
第五章 多项式和复数域

2 多元多项式环

2.1 单项式与分布式表示

定义 2.1 设 R 是交换环. 交换环 R[x1][x2] · · · [xn]称为 R

上的 n元多项式环, 记为 R[x1, . . . , xn].

定理 2.2 当 R是整环时, R[x1, . . . , xn]是整环.

证明. 设 R是整环. 当 n = 1时 R[x1]是整环(上一讲定理

1.8). 对 n归纳可直接得出 R[x1, . . . , xn]也是整环. □

定义 2.3 设 R[x1, . . . , xn]是交换环 R上的多项式环. 令

Xn =
{
xd11 · · · xdnn | d1, . . . , dn ∈ N

}
,

其中元素M = xd11 · · · xdnn 称为单项式, d1 + · · · + dn称为

M 的(总)次数, 记为 deg(M). 而 di 称为 M 关于 xi 的次

数, 记为 degxi(M), i = 1, . . . , n.

注解 2.4 设M,N ∈ Xn. 则 MN ∈ Xn且

deg(MN) = deg(M) + deg(N).
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下面我们研究如何用单项式表示多项式. 由分配律可知,

通过R[x1, . . . , xn]中的运算, R[x1, . . . , xn]中的任何元素 f

可以写成

f = α1M1 + · · · + αkMk, (1)

其中 k ∈ Z+, α1, . . . , αk ∈ R, M1, . . . ,Mk ∈ Xn. 通过合并

同类项, 我们可进一步假设上式中M1, . . . ,Mk两两不同.

引理 2.5 设 (1)中M1, . . . ,Mk 两两不同且 f = 0. 则

α1 = · · · = αk = 0.

证明. 对 n归纳. 当 n = 1时, 结论成立(见定理 2.1 (i)). 设

n > 1且结论在 n− 1时成立. 设

d = max(degxn(M1), . . . , degxn(Mk)).

如果 d = 0, 则 xn在M1, . . . ,Mk中都不出现. 由归纳假设

α1 = · · · = αk = 0.

考虑 d > 0的情形. 假设 α1, . . . , αk 都不等于零. 再

设 i ∈ {1, . . . , n}使得M1, . . . ,Mi−1关于 xn的次数都小于

d, 而 degxn(Mi) = degxn(Mi+1) = · · · = degxn(Mk) = d. 则

Mi = Nix
d
n, . . . ,Mk = Nkx

d
n, 其中Ni, . . . , Nk ∈ Xn−1. 于是

0 = α1M1 + · · · + αi−1Mi−1︸ ︷︷ ︸
P

+ (αiNi + · · · + αkNk)︸ ︷︷ ︸
Q

xdn.

注意到 P 作为关于 xn的多项式有 degxn(P ) < d. 根据定

理 2.1, Q = 0. 根据归纳假设, αi = · · · = αk = 0, 矛盾. □
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定理 2.6 设 p ∈ R[x1, . . . , xn] 且 p ̸= 0. 则存在唯一

的 k ∈ Z+, α1, . . . , αk ∈ R \ {0} 和两两不同的单项式
M1, . . . ,Mk ∈ Xn使得

p = α1M1 + · · · + αkMk. (2)

(有时称上述表达式为 p的“分布式”.)

证明. 存在性由交换环的运算规律直接可得.

下面证明唯一性. 设

p = β1N1 + · · · + βℓNℓ,

其中 β1, . . . , βℓ ∈ R \ {0} and N1, . . . , Nℓ ∈ Xn两两不同.

再设 i ∈ {1, 2, . . . ,min(k, ℓ)}使得M1 = N1, . . . ,Mi = Ni,

且对任意的 s, t ∈ {i + 1, . . . ,max(s, t)},Ms ̸= Nt. 则:

p− p =(α1 − β1)M1 + · · · + (αi − βi)Mi

+ αi+1Mi+1 + · · · + αkMk + (−βi+1)Ni+1 + · · · + (−βℓ)Nℓ = 0.

根据引理 2.5, i = k = ℓ且 α1 = β1, . . . , αk = βk. □

定义 2.7 设 p ∈ R[x1, . . . , xn] \ {0} 的分布式表示为 (2).

