. 计算 quo(f, g, x)和 rem(f, g, x).

解. 注意到 2̄−1 = 3̄. 于是

h1 := f − 3̄ · 3̄xg = f − 4̄xg = 2̄x2 − x + 1̄ = 2̄x2 + 4̄x + 1̄.

h2 := h1 − g = 4̄x− 3̄ = 4̄x + 2̄.

于是,

f − 4̄xg − g = 4̄x + 2̄ =⇒ f = (4̄x + 1)g + (4̄x + 2̄).

我们得到 quo(f, g, x) = 4̄x + 1和 rem(f, g, x) = 4̄x + 2̄.

定理 1.18 (余式定理) 设 a ∈ F 和 f (x) ∈ F [x]. 则

f (a) = rem(f, x− a).

证明. 根据定理 1.15, 存在 q ∈ F [x]和 r ∈ F 使得

f (x) = q(x)(x− a) + r.

注意到把 x代换为 a是环同态. 于是, f (a) = q(a)(a−a)+r.
故 f (a) = r. □
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1.5 多项式的根

定义 1.19 设 F 和K是域,且 F 是K的子域.设 f ∈ F [x]

且 α ∈ K. 如果 f (α) = 0, 则称 α 是 f 在 K 中的一个

根(root), 即 α是方程 f (x) = 0在 K 中的一个解.

例 1.20 多项式 x2 − 2 ∈ Q[x]在 R中有根 ±
√
2, 但它在

Q中无根.

命题 1.21 设 F 是域, 且 f ∈ F [x]且 deg(f ) = n > 0. 则

(i) α ∈ F 是 f 的根当且仅当 rem(f, x− α) = 0;

(ii) f 在 F 中至多有 n个互不相同的根.

证明. (i) 由余式定理可知, f (α) = 0 ⇔ rem(f, x− α) = 0.

(ii) 对 n归纳. 当 n = 1时, f = f1x + f0, f1, f0 ∈ F

且 f1 ̸= 0. 于是, f 由唯一的根 −f0f−1
1 . 结论成立. 设结论

对 F [x]次数等于 n − 1次的多项式成立, 其中 n > 0. 如

果 f 在 F 中没有根, 则结论显然成立. 假设 α ∈ F 是 f

的一个根. 根据 (i), f (x) = g(x)(x − α), 其中 g ∈ F [x]且

deg(g) = n− 1. 由归纳假设 g在 F 中至多有 n− 1个不同

的根, 故 f 在 F 中至多有 n个不同的根. □

推论 1.22 设 F,K是域且 F 是K的子域. 设 f ∈ F [x]且

deg(f ) = n > 0. 则
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(i) α ∈ K 是 f 的根当且仅当 rem(f, x− α) = 0;

(ii) f 在 K 中至多有 n个互不相同的根.

证明. 因为 F ⊂ K, 所以 F [x] ⊂ K[x]. 故推论可由上述命

题直接得到(把系数域 F 换为K). □

例 1.23 设 f (x) ∈ F [x]的次数为 n > 0, α1, . . . , αn ∈ F

是 f (x)的 n 个互不相同的根. 证明:

f (x) = lc(f )(x− α1) · · · (x− αn).

证明. 对 n 归纳. 当 n = 1 时, f (x) = q(x−α1) (命题 1.21

(i)) 且 q ∈ F . 故 q = lc(f ). 设 n − 1 时结论成立. 当 n

时, 再利用命题 1.21 (i), 我们有

f (x) = q(x)(x− α1),

其中 q(x) 是 F [x] 中的 n− 1 次多项式. 对 i = 2, . . . , n,

0 = f (αi) = q(αi)(αi − α1).

因为 αi ̸= α1, 所以 q(αi) = 0. 由归纳假设可知

q(x) = lc(q)(x− α2) · · · (x− αn).

于是,

f (x) = lc(q)(x− α1)(x− α2) · · · (x− αn).

而 lc(q) = lc(f ) 是显然的. □
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例 1.24 设 p 是素数. 证明: 在 Zp[x] 中,

xp − x = x(x− 1̄)(x− 2̄) · · · (x− p− 1).

证明. 根据上周讲义例 4.12, 对任意 k̄ ∈ Zp, k̄p − k̄ = 0̄.

故多项式 xp − x 在 Zp 中有 p 个不同的根. 由上例可知:

xp − x = x(x− 1̄)(x− 2̄) · · · (x− p− 1). □
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