第一章 预备知识

4.4 映射的逆

定义 4.14 设 $f: S \longrightarrow T$ 是映射. 如果存在映射 $g: T \longrightarrow S$ 使得 $g \circ f = \mathrm{id}_S$ 且 $f \circ g = \mathrm{id}_T$,则称 f 是可逆映射,g 称为 f 的一个逆映射.

命题 4.15 映射 $f: S \longrightarrow T$ 可逆当且仅当 f 是双射.

证明. 设 f 可逆且 g 是 f 的一个逆映射. 对任意 $x, y \in S$ 且 $x \neq y$. 我们有

$$g(f(x)) = (g \circ f)(x) = \mathrm{id}_S(x) = x.$$

同理 g(f(y)) = y. 因为 $x \neq y$, 所以 $f(x) \neq f(y)$. 故 f 是单射. 再设 $z \in T$. 令 x = g(z). 则

$$f(x) = f(g(z)) = (f \circ g)(z) = \mathrm{id}_T(z) = z.$$

于是, f 是满射. 综上所述, f 是双射.

反之,设 f 是双射.则对于任意 $t \in T$ 存在唯一的 $s_t \in S$ 使得 $f(s_t) = t$. 定义

$$g: T \longrightarrow S$$
$$t \mapsto s_t.$$

则对任意 $t \in T$, $f \circ g(t) = f(g(t)) = f(s_t) = t$. 故 $f \circ g = \mathrm{id}_T$. 对任意 $x \in S$, 令 t = f(x). 则 $x = s_t$. 我们计算:

$$g \circ f(x) = g(t) = s_t = x.$$

故 $g \circ f = \mathrm{id}_S$. \square

命题 4.16 设映射 $f: S \longrightarrow T$ 可逆, 则它的逆映射唯一.

证明. 设 g,h 是 f 的两个逆映射. 则 $g \circ f = \mathrm{id}_S$. 于是, $(g \circ f) \circ h = \mathrm{id}_S \circ h = h$. 根据映射的结合律,

$$h = g \circ (f \circ h) = g \circ id_T = g.$$

设映射 $f: S \longrightarrow T$ 可逆. 则它的逆记为 f^{-1} .

命题 **4.17** (i) 设映射 $f: S \to T$ 可逆. 则 $f^{-1}: T \to S$ 也可逆且

$$(f^{-1})^{-1} = f.$$

(ii) (穿衣脱衣规则) 设映射 $f:S\longrightarrow T, g:T\longrightarrow U$ 都可逆. 则 $g\circ f$ 也可逆且

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

证明. (i) 因为 $f \circ f^{-1} = \mathrm{id}_T \ \mathrm{If} \ f^{-1} \circ f = \mathrm{id}_S$, 所以 f^{-1} 可 逆且其逆等于 f. (ii) 由 (i) 可知 $f^{-1}: T \longrightarrow S$ 和 $g^{-1}: U \longrightarrow T$ 存在. 令 $h = f^{-1} \circ g^{-1}$. 它是从 U 到 S 的映射. 根据结合律, 我们有

$$h \circ (g \circ f) = (f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$
$$= f^{-1} \circ id_T \circ f = f^{-1} \circ (id_T \circ f) = f^{-1} \circ f = id_S.$$

类似地,

$$(g \circ f) \circ h = (g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1}$$

= $g \circ id_T \circ g^{-1} = g \circ (id_T \circ g^{-1}) = g \circ g^{-1} = id_U$.

结论成立. 口

例 4.18 设 $f: \mathbb{R} \longrightarrow \mathbb{R}$ 由公式 $f(x) = \sin(x)$ 给出. 则

$$g: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \left[-1, 1\right]$$
$$x \mapsto f(x).$$

则 g 是双射. 其逆映射是 $\arcsin(x)$.