多项式 p的(总)次数定义为

max(deg(M1), . . . , deg(Mk)),

记为 deg(p). 此外, 0的次数定义为 −∞.

3



注解 2.8 设 p ∈ R[x1, . . . , xn]和 i ∈ {1, . . . , n}. 我们把看
成 p在系数环 R[x1, . . . , xi−1, xi+1, . . . , xn] 上关于 xi 的元

多项式. 多项式 p关于 xi的次数记为 degxi(p).

例 2.9 设：f=2(x−y)(x+y)+3y2−5xyz−(y+z)2−2y3∈Z[x, y, z].
求 degx(f ), degy(f ), degz(f )和 deg(f ).

解. 利用交换环中的计算规则可知

f = 2x2 − (5yz)x− 2yz − z2 − 2y3 (看成关于 x的元多项式)

= −2y3 − (2xz + 2z)y + 2x2 − z2 (看成关于 y的元多项式)

= −z2 − (5xy + 2y)z + 2x2 − 2y3 (看成关于 z的元多项式)

= −(2y3 + 5xyz) + (2x2 − 2yz − z2) (分布表示).

于是 degx(p) = 2, degy(p) = 3, degz(p) = 2和 deg(p) = 3.

2.2 齐次(homogeneous)多项式与齐次分解

为了研究多元多项式的加法和乘法, 我们引入齐次多项式

的概念.

定义 2.10 设 h ∈ R[x1, . . . , xn]. 如果存在 β1, . . . , βℓ ∈ R

和 d次的单项式 N1, . . . , Nℓ ∈ Xn 使得

h = β1N1 + · · · + βℓNℓ,

则称 h是齐 d次的. 特别地, 0认为是齐任意次的多项式.
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如果多项式 h非零, 则它是齐 d次的当且仅当在它的分布

表达式中出现的单项式都是 d次的. 任何一个非零的 d次

多项式 p都可以唯一地写成

p = hd + hd−1 + · · · + h0,

其中 hi是齐 i次的多项式且 hd ̸= 0. 我们称上式为 p的齐

次（加法）分解.

例 2.11 例 2.9中的多项式 f = h3 + h2 + h1 + h0,其中

h3 = −(2y3 + 5xyz), h2 = 2x2 − 2yz − z2, h1 = h0 = 0.

引理 2.12 设 hd和 he分别是 R[x1, . . . , xn]中齐 d次和齐

e次多项式. 则

(i) deg(hd + he) ≤ max(d, e), 且当 d ̸= e时等式成立.

(ii) deg(hdhe) ≤ d + e, 且当 R是整环时等式成立.

证明. (i) 当 d > e时, hd中出现的单项式不可能与 he中

的单项式相等. 由引理 2.5, deg(hd + he) = d. 当 d = e时,

deg(hd + he) = d或 0. 结论成立.

(ii) 由注释 2.8可知, hdhe或者等于零或者是齐 d + e

次多项式. 当 R整环时, R[x1, . . . , xn]也是整环.于是当 hd

和 he都非零时, hdhe也不等于零. 故 deg(hdhe) = d + e. □
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定理 2.13 设 p和 q分别是 R[x1, . . . , xn]中 d次和 e次多

项式. 则

(i) deg(p + q) ≤ max(d, e), 且当 d ̸= e时整等式成立.

(ii) deg(pq) ≤ d + e, 且当 R是整环时等式成立.

证明. 当 p或 q等于零时, 结论显然成立. 设 p和 q都不等

于零. 令

p = gd + · · · + g1 + g0 和 q = he + · · · + h1 + h0,

其中 gi是齐 i次的, hj是齐 j次的, 且 hd和 ge都非零.

(i) 当 d > e时, gd是出现在 p + q的齐次加法分解中

次数最高的齐次多项式, 于是 deg(p + q) = d. 当 d = e时,

由引理 2.12 (i)可知, deg(p + q) ≤ d.

(ii) 由引理 2.12 (ii) 可知, pq = gdhe + r, 其中 r 的

齐次分解中出现的齐次多项式的次数小于 d + e. 于是,

deg(pq) ≤ d+ e. 当 R是整环时. deg(gdhe) = d+ e. 这也是

pq的次数. □

2.3 注记

例 2.14 求 Xn中次数不高于 d次的单项式的个数.

解. 当 n = 1时, 这些单项式是 1, x, x2, . . . , xd,共 d+1个.
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下面我们用一个精彩的组合学技巧来处理一般情形.

设单项式M = xi11 · · · xinn .

deg(M) ≤ d⇐⇒ i1 + · · · + in ≤ d,

i1, . . . , in ∈ N,

⇐⇒ i0 + i1 + · · · + in = d,

i0, i1, . . . , in ∈ N,

⇐⇒ (i0 + 1)︸ ︷︷ ︸
j0

+ (i1 + 1)︸ ︷︷ ︸
j1

· · · + (in + 1)︸ ︷︷ ︸
jn

= d + n + 1,

i1, . . . , in ∈ N,

⇐⇒ j0 + j1 + · · · + jn = d + n + 1,

j1, . . . , jn ∈ Z+.

于是, 次数小于等于 d的单项式的个数等于方程

z0 + z1 + · · · + zn = d + n + 1

的正整数解的个数. 相当于把 d+ n+ 1个球排成一排, 然

后把它们分成 n + 1个非空组, 一共有多少种不同的分法.

• · · · •︸ ︷︷ ︸
z0

| • · · · •︸ ︷︷ ︸
z1

| · · · | • · · · •︸ ︷︷ ︸
zn

,

其中有 d + n + 1个 “ •”, n个 “ |”. 因为这些球之间共有
d + n个空隙, 所以总数等于(

n + d

n

)
.
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定理 2.15 设 R和 S 是两个交换环, ϕ : R −→ S 是环同

态. 对任意的 s1, . . . , sn ∈ S, 存在唯一的环同态 ϕs1,...,sn :

R[x1, . . . , xn] −→ S 使得

ϕs1,...,sn(xi) = si, i = 1, . . . , n 且 ϕs1,...,sn|R = ϕ.

证明. 对 n归纳. 当 n = 1时, 定理即为一元多项式的赋值

同态定理 (见定理 2.3). 设 n− 1时定理成立. 即存在唯一

的环同态 ϕs1,...,sn−1 : R[x1, . . . , xn−1] −→ S满足

ϕs1,...,sn−1(xi) = xi, i = 1, . . . , n− 1 且 ϕs1,...,sn−1|R = ϕ.

令 ψ = ϕs1,...,sn−1. 对 ψ, R[x1, . . . , xn−1][xn]和 sn再次用定

理 2.3得到唯一的环同态: ψsn : R[x1, . . . , xn−1][xn] −→ S

满足 ψsn(xn) = sn且 ψsn|R[x1,...,xn−1] = ψ. 可直接看出 ψsn

就是所要求的同态 ϕs1,...,sn. □

3 复数

3.1 复数域

设

C := {x + y
√
−1 |x, y ∈ R}.

设 z = x+ y
√
−1,其中 x, y ∈ R. 则 x称为 z的实部,记为

Re(z); y称为 z的虚部, 记为 Im(z). 注意到 R ⊂ C.
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定义

+ : C× C −→ C
(x1 + y1

√
−1, x2 + y2

√
−1) 7→ (x1 + x2) + (y1 + y2)

√
−1.

可直接验证 (C,+, 0)是交换群. 定义

· : C× C −→ C
(x1 + y1

√
−1, x2 + y2

√
−1) 7→ (x1x2 − y1y2) + (x1y2 + y1x2)

√
−1.

可直接验证 (C, ·, 1)是交换含幺半群.

可直接验证分配律成立. 于是, (C,+, 0, ·, 1)是交换环.

设 z = x+ y
√
−1,其中 x, y ∈ R. 则 z̄ = x− y

√
−1称

为 z的共轭. 注意到

zz̄ = x2 + y2 ∈ R.

当 z ̸= 0时,

z
z̄

x2 + y2
= 1.

故 (C,+, 0, ·, 1)是域, 称之为复数域. 它的元素称为复数.

例 3.1 设

F =


 x y

−y x

 | x, y ∈ R

 .

则 F 是M2(R)的交换子环, (F,+, O, ·, E)是域. 下面我们

验证 F 和 C是同构的.
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定义

ϕ : F −→ C x y

−y x

 7→ x + y
√
−1.