5 等价关系和序关系

5.1 二元关系

定义 5.1 设 S 是一个非空集合, R 是 $S \times S$ 的子集. 我们称 R 称为 S 上的一个二元关系. 如果 $(a,b) \in R$, 则称 a 和 b 有关系 R, 并记为 aRb.

例 5.2 设 $R = \{(x, x) | x \in S\}$. 则对任意 $a, b \in S$, aRb 当且仅当 a = b. 换言之, $R \not\in S$ 中的等于关系.

例 5.3 设 L 是 \mathbb{R}^2 中所有直线的集合. 设

$$C = \{(\ell_1, \ell_2) \in L^2 \mid \ell_1, \ell_2 \ \text{有公共点}\}.$$

二元关系 C 代表两直线相交或重合. 设 $P = L^2 \setminus C$. 则 $\ell_1 P \ell_2$ 代表 ℓ_1 与 ℓ_2 平行但不重合.

例 5.4 设 $R = \{(x, y) \in \mathbb{R}^2 | x \le y\}$. 则 R 就是实数集上的 < 关系.

5.2 等价关系

定义 5.5 设 S 是非空集合, \sim 是 S 上的二元关系. 如果

- (i) 对任意 $x \in S$, $x \sim x$ (自反性),
- (ii) 设 $x, y \in S$ 且 $x \sim y$, 则 $y \sim x$ (对称性),
- (iii) 设 $x, y, z \in S$, $x \sim y$ 且 $y \sim z$, 则 $x \sim z$ (传递性),则称 \sim 是等价关系.
- 例 5.6 例 5.2 中的等于是等价关系. 设 T 是 \mathbb{R}^2 中所有三角形的集合. 则三角形全等和相似都是等价关系.

例 5.3 中的关系 C 不满足传递性, 关系 P 不满足自反性, 例 5.4 中的关系 < 不满足对称性. 故它们都不是等价关系.

例 5.7 设 S 是中关村中学所有学生的集合, \sim_c 是该集合上同班同学关系. 该关系是等价关系.

设 $x \in \mathbb{Z}$ 和 $m \in \mathbb{Z}^+$.则存在唯一整数 $q, r \in \{0, 1, ..., m-1\}$ 使得

$$x = qm + r$$
.

我们来验证唯一性. 再设 x = um + v, 其中 $u \in \mathbb{Z}$ 和 $v \in \{0, 1, ..., m - 1\}$. 不妨设 $v \ge r$. 则 (q - u)m = v - r. 因为 m > v - r, 所以 v = r. 由此得出 q = u. 我们称 r 是 x 关于 m 的余数, q 是 x 关于 m 的商. 它们分别记为 rem(x, m) 和 quo(x, m).

如果存在 $k \in \mathbb{Z}$ 使得 x = km, 则称 m 整除 x. 记为 $m \mid x$.

定义 5.8 设 $m \in \mathbb{Z}^+$. 设 $x, y \in \mathbb{Z}$. 我们称 x 和 y 关于 m 同余, 如果 $m \mid (x - y)$. 记为 $x \equiv_m y$ 或 $x \equiv y \mod m$.

下面我们来验证 \equiv_m 是等价关系.

- (自反性)对任意 $x \in \mathbb{Z}$, m|(x-x), 于是, $x \equiv_m x$.
- (对称性) 设 $x, y \in \mathbb{Z}$ 且 $x \equiv_m y$. 则存在 $a \in \mathbb{Z}$ 使得 (x y) = am. 则 y x = (-a)m. 故 $m \mid (y x)$. 我们得到 $y \equiv_m x$.

• (传递性) 设 $x, y, z \in \mathbb{Z}$ 满足 $x \equiv_m y$ 和 $y \equiv_m z$. 则存在 $a, b \in \mathbb{Z}$ 使得 x - y = am 和 y - z = bm. 于是, x - z = (a + b)m. 故 $x \equiv_m z$.

验证完毕.