可直接验证对任意A,B ∈ F , ϕ(A+B) = ϕ(A)+ϕ(B). 设

A =

 x y

−y x

 和 B =

 u v

−v u

 .

则

ϕ(AB) = ϕ(

 xu− yv xv + yu

−xv − yu xu− yv

)

= (xu− yv) + (xv + yu)
√
−1

= (x + y
√
−1)(u + v

√
−1)

= ϕ(A)ϕ(B).

进而, ϕ(E) = 1. 故 ϕ是环同态. 显然 ϕ是满射. 再根据

命题第四章第三讲命题 4.4, ϕ是同构.

注意到

ϕ(

 0 1

−1 0

) =
√
−1.

因为  0 1

−1 0

2

= −E,
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所以
√
−1

2
= −1是合理的.

记
√
−1为 i, 称为虚单位.

命题 3.2 共轭映射 z 7→ z̄是从 C到 C的同构且 |̄R = idR.

证明. 设 z = x+yi, x, y ∈ R. 则 z̄ = x−yi. 于是,当 y = 0

时, z̄ = z. 故 |̄R = idR. 进而,

¯̄z = x− yi = x + yi = z.

故共轭映射的逆是它自身, 从而是双射. 下面只需证明共

轭映射是同态. 再设 z′ = x′ + y′i, 其中 x′, y′ ∈ R. 则

z + z′ = (x + x′) + (y + y′)i = (x + x′)− (y + y′)i

= (x− yi) + (x′ − y′i) = z̄ + z̄′. □

3.2 复数的极表示

设 z = x + yi, 其中 x, y ∈ R不全为零. 则

z =
√
x2 + y2

(
x√

x2 + y2
+

y√
x2 + y2

i

)
.

则存在唯一的 θ ∈ [0, 2π)使得,

cos θ =
x√

x2 + y2
和 sin θ =

y√
x2 + y2

.
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称
√
x2 + y2为 z的模长, 记为 |z|. 称 θ为 z的幅角, 记为

arg z. 再设 0的模长为零, 幅角任意. 则对任意 z ∈ C,

z = |z|(cos(θ) + sin(θ)i).

称之为 z的极化公式.

引理 3.3 设复数

z1 = |z1|(cos(θ1) + sin(θ1)i), z2 = |z2|(cos(θ2) + sin(θ2)i).

则

z1z2 = |z1||z2|(cos(θ1 + θ2) + sin(θ1 + θ2)i).

证明. 直接计算得

z1z2 = |z1||z2|

(cos(θ1) cos(θ2)− sin(θ1) sin(θ2)) + (cos(θ1) sin(θ2) + sin(θ1) cos(θ2))i

= |z1||z2|(cos(θ1 + θ2) + sin(θ1 + θ2)i). □

命题 3.4 设 z = |z|(cos(θ) + sin(θ)i).

(i) 对任意 n ∈ N, zn = |z|n(cos(nθ) + sin(nθ)i).

(ii) 如果 z ̸= 0, 则 z−1 = |z|−1(cos(θ)− sin(θ)i).
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证明. (i) 对 n归纳. 当 n = 0时, 结论显然成立. 设 n > 0

且结论对 n− 1时成立.

zn = zzn−1

= |z|(cos(θ) + sin(θ)i)|z|n−1(cos((n− 1)θ) + sin((n− 1)θ)i)

(归纳假设)

= |z|n(cos(nθ) + sin(nθ)i) (引理 3.3).

(ii) 直接计算得

z|z|−1(cos(θ)− sin(θ)i)

= |z|(cos(θ) + sin(θ)i)|z|−1(cos(−θ) + sin(−θ)i)

= 1 (引理 3.3). □

令

eiθ = cos(θ) + sin(θ)i.

则, z = |z|(cos(θ) + sin(θ)i)可简记为 z = |z|eiθ. 上述引理
和命题中的结论可写为

z1 = |z1|eiθ1, z2 = |z2|eiθ2 =⇒ z1z2 = |z1||z2|ei(θ1+θ2).

当 z = |z|eiθ ̸= 0 时, 对任意 n ∈ Z, zn = |z|neinθ, 和
z̄ = |z|e−iθ.

Euler “公式”

eiπ + 1 = 0.
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3.3 单位根

设 n ∈ Z+. 方程 zn = 1在 C中的根称为 n次单位根.

命题 3.5 方程 zn = 1在 C中有 n个互不相同的根

ϵk = e
2kπi
n , k = 0, 1, . . . , n− 1.

证明. 直接计算得

ϵnk = e2kπi = 1.

故 ϵ0, ϵ1, . . . , ϵn−1 都是单位根. 设 k,m ∈ {0, 1, . . . , n − 1}
且 k ≤ m. 如果 ϵk = ϵm, 则

1 = ϵmϵ
−1
k = e

2(m−k)πi
n .

因为m−k ∈ {0, 1, . . . , n−1},所以m = k. 故 ϵ0, ϵ1, . . . , ϵn−1

两两不同. □

根据第五章第二讲定理 3.19,方程 zn = 1在 C中的至
多有 n个根.于是, C中恰有 n个互不相同的单位根.记Un

是这些单位根的集合.

命题 3.6 三元组 (Un, ·, 1)是循环群. Un = ⟨ϵℓ⟩当且仅当
gcd(ℓ, n) = 1.

证明. 设 ϵk, ϵm ∈ Un. 则 (ϵkϵ
−1
m )n = ϵnk(ϵ

n
m)

−1 = 1. 故

ϵkϵ
−1
m ∈ Un. 故 (Un, ·, 1)是 (C∗, ·, 1)的子群 (第四章第一讲

命题 2.24).
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注意到:

Un = ⟨ϵℓ⟩ ⇐⇒ ord(ϵℓ) = n

⇐⇒ n

gcd(n, ℓ)
= n (第四章推论 2.34)

⇐⇒ gcd(n, ℓ) = 1 □

当 Un = ⟨ϵℓ⟩时, ϵℓ称为 n次本原单位根.

3.4 代数学基本定理

定理 3.7 (代数学基本定理) 设 f ∈ C[x] \C. 则 f 在 C[x]
有根.

上述定理的证明要用到超出本课程范围的知识. 这里不给

出证明. 但它的两个推论对下学期的学习比较重要.

推论 3.8 设 f ∈ C[x]\C. 则存在互不相同的复数α1, · · · , αk
和非零正整数m1, . . . ,mk 使得

f = lc(f )(x− α1)
m1 · · · (x− αk)

mk.

证明. 设 n = deg(f ), ℓ = lc(f ). 我们对 n归纳.

设 n > 1且结论对 n − 1次复系数多项式都成立. 由

代数学基本定理, 存在 α∈C使得 f (α)=0. 根据余式定理,

f (x) = (x− α)g(x),
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其中 g ∈ C[x], deg(g) = n − 1且 lc(g) = λ. 由归纳假设

存在互不相同的复数 α1, · · · , αk和非零正整数m1, . . . ,mk

使得

g = λ(x− α1)
m1 · · · (x− αk)

mk.

如果 α ∈ {α1, . . . , αk}, 则不妨设 α = α1. 由此得出

f (x) = λ(x− α1)
m1+1 · · · (x− αk)

mk.

否则

f (x) = λ(x− α)(x− α1)
m1 · · · (x− αk)

mk. □

该推论说明 C[x]中的不可约元是零次或者一次的多
项式, 每个复系数多项式在 C中的根的个数(计算重数)与

其次数相同.

推论 3.9 在 R[x]中次数大于 2 的多项式必然有非平凡因

式分解, 即存在 f1, f2 ∈ R[x] \ R 使得该多项式等于 f1f2.

证明. 假设 f (x) = fnx
n + fn−1x

n−1 + · · · + f0 ∈ R[x]是不
可约的且 n > 2和 fn ̸= 0. 因为 f 也是复系数多项式, 所

以代数学基本定理蕴含 f 由复根 α. 注意到 α /∈ R. 否则
由余式定理 f 会有一次实系数因子 x − α, 与 f 的不可约

性矛盾. 特别地, ᾱ ̸= ᾱ.

因为实数的共轭是它自身, 所以

0 = f (α) = f (α) =

n∑
i=0

f̄iᾱ
i =

n∑
i=0

fiᾱ
i = f (ᾱ).
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故 f 由两个互不相同的复根 α和 ᾱ. 根据余式定理 f (x) =

g(x)(x−α),其中 g ∈ C[x]. 因为 f (ᾱ) = 0,所以 g(ᾱ−α) =
0. 再因为 ᾱ − α ̸= 0. 于是, g(ᾱ) = 0. 故余式定理蕴含

g(x) = q(x)(x− ᾱ). 由此可知,

f (x) = q(x)(x− α)(x− ᾱ).