命题 5.9 设 $a,b \in \mathbb{Z}$ 且 n 是大于 1 的正整数. 则

$$a \equiv_n b \iff \operatorname{rem}(a, n) = \operatorname{rem}(b, n).$$

证明. 设 $a \equiv_n b$. 则存在 $m \in \mathbb{Z}$ 使得 a - b = mn. 由此可知 a = b + mn. 设 b = qn + r, 其中 q = quo(b, n) 和 r = rem(b, n). 则 a = (q+m)n+r. 因为 $r \in \{0, 1, \ldots, n-1\}$, 所以余数的唯一性蕴含 r = rem(a, n). 故

$$rem(a, n) = rem(b, n).$$

反之, 设 rem(a, n) = rem(b, n). 则由除法公式可得

$$a-b=(\operatorname{quo}(a,n)-\operatorname{quo}(b,n))n.$$

故 n|(a-b), 即 $a \equiv_n b$. □

5.3 等价类和商集

设~是S上的等价关系, $x \in S$. 则关于x 的等价类是

$$\bar{x} = \{ y \in S | x \sim y \}.$$

此外, 家中的任何一个元素都是该等价类的一个代表元.

注解 5.10 设 \sim 是 S 上的等价关系, $x \in S$. 根据自反性, $x \in \bar{x}$.

命题 5.11 设 ~ 是集合 S 上的等价关系, $x,y \in S$.

(i)
$$x \sim y \iff \bar{x} = \bar{y}$$
.

(ii)
$$x \nsim y \iff \bar{x} \cap \bar{y} = \emptyset$$
.

证明. (i) 设 $x \sim y$ 且 $a \in \bar{x}$. 则 $x \sim a$. 根据对称性, $y \sim x$. 再由传递性, $y \sim a$. 于是, $a \in \bar{y}$. 我们得到 $\bar{x} \subset \bar{y}$. 同理 $\bar{y} \subset \bar{x}$. 故 $\bar{x} = \bar{y}$. 反之, 设 $\bar{x} = \bar{y}$. 根据注释 5.10, $x \in \bar{x}$ 和 $y \in \bar{y}$. 故 $y \in \bar{x}$. 由此得出, $x \sim y$.

(ii) 由 (i) 可知, $\bar{x} \cap \bar{y} = \emptyset \Longrightarrow x \nsim y$. 反之, 设 $x \nsim y$. 若 $z \in \bar{x} \cap \bar{y}$. 则 $x \sim z$ 和 $y \sim z$. 根据对称性和传递性, $x \sim y$. 矛盾. \square

同学等价关系 \sim_c 对应的等价类是该中学所有的班,每个同学都是所在班的代表元. 集合 \mathbb{Z} 关于 \equiv_2 共有两个等价类: 偶数集和奇数集. 偶数集可记为 $\bar{0}$, $\bar{2}$, $\overline{-2}$, ..., 而奇数集的代表元可记为 $\bar{1}$, $\overline{-1}$, $\bar{3}$, $\overline{-3}$, ...,

例 5.12 设 $m \in \mathbb{Z}^+$. 则 \mathbb{Z} 关于 \equiv_m 的等价类是

$$\bar{0} = \{km | k \in \mathbb{Z}\}, \ \bar{1} = \{km + 1 | k \in \mathbb{Z}\},$$

$$\ldots, \ \overline{m-1} = \{km+m-1 | k \in \mathbb{Z}\}.$$

定义 5.13 设 \sim 是 S 上的等价关系. 关于 \sim 的所有等价 类的集合称为 S 关于 \sim 的商集. 记为 S/\sim . 映射

$$\pi: S \longrightarrow S/\sim$$

$$x \mapsto \bar{x}$$

称为关于~的商映射或自然投射.

注意到商映射是满射. 对于等价关系 \sim_c , 其商映射就是判断每位同学是哪个班的. 对于 \equiv_2 , 其商映射就是判断每个整数的奇偶性.