因为 (x− α)(x− ᾱ) ∈ R[x],所以 q(x) ∈ R[x] (两个实系数
多项式相除得到的商和余式都是实系数多项式). 故 f 在

R[x] 中有非平凡因式分解. □

3.5 应用举例

例 3.10 设循环矩阵

A =



a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2

an−2 an−1 · · · an−4 an−3

... ... . . . ... ...

a1 a2 · · · an−1 a0


∈ Mn(R).

计算 A的行列式. 当矩阵 A可逆时, 求 A−1.

解. 设 ϵ0, . . . , ϵn−1是 n个 n次单位根. 令

f = a0 + a1x + · · · + an−2x
n−2 + an−1x

n−1 ∈ C[x].
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对 k ∈ {0, 1, . . . , n− 1}, 利用 ϵnk = 1得到

f (ϵk) = a0 + a1ϵk + · · · + an−2ϵ
n−2
k + an−1ϵ

n−1
k ,

ϵkf (ϵk) = an−1 + a0ϵk + · · · + an−3ϵ
n−2
k + an−2ϵ

n−1
k ,

ϵ2kf (ϵk) = an−2 + an−1ϵk + · · · + an−4ϵ
n−2
k + an−3ϵ

n−1
k ,

...

ϵn−1
k f (ϵk) = a1 + a2ϵk + · · · + an−1ϵ

n−2
k + a0ϵ

n−1
k .

利用矩阵写成

f (ϵk)



1

ϵk

ϵ2k
...

ϵn−1
k


= A



1

ϵk

ϵ2k
...

ϵn−1
k


, k = 0, 1, . . . , n− 1.

设

V =


1 1 · · · 1

ϵ0 ϵ1 · · · ϵn−1

... ... . . . ...

ϵn−1
0 ϵn−1

1 · · · ϵn−1
n−1

 .

则 V diag(f (ϵ0), . . . , f (ϵn−1)) = AV. 由 Vandermonde行列

式可知, V 可逆. 故

A = V diag(f (ϵ0), . . . , f (ϵn−1))V
−1.
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两边取行列式得

det(A) = f (ϵ0) · · · f (ϵn−1).

而 A可逆当且仅当任何 n次单位根都不是 f 的根. 此时,

A−1 = V diag(f (ϵ0)
−1, . . . , f (ϵn−1)

−1)V −1.

例 3.11 设

H =


 u v

−v̄ ū

 | u, v ∈ C

 .

则 (H,+, O, ·, E) 是 M2(C) 中的非交换子环, 且 H 中的

每个非零元在 H 中有可逆元. 这是数学史上第一个斜

域(skew-field), 称为 Hamilton四元数系.

验证如下:

(i)设W =

 u v

−v̄ ū

和Z =

 x y

−ȳ x̄

,其中 u, v, x, y∈C.

我们有

W − Z =

 u− x v − y

−v̄ + ȳ ū− x̄

 =

 u− x v − y

−v − y u− x

 ∈ H.

故 (H,+, O)是 (M2(C),+, O)的子群.

计算

WZ =

 ux− vȳ uy + vx̄

−v̄x− ūȳ −v̄y + ūx̄

 =

 ux− vȳ uy + vx̄

−(uy + vx̄) ux− vȳ

 ∈ H.
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注意到

E2 =

 1 0

−0̄ 1̄

 ∈ H.

故 H 是M2(C)的子环.

(ii) 设 A =

i 0

0 −i

和 B =

0 i

i 0

 . 则 A,B ∈ H.

直接计算得

AB =

0 −1

1 0

 , BA =

 0 1

−1 0

 .

因为 AB ̸= BA, 所以 H 不是交换环.

(iii) 设W ̸= O. 则 det(W ) = |u|2 + |v2| ≠ 0. 故W 是

可逆矩阵. 在Mn(C)中,

W−1 =
1

uū + vv̄

ū −v
v̄ u

 ∈ H.

故W 在 H 中可逆.
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